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ABSTRACT

Agent-Based Modeling and Simulation (ABMS) is a valuable tool for understanding infectious disease
propagation. This study presents a hybrid ABMS approach to explore the transmission dynamics of
vector-borne diseases (Dengue, Zika, and Chikungunya) in Bello, Colombia, incorporating geospatial
characteristics. The model was developed with specific assumptions to validate its alignment with
theoretical behavior. Our results demonstrate the temperature’s significant impact on disease spread.
Particularly, Chikungunya exhibits distinct behavior compared to Dengue and Zika. While major infection
peaks occur early in the simulation, subsequent spread diminishes due to the absence of reinfection
considerations. This research represents an early stage of a larger project, laying the groundwork for
future research to address computational challenges, enabling statistical analysis with multiple runs, and
enhancing the model’s realism with seasonal temperature variations and geographical distributions. These
findings will provide valuable insights for policymakers and disease control strategies in Colombia.

1 INTRODUCTION

Vector-borne diseases are transmitted by blood-feeding arthropods like mosquitoes. Aedes aegypti is
the primary mosquito species responsible for transmitting Dengue, Chikungunya, and Zika (Socha et al.
2022). These diseases pose a serious threat to human health since they cause over 700,000 fatalities each
year, accounting for more than 17% of all annual deaths (World Health Organization 2018). Countries
like Colombia have become increasingly vulnerable to vector-borne diseases due to environmental and
geological factors.

This research examines the impact of vector-borne diseases in densely populated urban areas such as
Bello, Colombia. Bello’s distinct characteristics make it an ideal subject for this investigation, including
high population density, social conditions that promote the presence of standing water sources, proximity
to other urban centers, and temperature variations, among others.

Mathematical models have played an important role in short and long-term strategic planning for
controlling different disease propagation (Brauer et al. 2019). Most of these mathematical models
are compartmental epidemic models in which mosquito and human populations are divided into four
compartments: susceptible, exposed, infected, and recovered. Specifically, Agent-Based Modeling
Simulation (ABMS) is commonly used to study vector-borne diseases from an individual level. However,
ABMS models are computationally expensive; therefore, some researchers have proposed using hybrid
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ABMS, which integrates Ordinary Differential Equations (ODE) to model mosquitoes and ABMS to model
humans. This variation’s main advantage is that it significantly improves computing time without sacrificing
model specificity (Manore et al. 2014).

The literature review reveals that few studies have investigated the use of ABMS models that include
heterogeneous geospatial characteristics of an urban area. Incorporating geospatial characteristics in our
ABMS model is important because it captures the spatial context in which individuals live, work, and
move, allowing for a more realistic representation of human behavior. This includes factors such as
commuting patterns, travel behavior, and daily routines, which significantly influence disease transmission.
Including geography enables the simulation to accurately represent human mobility and contact patterns,
thus enhancing the understanding of how individuals interact and potentially spread the disease across
different geographic areas.

Furthermore, incorporating geospatial characteristics into our agent-based modeling (ABM) helps us
understand the spatial distribution of vector-borne diseases in the city, identify high-risk areas, and explore
the contributing factors to transmission dynamics. Geospatial data allows us to consider environmental
factors, such as temperature, which greatly influence mosquito survival and disease transmission. By
including temperature data in our model, we can assess the impact of different temperature scenarios on
the spread of Dengue, Zika, and Chikungunya in Bello.

Moreover, using geospatial data can assist Colombian decision-makers in addressing policy implications.
For example, in controlling the spread of these viruses, authorities are exploring the use of pyriproxyfen.
Pyriproxifen is an insect growth regulator that hinders mosquito reproduction (Fawell, J K 2008). By
leveraging geospatial data, decision-makers can optimize the placement of pyriproxyfen stations in high-risk
areas, maximizing the effectiveness of vector control efforts.

