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ABSTRACT

The Physical Internet (PI) is a recent paradigm in the supply chain management that proposes a framework
in which standardization and optimization are key factors to raise supply chain efficiency, resilience, and
sustainability. Strategic decisions are included in the PI, including the supply chain network design (SCND).
In fact, structuring a (near) optimal design is essential to achieve the PI objectives. Additionally, disruptive
events such as the COVID-19 pandemic, earthquakes, or terrorist attacks threaten the supply chains. These
events are difficult to predict, but their effects can be simulated when addressing this problem. Hence, we
propose a simulation-optimization approach that hybridizes a multi-objective multi-period mixed-integer
program with discrete-event simulation to optimize both cost and resilience in the SCND. Furthermore, a
network hyperconnection strategy is tested. Results show that both resilience and risk are improved after
hyperconnecting the supply chain, especially when active edges are disturbed, but incur higher costs.

1 INTRODUCTION

A supply chain “consists of all stages involved, directly or indirectly, in fulfilling a customer request.
The supply chain includes manufacturers, suppliers, transporters, warehouses, retailers, and customers”
(Shapiro 2007). An improvement in the competitiveness of supply chains does benefit companies, as well
as the economic and social development of countries, since it creates value and improves efficiency and
overall performance of organizations (Ahi and Searcy 2013). However, with the continuous growth of
supply chains into more and more complex systems, new challenges arise to achieve and maintain their
efficiency. Indeed, according to Montreuil (2011), the current logistics paradigm is unsustainable from
economic, environmental, and social points of view. The notions of resilience and sustainability have hence
appeared to take over the solely economic performance of the management and design of supply chains
(Montoya-Torres 2022; Tordecilla et al. 2021). In order to face these problems, the Physical Internet (PI)
paradigm arises to increase the supply chain efficiency, resilience, and sustainability. The PI is based on
the traditional digital Internet global system, since both have similar foundations, such as encapsulation,
universal interconnectivity, openness, or standard interfaces and protocols (Montreuil et al. 2013; Montreuil
2011). For instance, the PI encapsulates the transported products in physical packets, called π-containers,
which are characterized for being world-standard, smart, ecofriendly, and modular (Montreuil et al. 2010).
Academics and practitioners have developed research and applications of the PI, as witnessed in several
review papers (Maslarić et al. 2016; Sallez et al. 2016; Treiblmaier et al. 2020; Cortés-Murcia et al.
2022). Most scientific works have focused on conceptual developments and practical implementation, while
research based on quantitative analyses is scarce. Hence, the objective of this paper is to deal with random
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disruptions along a supply chain in order to optimize both cost and resilience. A simulation-optimization
approach is proposed, in which multi-objective mathematical programming is coupled with discrete-event
simulation. This paper is organized as follows. Section 2 presents an overview of academic works related to
the PI. Section 3 describes the problem addressed in this paper, while the proposed simulation-optimization
approach is presented in Section 4. Section 5 is devoted to present the computational experiments and
analyze the results. Finally, Section 6 outlines our main conclusions and some future research lines.

2 RELATED WORK

In the search of resilience in supply chains, one of the disruptive paradigms is the PI. According to
Montreuil et al. (2013), the PI is defined as “an open global logistics system founded on physical, digital
and operational interconnectivity through encapsulation, interfaces and protocols. It is a perpetually evolving
system driven by technological, infrastructural and business innovation”. Its main objective is to increase
overall efficiency, resilience, and sustainability of supply chains. They also provide 8 foundations of the
PI; this concept is strongly based on the digital Internet system and, hence, it poses a paradigm shift respect
to the current logistics system. The term Physical Internet was however first used in a 2006 headline of
the British popular press magazine The Economist, which contained a survey of logistics and a variety of
mainstream supply chain articles (Cortés-Murcia et al. 2022).

Montreuil et al. (2010) describe the different physical elements regarding the PI, in which a fundamental
one is the π-container with standard dimension for different sizes, since it ensures the encapsulation of
goods and allows modularity and interlocking capabilities for transportation and storage. The π-movers
are also described, which are designed to transport, convey, handle, lift, and manipulate the π-containers.
Moreover, authors explain thoroughly different types of π-nodes, which are the locations where π-containers
are received, sorted, picked, assembled, among other processes that are relevant to increase the system
efficiency. All these elements contribute to design an efficient and sustainable logistics web in the PI context.
In this same topic, Cortés-Murcia et al. (2022) present a systematic meta-review of literature with the
objective of identifying how disruptive technologies and the PI impact the supply chain management. These
authors analyze and synthesize 74 published literature review papers addressing these three topics and their
relationship, and design a conceptual framework in which such relations are summarized: decision-making
tools, real-time information processing, and business models. More recently, Nouiri et al. (2023) propose
a short review of literature on the applications of the PI on the global performance of supply chains:
multi-plant, multi-product supply chains and π-hub location problems are studied.

From a quantitative standpoint, research works dealing with the PI are scarce. At the operational level,
Arnau et al. (2022) address a coordinated multi-vehicle routing problem in interconnected networks. A
discrete-event deterministic heuristic is proposed to minimize the total routing time. Additional indicators
(e.g., number of employed drivers, shipping time, total driving time) are computed as well. This procedure
is extended to a probabilistic setting using a biased-randomized approach. In regard to the PI network
design, the π-nodes location problem is similar to the Capacitated hub location problem (CHLP), which
allows product flow through at most two hubs (Contreras and O’Kelly 2019; Ernst and Krishnamoorthy
1999). The PI has also been studied in the scientific literature jointly with other topics, such as city logistics
(Crainic and Montreuil 2016), transportation (Sarraj et al. 2014), artificial intelligence (Nikitas et al. 2020),
cloud logistics (Zhang et al. 2016), or the Internet of things (Tran-Dang et al. 2020). However, to the
best of our knowledge, the current paper is the first work in the academic literature addressing the resilient
supply chain network design (SCND) problem under the context of the PI.

3 PROBLEM DESCRIPTION

A SCND problem is addressed. It considers location-allocation decisions in a directed graph, in which
three subsets of nodes are considered: suppliers, π-hubs (as so-called in the PI context), and customers.
The number of suppliers, customers, and potential π-hubs are known, and we must decide which π-hubs
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are open and which ones remain closed. The π-containers supply from each supplier, the π-containers
demand of each customer, and the maximum capacity of each π-hub are known as well. Each π-hub has
a fixed cost, and a variable cost depending on the number of π-containers they manage. The π-containers
flow between nodes is performed via a set of potential edges, which have a known distance-related cost.
We must also decide which edges are used, and the quantity of π-containers to flow via each active edge.
A distance limit is imposed, i.e., any edge that exceeds this limit is not feasible, so that, for instance, in
a real situation the time that truck drivers are on the road is not excessive, decreasing their fatigue and
sleep deprivation. Achieving this objective is part of the PI foundations (Montreuil 2011; Treiblmaier et al.
2020). Additionally, feasible edges connect only suppliers to π-hubs, π-hubs to customers, and π-hubs to
other π-hubs. Direct shipments from suppliers to customers are not allowed.

Two variants of this problem are considered. Firstly, a basic (B) problem in which a single type of
π-container is sent. Any customer demand can be met by any supplier. Secondly, a hyperconnected (H)
problem in which a single type of π-container is sent, and at least one path must connect each supplier-
customer (S-C) pair. Figure 1 displays an example of complete solutions of both variants. Blue, orange,
green, and small gray nodes represent suppliers, π-hubs, customers, and non-open π-hubs, respectively.
In our work, hyperconnection means that any customer can be reached from any supplier via at least one
path, such as Figure 1b shows. On the contrary, this action is not possible in the case of Figure 1a.

(a) A basic solution. (b) A hyperconnected solution.

Figure 1: Example of complete solutions for the B and H problem variants.

Both considered problem variants are multi-objective, since two objectives are intended to be optimized:
cost and resilience. Considering resilience implies that the addressed problem is multi-period. At the
beginning of the planning horizon, the supply chain is fully operative. Then a disruption occurs, perturbing
any element of the graph, e.g., a π-hub capacity, which decreases the supply chain ability to meet the
whole demand. Subsequently, the supply chain recovers gradually until it is again fully operative after a
few time periods. The disruption occurrence is considered stochastic. Concretely, the number of elements
to disturb (e.g., the number of π-hubs), the subset of elements to disturb, the recovery time, and the
degradation level caused by the disruption are modeled as random variables. To deal with this randomness,
a simulation-optimization approach is proposed, as explained in the following section.

As a first approximation to this problem, a few assumptions are considered as well. Firstly, we only
consider a single tier of suppliers. Secondly, only one type of element is disturbed at a time, e.g., either
π-hubs or connecting edges. Finally, lead time is not considered, i.e., each modeled period is long enough
to complete a full shipment from suppliers to customers.

4 SOLUTION APPROACH

Since we seek to optimize both cost and resilience objectives after considering random disruptions over the
supply chain, we have designed a simulation-optimization approach that deals efficiently with this problem.
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This approach is illustrated in Figure 2. Initially, a general multi-objective mixed-integer programming
(MIP) model is formulated. Table 1 shows the related sets, parameters, and variables. As depicted in
Figure 2, three MIP models are solved in different phases of this procedure. Hence, the general model
shown below is slightly modified to adopt the particular characteristics of each of these three MIP models.

Open 𝜋-hubs

Increase the
number of open
𝜋-hubs by 1

More
available
𝜋-hubs?

Start

End

Simulate a supply
chain disruption

Solve a MIP model
maximizing the

resilience objective

Yes

Save the obtained
KPIs

No

Solve a B MIP
model minimizing
the cost objective

More
simulation

runs?

Active edges

Solve an H MIP
model minimizing
the cost objective Yes

No

Disturbed
parameter

Figure 2: Simulation-optimization approach to solve our considered problem.