This research represents the initial stage of a larger project, aiming to provide preliminary modeling
of the spread of vector-borne diseases in an urban area. The primary objective is to obtain an initial
approximation of the disease dynamics and transmission in an urban area by incorporating geospatial
characteristics into our model. However, in the further stages of the project, we will address computational
challenges through the use of high-performance computing and the implementation of a system of discrete
differential equations. This will enhance the computational efficiency and accuracy of the model and will
allow proper calibration and validation. Additionally, we will incorporate targeted control strategies to
evaluate their effectiveness in mitigating disease transmission. It is important to note that the current model
is not yet ready for decision-makers, but it serves as a valuable tool for validating the overall behavior. By
incorporating real data and enhancing computational performance, we aim to develop, in the subsequent
stages, a comprehensive and reliable model that can provide actionable insights for policy development
and disease control strategies.

This paper is structured as follows: Section 2 reviews the literature on ABMS for modeling vector-borne
diseases. Section 3 explains the methodology. Section 4 presents the results. Finally, section 5 concludes
the study.

2 BACKGROUND

2.1 Literature Review

Agent-based models (ABM) can be used to understand both the temporal and spatial evolution of vector-borne
diseases (Macal 2018). Therefore, ABM has become a widely used tool to model the propagation of these
diseases. For example, Maneerat and Daudé (2016) used agent-based modeling and simulation to explore the
effects of environmental heterogeneity and mosquito control strategies on mosquito population dynamics.
These authors created the agent-based model for a neighborhood in Delhi, India. To model a heterogeneous
space, authors consider different porosity coefficients, temperatures, and light levels to portions of the space
(patches). In the same way, Miksch et al. (2015) implemented a model to simulate an epidemic in the
Philippines in 2010, including some climate characteristics and considering rainy seasons, concluding that
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the mosquito population varies between rainy and dry seasons and this has a considerable impact on the
dynamics of the epidemic.

In contrast to Maneerat and Daudé (2016), Dommar et al. (2014) represent humans as individual
agents. These authors implemented an ABM to investigate the space-temporal heterogeneity of an infectious
vector-borne disease outbreak and evaluate the impacts of different policies intended to reduce the propagation
of the virus, such as travel restrictions. Additionally, de los Reyes V and L. Escaner IV (2018) performed an
analysis to identify the parameters that most influence Dengue transmission in the Philippines. They found
that the most important parameters were mosquito biting rate, transmission probability from mosquito to
human, respectively, from human to mosquito, and healthcare seeking.

Similarly, Kuhlman et al. (2018) developed a hybrid ABM to simulate the 2016 Zika disease outbreak
in Miami, Florida. They integrate Ordinary Differential Equations (ODEs) with an ABM using an SEIR
epidemic model for the human population and an SEI model for mosquitoes. To calibrate the model, a
variation of the transmission probability was made to determine the actual infection rate during the Miami
outbreak. Even though the authors did not consider environmental factors, the model proposed was accurate
compared to the actual burst. Nonetheless, the authors found that one of the complications of a hybrid
ABMS model was to convert the mathematical expressions of interaction into agent-based interactions.
Another example of hybrid ABMS models was proposed by Manore et al. (2014), who implemented a
hybrid ABMS using ODEs, allowing a bigger level of detail and better computing performance than if a
pure ABMS approach was used. Therefore, mosquitoes are not modeled individually but as an aggregate
using ODEs.

The hybrid model proposed by Manore et al. (2014) has made a significant contribution to the study
of disease transmission since the model of Mniszewski et al. (2014) is based on the network-patch method
described in Manore et al. (2014) also adopted a hybrid ABMS in which they perform different simulations
in a hypothetical population of Washington varying parameters such as the probability of transmission,
number of mosquitoes and exposure to bites. These last papers served as a reference for our model, where
we modeled mosquitoes not individually but as a collective using ordinary differential equations (ODEs).