Minimize ∑
t∈T

[
∑

h∈H
fhzh + ∑

k∈K

(
∑

(h,h′)∈B
ghxhh′kt + ∑

(h, j)∈C
ghyh jkt

)

+ ∑
(i,h)∈A

caihrih + ∑
(h,h′)∈B

cbhh′uhh′ + ∑
(h, j)∈C

cch jvh j

] (1)

Maximize

∑
t∈T\t0

 ∑
k∈K

∑
(h, j)∈C

yh jkt

∑
j∈J

∑
k∈K

d jkt
+

∑
k∈K

∑
(h, j)∈C

yh jkt−1

∑
j∈J

∑
k∈K

d jkt−1

∆t

2tmax (2)

s.t.

∑
h:(i,h)∈A

wihkt ≤ sikt , ∀i ∈ I,∀k ∈ K,∀t ∈ T (3)

∑
h:(h, j)∈C

yh jkt ≤ d jkt , ∀ j ∈ J,∀k ∈ K,∀t ∈ T (4)
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Table 1: Sets, parameters, and variables for the proposed SCND models.

Sets
I = Set of suppliers
H = Set of π-hubs
J = Set of customers
T = Set of periods
P = Set of S-C pairs, P = I × J
Q = A unit set representing the single type of π-container to be transported
K = P∪Q
A = Set of edges between suppliers and π-hubs, A ⊆ I ×H = {(i,h) : i ∈ I ∧h ∈ H}
B = Set of edges between π-hubs, B ⊆ H ×H = {(h,h′) : h ∈ H,h′ ∈ H ∧h ̸= h′}
C = Set of edges between π-hubs and customers, C ⊆ H × J = {(h, j) : h ∈ H ∧ j ∈ J}
Parameters

d jkt =
{

Demand of customer j ∈ J in period t ∈ T , if k ∈ Q
Binary parameter equal to 1 if customer j ∈ J belongs to S-C pair k ∈ P, 0 otherwise

sikt =
{

Supply of supplier i ∈ I in period t ∈ T , if k ∈ Q
Binary parameter equal to 1 if supplier i ∈ I belongs to S-C pair k ∈ P, 0 otherwise

qht = Maximum capacity of π-hub h ∈ H in period t ∈ T
fh = Fixed operating cost of π-hub h ∈ H
gh = Variable operating cost of π-hub h ∈ H
caih = Cost of traversing edge (i,h) ∈ A
cbhh′ = Cost of traversing edge (h,h′) ∈ B
cch j = Cost of traversing edge (h, j) ∈C
tmax = Maximum allowable recovery time
∆t = Time granularity
M = A very large number compared to the magnitude of the rest of parameters
Variables

wihkt =
{

Quantity of π-containers transported from supplier i ∈ I to π-hub h ∈ H in period t ∈ T , if k ∈ Q
Binary variable equal to 1 if edge (i,h) ∈ A belongs to a path linking S-C pair k ∈ P in period t ∈ T , 0 otherwise

xhh′kt =
{

Quantity of π-containers transported from π-hub h ∈ H to π-hub h′ ∈ H in period t ∈ T , h ̸= h′, if k ∈ Q
Binary variable equal to 1 if edge (h,h′) ∈ B belongs to a path linking S-C pair k ∈ P in period t ∈ T , 0 otherwise

yh jkt =
{

Quantity of π-containers transported from π-hub h ∈ H to customer j ∈ J in period t ∈ T , if k ∈ Q
Binary variable equal to 1 if edge (h, j) ∈C belongs to a path linking S-C pair k ∈ P in period t ∈ T , 0 otherwise

zh = Binary variable equal to 1 if π-hub h ∈ H is open, 0 otherwise
rih = Binary variable equal to 1 if edge (i,h) ∈ A is used, 0 otherwise
uhh′ = Binary variable equal to 1 if edge (h,h′) ∈ B is used, 0 otherwise
vh j = Binary variable equal to 1 if edge (h, j) ∈C is used, 0 otherwise

∑
k∈K

(
∑

h′:(h,h′)∈B
xhh′kt + ∑

j:(h, j)∈C
yh jkt

)
≤ qhtzh, ∀h ∈ H,∀t ∈ T (5)

∑
i:(i,h)∈A

wihkt + ∑
h′:(h′,h)∈B

xh′hkt = ∑
h′:(h,h′)∈B

xhh′kt + ∑
j:(h, j)∈C

yh jkt , ∀h ∈ H,∀k ∈ K,∀t ∈ T (6)

∑
k∈K

∑
t∈T

wihkt ≤ Mrih, ∀(i,h) ∈ A (7)

∑
k∈K

∑
t∈T

xhh′kt ≤ Muhh′ , ∀(h,h′) ∈ B (8)

∑
k∈K

∑
t∈T

yh jkt ≤ Mvh j, ∀(h, j) ∈C (9)

∀ wihkt ,xhh′kt ,yh jkt ∈ Z+ (10)

∀ zh,rih,uhh′ ,vh j ∈ {0,1} (11)

The objective function (1) minimizes the total cost, which is composed of fixed and variable costs for
managing the π-containers in the π-hubs, and distance-related costs of traversing the edges. The objective
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function (2) maximizes the supply chain resilience. This resilience measure is based on the work by Li
et al. (2017), who computes resilience as the area under a recovery curve. This curve is defined by a
known recovery function. The literature provides further resilience measures (Tordecilla et al. 2021). tmax

is the maximum allowable recovery time, which is a parameter defined by decision-makers as a desirable
threshold. Hence, Expression (2) is an approximation of this area, considering time intervals of width ∆t.
This resilience measure is always included in the interval [0,1]. Constraint (3) ensures that the quantity
of π-containers shipped by each supplier does not surpass their supply. Constraint (4) guarantees that the
quantity of π-containers shipped to each customer does not surpass their demand. Constraint (5) ensures
that the capacity of each open π-hub is not exceeded. Constraint (6) guarantees that each π-container
entering each π-hub leaves. Constraints (7), (8), and (9) ensure that any π-container flows only via active
edges. Finally, Constraints (10) and (11) indicate the variables that are integer and binary, respectively.

The first step in Figure 2 indicates that a basic model is solved. The following modifications are made
to our general model to address this step: (i) the resilience objective (Expression (2)) is disregarded; (ii) T
is a unit set, since we consider multiple periods only when resilience is being assessed; (iii) K is a unit set
and K = Q, since set P is used only to hyperconnect the supply chain; and (iv) Constraints (3) and (4) are
equalities instead of inequalities. After solving this B model, we obtain the π-containers flow, the π-hubs
to open, and the edges to activate. The latter two variables become input parameters for both the H model
and the simulation phase. This simulation is performed as follows:

1. Determine the supply chain element and the related parameter to disturb, e.g., π-hub capacities,
supplier supplies, edge capacities, etc.

2. Define a set containing the used elements according to the obtained results of the B model, e.g.,
Open π-hubs = O = {h1,h3,h6,h7,h8,h14,h15,h17} (Figure 1).

3. Define a set of the number of elements to disturb, e.g., Number o f π-hubs to disturb=N = {3,4,5}.
4. Select randomly an element n ∈ N.
5. Select randomly n elements from the set O.
6. Generate randomly the degradation level caused by the disruption and the recovery time for each

disturbed element, e.g., how much capacity of the π-hub has been affected and when will be its
full capacity restored.

7. Define a recovery function that allows the disturbed element to recover the full performance that
it had before the disruption. For instance, if qini

h is the π-hub capacity before the disruption, qh0 is
the π-hub capacity at period t = 0 right after the disruption (qh0 < qini

h ), and the recovery time is
t = γ , the recovery function R(t) must go from R(0) = qh0 to R(γ) = qini

h .
8. Use the recovery function to compute the new disturbed parameter values in each period t ∈ T

(Table 1), e.g., recompute qht if a subset of π-hubs has been disturbed, or sikt if disruptions have
affected the suppliers.

The disturbed parameter becomes an input for a new MIP model whose objective is to maximize the
resilience. Additionally, the following modifications are made to our general model to address this step:
(i) the cost objective (Expression (1)) is disregarded; (ii) K is a unit set and K = Q; and (iii) the binary
variables zh, rih, uhh′ , and vh j become input parameters, according to the outputs of the B model. The
goal of the latter modification is to have an unmodifiable supply chain configuration that can be tested in
terms of resilience, i.e., only the π-containers flow is variable in this case. Hence, since this new MIP
model does not have any binary variable, finding its solution is a very fast process, as well as the whole
simulation phase. When the limit of simulation runs is reached, the obtained KPIs are saved. Obviously,
the main KPIs are cost and resilience, but all tested configurations may be assessed as well in terms of,
for instance, risk, π-hubs utilization, distance traveled by the π-containers, etc.

The outputs of the B model are employed as inputs for an H model as well. That is, the same open
π-hubs and active edges yielded by the B model are kept as elements that contribute to hyperconnect the
supply chain, however, additional edges must be activated to achieve this goal. Therefore, the following
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modifications are made to our general model: (i) the resilience objective (Expression (2)) is disregarded;
(ii) T is a unit set; (iii) Constraints (3) and (4) are equalities instead of inequalities; (iv) Constraint (5) is
replaced with Constraints (12) and (13), so that π-hub capacities are only a limitation for the π-containers
flow and not for any path connecting any S-C pair; (v) the binary variable zh becomes an input parameter;
and (vi) if the values of binary variables rih, uhh′ , and vh j obtained by the B model are equal to 1, they are
preserved the same, otherwise, either 0 or 1 may be assigned to them when solving the H model. Then, the
supply chain configurations obtained by the H model are simulated following the same procedure explained
above.