The literature highlights using ABMS to understand the temporal and spatial evolution of vector-borne
diseases. These models consider factors such as environmental heterogeneity, climate characteristics,
and human behavior. Some studies focus solely on modeling mosquitoes, while others incorporate
individual-level modeling of humans. Hybrid ABMS, combining ABMS with ODEs, has also been utilized
to achieve a higher level of detail and better computing performance. These models provide insights into
disease transmission dynamics and can inform the development of mitigation strategies. Our research is a
case study that represents an important step in understanding the dynamics of vector-borne diseases in urban
areas, particularly in the context of Bello. By integrating heterogeneous geospatial characteristics, including
human behavior, and utilizing a hybrid ABMS approach, we aim to provide a tool for policy-makers to
help the design of effective targeted disease control and prevention strategies.

2.2 Natural History of the Virus

As stated before, the Aedes aegypti mosquito is the principal responsible for propagating viruses such as
Dengue, Zika, and Chikungunya (Kakarla et al. 2019). The infection is transmitted by a bite of a female
mosquito of this species, so in this research, only female mosquitoes are modeled. The virus infects the
mosquito’s midgut, and after an incubation period, it extends to the salivary glands, and that is the moment
when the mosquito can transmit the virus to other humans (World Health Organization 2020a). These
mosquitoes have four life stages: Eggs, Larva, Pupa, and Adult, which are mainly affected by climate
factors (Marinho et al. 2016). That is why these diseases are more commonly presented in tropical countries
because, with higher temperatures, their development is more rapid, and so is the incubation of the virus
in their body (Leung 2020).

The transmission dynamics of vector-borne diseases is very similar for Dengue, Zika, or Chikungunya
viruses (Manore et al. 2014). It occurs from vector to human and from human to vector. This is mostly
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Table 1: State variables for patches.

Variable Description
Number of susceptible mosquitoes Each patch has associated a number of mosquitoes that are susceptible.
Number of exposed mosquitoes This variable represents the number of exposed mosquitoes located in that patch.
Number of infected mosquitoes Represents the number of mosquitoes that are infected and are located in that patch.

Temperature (Celsius degrees)
The temperature in each patch changes each day according to data found on the climate
of Bello for 2019.

Type
There are four types of patches, residential (type=1), study (type=2), work (type=3), or
other (type=4).

of the cases, but for Zika virus, it can occur from human to human (Caminade et al. 2017), but in this
project, this way of transmission was not considered.

Humans have four states of infection (Dommar et al. 2014): Susceptible (S) which is when the human
does not have the infection in their body and has not been bitten by a mosquito recently. Exposed (E)
is when an infected mosquito recently bites a human, but the virus can not be transmitted yet because it
has not been incubated in the human body. In this state, the intrinsic incubation period (IIP) is crucial
because it indicates the time it takes for the virus to incubate successfully in the human body (Dommar
et al. 2014). This time period varies according to the disease and is being modeled using random variables
(see Section 3.5.2). The third stage of infection in humans is the Infected state (I), which is when the virus
is in the human body and can be transmitted to other mosquitoes. In this state, it is essential to consider
the infection period, when the virus will be in the human body. When this time is reached, the human will
pass to the last state, Recovered (R), and in most cases, will become immune. The infection period for
humans depends on the virus the human is infected with, so it is different for every disease and is explained
in Section 3.5.2. The reinfection of humans was not considered in this research, nor were human deaths
due to the short simulation time, which is a year (365 days).

The infection in the mosquito occurs when a susceptible mosquito bites an infected human. Unlike
humans, mosquitoes can be in only three states (Dommar et al. 2014): Susceptible (S), Exposed (E), and
Infected (I), and they never recover because their lifespan is about 2 to 3 weeks (World Health Organization
2020b), so it is not long enough to live until a recover happen. Like humans, mosquitoes also undergo an
incubation period to become infected with the virus; this is called the extrinsic incubation period or EIP,
which varies depending on the virus and the temperature (Kakarla et al. 2019). This EIP is defined with
an equation as a function of the temperature for the Zika and Chikungunya virus, and for Dengue it varies
depending on the range of temperatures. This information is explained in Section 3.4.1. Our model did
not consider the birth or death of humans due to the simulation time considered.