∑
k∈P

(
∑

h′:(h,h′)∈B
xhh′k + ∑

j:(h, j)∈C
yh jk

)
≤ Mzh, ∀h ∈ H (12)

∑
k∈Q

(
∑

h′:(h,h′)∈B
xhh′k + ∑

j:(h, j)∈C
yh jk

)
≤ qhzh, ∀h ∈ H (13)

Up to this moment of our proposed procedure only two supply chain configurations have been simulated,
namely, the ones yielded by the B and the H model. Nevertheless, further configurations should be tested to
assess more accurately the performance of our approach. Since the number of feasible configurations can
be really high, we propose a procedure in which the model is forced to open more π-hubs than the number
that minimizes the cost. Let F be the set containing the number of feasible π-hubs to open mandatorily,
and let ϕ be each element of F , i.e., ϕ ∈ F . Then, we solve the B and the H model, and simulate both
outputs iteratively for each element ϕ ∈ F . For example, in an instance whose optimal number of open
π-hubs is 4, and the total number of available π-hubs is 10, F = {4,5,6,7,8,9,10}. Constraints (14) and
(15) are added to the B model to force opening these additional π-hubs. As previously explained, T and
K are unit sets in this case and, hence, they can be removed from these constraints.

∑
h∈H

zh = ϕ (14)

zh ≤ M

(
∑

i:(i,h)∈A
wih + ∑

j:(h, j)∈C
yh j

)
, ∀h ∈ H (15)

Constraint (14) forces the model to open the given number of π-hubs. Constraint (15) guarantees
two conditions: (i) a π-hub is open only if at least one π-container flows through it, and (ii) a π-hub is
open only if it ensures a π-container flow between a supplier and a customer. If Constraint (15) is not
added, the model opens π-hubs or groups of π-hubs that are unconnected from the rest of the network.
Nevertheless, Constraint (15) has been proved to be highly restrictive for a few instances and, in this
case, no feasible solution is found. Therefore, the model is solved one more time after replacing this
constraint with Constraints (16) and (17). The former ensures the aforementioned condition (i), and the
latter constraint guarantees that any edge connecting a pair of π-hubs is activated only if it ensures a
π-container flow between a supplier and a customer, so that all open π-hubs are connected to the rest of
the network. After adding both constraints all tested instances yield feasible solutions, however, models
including Constraints (16) and (17) take longer computational times to find an optimal solution. Therefore,
we use Constraint (15) for most instances and, only if no feasible solution is found, Constraints (16) and
(17) are introduced.

zh ≤ M

(
∑

h′:(h,h′)∈B
xhh′ + ∑

j:(h, j)∈C
yh j

)
, ∀h ∈ H (16)

3184



Tordecilla, Montoya-Torres, and Guerrero

uhh′ ≤ M

(
∑

i:(i,h)∈A
wih + ∑

i:(i,h′)∈A
wih′ + ∑

j:(h, j)∈C
yh j + ∑

j:(h′, j)∈C
yh′ j

)
, ∀(h,h′) ∈ B (17)

5 COMPUTATIONAL EXPERIMENTS

26 instances are employed to test our solution approach. Since our addressed problem has multiple particular
characteristics, the literature does not provide benchmark instances that we can use without modifications.
Hence, we design 6 newly-created instances, and adapt 20 benchmark instances from the CHLP (Ernst
and Krishnamoorthy 1999; Farahani et al. 2013). In our designed instances, supplies, demands, and nodes
coordinates were generated randomly. Resembling a global operation, we impose that suppliers have the
lowest x-coordinates, customers have the highest x-coordinates, and π-hubs are located in the middle. All
π-hubs have the same capacity, which is proportional to the aggregated demand. Transportation costs are
the Euclidean distances between each pair of nodes, and fixed and variable costs of π-hubs are proportional
to transportation costs. Ernst and Krishnamoorthy (1999) propose a set of instances for the CHLP, which
we adapt to our considered problem. This set employs the Australia Post (AP) data set and has instances
with 10, 20, 25, 40, 50, 100, and 200 nodes. Location coordinates, capacities, fixed costs, product flows,
and distances are provided. The AP data set proposes that capacities and costs can be either loose (L) or
tight (T). Additionally, we introduce the following modifications:

• We classify nodes into customers, π-hubs, and suppliers. Approximately one sixth of the nodes
are suppliers, half are π-hubs, and one third are customers. The provided location coordinates
remain the same, with suppliers having the lowest x-coordinates, customers having the highest
x-coordinates, and locating π-hubs in the middle.

• Supplies and demands are computed as proportions of the product flows given in the AP data set.
• π-hub capacities and fixed costs remain the same as the AP’s.
• All nodes are connected each other in the AP data set. However, we consider as feasible edges only

those that connect suppliers to π-hubs, π-hubs to customers, and π-hubs to other π-hubs (Table 1).
Furthermore, according to the PI foundations (Montreuil 2011; Treiblmaier et al. 2020), the time
that truck drivers are on the road must not be excessively long, so that their fatigue and sleep
deprivation are reduced as much as possible. Hence, a distance limit is imposed when creating the
feasible edges for our instances.

• We calculate transportation costs considering the Euclidean distances between each pair of nodes.
• A variable cost for managing the π-containers in the π-hubs is introduced. This cost is proportional

to transportation costs.
• We create new random instances with 30 and 35 nodes, from the 100-node AP instances.

We consider 10 periods in the set T when maximizing resilience. The maximum allowable recovery
time is defined as tmax = 7 time units and, hence, ∆t = tmax/|T | = 0.7. Only for experimental purposes, the
recovery time (Γℓ) is defined as a random variable that follows a Log-normal probability distribution, i.e.,
Γℓ ∼ logN(µ,σ), where ℓ is any disturbed element, µ is the expected value, σ is the standard deviation, and
γℓ is a realization of Γℓ. Anyway, our approach is flexible enough to test alternative probability distributions.
We set µ = 5 and σ = 2 for all our experiments. Three sets of experiments depending on the supply chain
element to disturb are performed, i.e., we disturb independently the open π-hubs, the suppliers, and the
active edges. Each set of experiments is addressed following a different procedure, namely:

• Disturbing open π-hubs: the π-hub capacity is reduced by a disruption. Again, only for experimental
purposes, the degradation level (Θh) is a random variable that follows a Uniform probability
distribution, i.e., Θh ∼ U(1,qini

h ), where qini
h is the full π-hub capacity before the disruption.

Therefore, the capacity right after the disruption is qh0 = qini
h −θh, where θh is a realization of Θh.
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If D is the set of disturbed π-hubs, and we assume a linear recovery function R(t), then the capacity
of each disrupted π-hub in each period is computed by Equation (18).

qht = qh0 +
t(qini

h −qh0)

γh
∆t, ∀h ∈ D,∀t ∈ T | t <

⌈
γh

∆t

⌉
(18)

• Disturbing suppliers: the supply is reduced by a disruption. In this case Θi ∼ U(1,sini
i ), where

sini
i is the full supply before the disruption. Therefore, the supply right after the disruption is

si0 = sini
i −θi. If D is the set of disturbed suppliers, and we assume a linear recovery function R(t),

then the supply of each disrupted supplier in each period is computed by Equation (19).

sit = si0 +
t(sini

i − si0)

γi
∆t, ∀i ∈ D,∀t ∈ T | t <

⌈
γi

∆t

⌉
(19)

• Disturbing active edges: since the edges in our network are uncapacitated, we consider that after an
edge has been disturbed, it becomes completely out of service. Hence, there are neither degradation
level nor recovery function in this case. Instead, we consider that each disturbed edge is completely
inactive ∀t ∈ T | t < ⌈γℓ/∆t⌉. After this period, each disturbed edge is completely active.

Finally, besides cost and resilience, we consider the standard deviation of the simulated resilience as a
measure of the risk of not meeting the demand. Small instances up to 35 nodes are employed to test our
simulation-optimization approach. All experiments were performed in a PC with an Intel Core i7 processor
and 16 GB RAM, using Windows 10 as operating system. The number of simulation runs is set to 500.

Table 2 shows the average results obtained when disturbing open π-hubs, suppliers, and active edges.
All instances have been grouped by size, e.g., the group of instances 3x10x6 is formed by 3 instances
(see the number in parentheses). Each number in columns Resilience and Risk is an average of the results
yielded after performing all simulation runs and testing all ϕ ∈ F , where F is the set containing the number
of feasible π-hubs for each instance. Conversely, numbers in columns Optimal cost and Average cost are
independent of the number of simulation runs. On the one hand, the column Optimal cost shows the cost
obtained without considering Constraint (14), i.e., this is the cost yielded when the number of open π-hubs
is ϕ∗. On the other hand, the Average cost is computed as the average of the costs obtained ∀ϕ ∈ F . Each
cost column is the same for all disturbed elements, since disruptions are simulated after the optimal cost
has been found. The supply chain design cost increases for every tested instance after considering the
hyperconnection, since more edges must be activated. This action causes a resilience rise when disturbing
open π-hubs or active edges. This growth is slight in the former case, and larger in the latter. Furthermore,
hyperconnecting the network produces a generalized risk reduction for both cases, however, not all instances
show this behavior in the risk. In any case, whenever the risk increases, such rise is small. Finally, the
solving time also grows slightly after hyperconnecting the supply chain.

In the case where suppliers are disturbed, it has been proved that opening more π-hubs and hyper-
connecting the network does not influence resilience or risk, but it obviously increases the design cost.
Table 2 shows that perturbing the suppliers incurs a smaller resilience and a higher risk than perturbing the
π-hubs, regardless of whether the network is hyperconnected or not. All these results let us conclude that
disruptions affecting suppliers have a higher impact than those affecting π-hubs, especially considering
that both resilience and risk do not improve when opening more π-hubs in the scenario where suppliers are
disrupted. In the case where active edges are disturbed, results demonstrate that both resilience and risk
worsen when compared to the cases in which π-hubs and suppliers are perturbed. Moreover, the column
of the resilience gap between H and B models show that, whenever the edges are the disturbed element,
hyperconnecting the network is a good strategy to both increase resilience and decrease risk. Figure 3
displays more clearly these differences for the cases in which either π-hubs or edges are disturbed, and
considering different amounts of open π-hubs. The mean resilience is depicted by a red dashed line for the
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Table 2: Average results after disturbing different supply chain elements.
Group of
instances

B model H model Gap H-B models
Optimal

cost
Average

cost Resilience Risk Sol.
time(s)

Optimal
cost

Average
cost Resilience Risk Sol.

time(s)
Optimal

cost
Average

cost Resilience Risk

Disturbing open π-hubs
3x10x6 (3) 4072.3 5377.6 0.9579 0.0425 40.7 4155.3 5444.1 0.9590 0.0421 42.2 2.04% 1.24% 0.12% -0.76%
5x20x10 (3) 12493.9 15754.6 0.9337 0.0537 108.0 12590.9 15819.5 0.9348 0.0533 140.0 0.78% 0.41% 0.12% -0.70%
AP10 (4) 237118.9 299323.9 0.9461 0.0778 10.8 258644.6 322195.9 0.9466 0.0779 14.9 9.08% 7.64% 0.05% 0.09%
AP20 (4) 421750.9 557825.5 0.9433 0.0471 35.8 509445.1 622429.9 0.9489 0.0450 37.0 20.79% 11.58% 0.59% -4.44%
AP25 (4) 555746.2 727510.8 0.9309 0.0444 53.2 592639.7 771687.8 0.9332 0.0431 56.2 6.64% 6.07% 0.24% -2.87%
AP30 (4) 854159.5 1543459.3 0.9346 0.0538 82.1 867324.3 1566004.5 0.9353 0.0534 83.7 1.54% 1.46% 0.08% -0.80%
AP35 (4) 934514.3 2184037.4 0.9622 0.0341 129.6 964572.7 2215910.0 0.9626 0.0340 130.6 3.22% 1.46% 0.04% -0.34%

Average 431408.0 761898.4 0.9441 0.0505 65.7 458481.8 788498.8 0.9458 0.0498 72.1 6.30% 4.27% 0.18% -1.40%
Disturbing suppliers

3x10x6 (3) 4072.3 5377.6 0.8819 0.0804 32.4 4155.3 5444.1 0.8819 0.0804 33.7 2.04% 1.24% 0.00% 0.00%
5x20x10 (3) 12493.9 15754.6 0.8718 0.0602 94.3 12590.9 15819.5 0.8718 0.0602 97.5 0.78% 0.41% 0.00% 0.00%
AP10 (4) 237118.9 299323.9 0.8687 0.1006 10.3 258644.6 322195.9 0.8687 0.1006 13.5 9.08% 7.64% 0.00% 0.00%
AP20 (4) 421750.9 557825.5 0.8820 0.0794 33.4 509445.1 622429.9 0.8820 0.0794 36.3 20.79% 11.58% 0.00% 0.00%
AP25 (4) 555746.2 727510.8 0.8863 0.0736 52.8 592639.7 771687.8 0.8863 0.0736 51.7 6.64% 6.07% 0.00% 0.00%
AP30 (4) 854159.5 1543459.3 0.8732 0.0796 72.0 867324.3 1566004.5 0.8732 0.0796 75.7 1.54% 1.46% 0.00% 0.00%
AP35 (4) 934514.3 2184037.4 0.8741 0.0682 102.4 964572.7 2215910.0 0.8741 0.0682 110.9 3.22% 1.46% 0.00% 0.00%

Average 431408.0 761898.4 0.8769 0.0774 56.8 458481.8 788498.8 0.8769 0.0774 59.9 6.30% 4.27% 0.00% 0.00%
Disturbing active edges

3x10x6 (3) 4072.3 5377.6 0.5446 0.2095 48.7 4155.3 5444.1 0.5587 0.2044 48.9 2.04% 1.24% 2.60% -2.44%
5x20x10 (3) 12493.9 15754.6 0.5105 0.2058 144.2 12590.9 15819.5 0.5058 0.2101 142.8 0.78% 0.41% -0.93% 2.09%
AP10 (4) 237118.9 299323.9 0.5156 0.2648 15.2 258644.6 322195.9 0.5618 0.2690 16.5 9.08% 7.64% 8.95% 1.60%
AP20 (4) 421750.9 557825.5 0.5021 0.2020 50.5 509445.1 622429.9 0.5711 0.1928 53.6 20.79% 11.58% 13.75% -4.53%
AP25 (4) 555746.2 727510.8 0.5194 0.1968 73.1 592639.7 771687.8 0.5553 0.1929 75.0 6.64% 6.07% 6.92% -2.00%
AP30 (4) 854159.5 1543459.3 0.4715 0.2151 119.8 867324.3 1566004.5 0.4938 0.2152 119.2 1.54% 1.46% 4.72% 0.02%
AP35 (4) 934514.3 2184037.4 0.5495 0.2000 196.0 964572.7 2215910.0 0.5778 0.1920 195.1 3.22% 1.46% 5.14% -4.01%

Average 431408.0 761898.4 0.5162 0.2134 92.5 458481.8 788498.8 0.5463 0.2109 93.0 6.30% 4.27% 5.88% -1.32%

B model, and by a black dash-dotted line for the H model. Hence, opening more π-hubs slightly increases
resilience regardless of whether the perturbed element is a π-hub or an edge, and regardless of whether
the network is hyperconnected or not.

* * +1 * +2 * +3
Open hubs

0.0

0.2

0.4

0.6

0.8

1.0

Re
sil

ie
nc

e

B model dist. hubs
H model dist. hubs
B model dist. edges
H model dist. edges

Figure 3: Simulated resilience for B and H models after disturbing π-hubs or edges.

6 CONCLUSIONS

This paper studied the problem of a supply chain network design under the Physical Internet paradigm,
dealing with random disruptions along the supply chain in order to optimize both cost and resilience.
A simulation-optimization approach was proposed, which hybridizes multi-objective multi-period mixed-
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integer programming with discrete-event simulation. Two problem variants were considered: a basic
problem in which a single type of π-container must be delivered, and any customer demand can be met by
any supplier; and a hyperconnected problem in which, besides the former condition, there must be at least
one path connecting each supplier-customer pair. Our approach was tested using both random-generated
data sets and adapted benchmark instances from the Capacitated hub location problem. Three elements
were randomly and independently disturbed: open π-hubs, suppliers, and active edges. Results show that
hyperconnecting the network is a good strategy to increase the system resilience and decrease the risk of
not meeting the customers demand, especially when active edges are disturbed. Nevertheless, this strategy
did not produce any effect in these KPIs when disruptions affected suppliers and, hence, different strategies
should be designed in this case to improve the system performance. Additionally, different quantities of
open π-hubs have been tested, which enhanced resilience for both B and H problems when disturbing
π-hubs and edges. Again, this strategy did not affect resilience when suppliers were disturbed. In any
case, both hyperconnecting network and opening further π-hubs yielded higher design costs.

As pointed out previously in this paper, this is the first work addressing resilience in supply chains
under the PI context and considering random disruptions. Hence, numerous lines for further research can be
outlined. For instance, it would be very relevant to perform an analysis that identifies critical elements as, for
example, which specific π-hubs or suppliers affect more intensively each KPI. Also, the study of different
types of π-containers that can be transported and their impact on the supply chain performance, including
sustainability metrics. Considering different definitions of hyperconnection is another open opportunity
for future research, as well as additional resilience measures. Additional layers of the supply chain can
be included in the analysis as well. Future work may also include perturbations of other elements, such
as customer demands, and even combined perturbations of different types of elements. The consideration
of random variables may lead to perform a detailed output analysis to, e.g., set a statistically significant
relation between variables. Furthermore, if uncertainty is deeper and parameters of the employed probability
distributions are not even known, fuzzy approaches can be employed. Finally, from the solution point of view,
an interesting opportunity is designing and implementing heuristic algorithms (including metaheuristics,
matheuristics or simheuristics), so that bigger instances can be solved efficiently and, hence, real data can
be employed to validate our approach.

ACKNOWLEDGMENTS

This project has received funding from the Horizon 2020 Framework Programme of the European Union
– Grant Agreement No. 861584 (ePIcenter Project), and Universidad de La Sabana, Colombia – Grant
Agreement INGPHD-39-2020.

REFERENCES
Ahi, P., and C. Searcy. 2013. “A Comparative Literature Analysis of Definitions for Green and Sustainable Supply Chain

Management”. Journal of Cleaner Production 52:329–341.
Arnau, Q., E. Barrena, J. Panadero, R. de la Torre, and A. A. Juan. 2022. “A Biased-Randomized Discrete-Event Heuristic

for Coordinated Multi-Vehicle Container Transport across Interconnected Networks”. European Journal of Operational
Research 302(1):348–362.

Contreras, I., and M. O’Kelly. 2019. “Hub Location Problems”. In Location Science, 327–363. Springer.
Cortés-Murcia, D. L., W. J. Guerrero, and J. R. Montoya-Torres. 2022. “Supply Chain Management, Game-Changing Technologies,

and Physical Internet: A Systematic Meta-Review of Literature”. IEEE Access 10:61721—-61743.
Crainic, T. G., and B. Montreuil. 2016. “Physical Internet Enabled Hyperconnected City Logistics”. Transportation Research

Procedia 12:383–398.
Ernst, A. T., and M. Krishnamoorthy. 1999. “Solution Algorithms for the Capacitated Single Allocation Hub Location Problem”.

Annals of Operations Research 86:141–159.
Farahani, R. Z., M. Hekmatfar, A. B. Arabani, and E. Nikbakhsh. 2013. “Hub Location Problems: A Review of Models,

Classification, Solution Techniques, and Applications”. Computers & Industrial Engineering 64(4):1096–1109.
Li, R., Q. Dong, C. Jin, and R. Kang. 2017. “A New Resilience Measure for Supply Chain Networks”. Sustainability 9(1):144.

3188



Tordecilla, Montoya-Torres, and Guerrero
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