3 CONCEPTUAL MODEL

The conceptual model in this study was designed using the Overview, Design Concepts, and Details (ODD)
protocol (Grimm et al. 2010). The two main entities of our model are humans and mosquitoes. Mosquitoes
are modeled as “clouds of mosquitoes" in space because we are not interested in studying their individual
behavior. Space represents the territorial extension of the city of Bello in Antioquia, which is 149 km2 and
is modeled using a 2D grid divided into individual squares. Each square contains a patch that is a static
agent (entity). The grid dimensions are 32 x 32 patches. Each patch has an associated cloud of mosquitoes
that contains several susceptible, exposed, and infected mosquitoes.

On the other hand, humans are modeled as individual mobile entities. In our model, each human agent
represents one citizen of Bello. Both humans and patches have state variables that characterize them. The
state variables for the patches are presented in Table 1, and for humans are presented in Table 2.

3.1 Process Overview and Scheduling

Each time step of the simulation, also known as a tick, represents one day. The model ran for 365 days.
At the beginning of each day, the temperature in each patch is updated, and the numbers of susceptible,
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Table 2: State variables for humans.
Variable Description

Infection state (SEIR) The infection state of a human can be either susceptible, exposed, infected or recovered.

Time since successful bite
A successful bite is when an infected mosquito bites a susceptible human, resulting in virus
transmission. This variable indicates the number of days since the human was bitten and
entered the exposed state.

Time since infected Indicates the number of days since the infection.
Location of the house Each human is assigned a house located in a residential patch (type 1).
Age The age of each human remains constant in the simulation because the simulation time is one year.

Activities
There are three types of activities: study, work, or other and each human performs two
activities per day. This variable contains the coordinates of the two locations where the
human is going to perform each activity.

exposed, and infected mosquitoes in each patch are recalculated. Then, humans move according to their
assigned activities, and at the end of the day, they return to their houses. Each time humans move, the
following process occurs: First, the probability of each human getting infected is calculated, determining
whether this individual becomes infected in their new location. Depending on this, the infection state
variable is updated. Next, the number of susceptible, exposed, and infected mosquitoes in the patch where
the human moved is recalculated using a new system of differential equations for that patch. At the end of
the day, after humans have returned to their homes, the state variables time since successful bite and time
since infected are updated.

3.2 Initialization

For the patches, the following state variables are initialized. The number of susceptible and infected
mosquitoes follows a Uni f orm(0,100) distribution. To set the temperature, we assign a minimum and
maximum temperature for each day of the year 2019 in Bello. Finally, the grid is divided into four equal
parts, and each patch of the grid receives a type. All the patches in the lower-left section are type 1, in the
upper-left section are type 2, in the lower-right section are type 3, and in the upper-right section are type
4. This partitioning is undertaken for the purpose of simplification to facilitate the analysis and modeling
of the system within the context of the research.

At the start of the simulation, there are 120,570 susceptible humans and 1,000 infected humans. The
low number of initially infected individuals is chosen to maintain a controlled infection rate. When many
humans are infected at the beginning of the simulation, the rest of the population quickly becomes infected.
The initial number of infected humans was set to a low value to maintain a more controlled infection rate.
Additionally, it is worth noting to mention that if the simulation begins with no infected mosquitoes, no
humans will become infected throughout the entire simulation. The infected human’s time since successful
bite and time since infected variables are initialized as 0, while the susceptible humans start with both
variables set to null. Each human is randomly assigned a residential patch (type 1) as a home location. The
humans’ ages are assigned according to the official demographic data of each age group. Finally, humans
under 24 are assigned a place to study, while humans over 24 are assigned a place to work. All humans
are assigned one leisure activity different from work or academic activities.

3.3 Parameters and Input Data

The input data for the model consisted of the minimum and maximum temperatures of Bello in 2019,
which were used to assign a temperature value to each patch for every day. The model incorporates various
parameters, as outlined in Table 3, with values sourced from Manore et al. (2014). To address the inherent
parametric uncertainty in individual mosquito models, we adopted the authors’ approach, which focuses
on addressing heterogeneity in disease spread at the patch level rather than individual mosquito locations.
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Table 3: Parameters values from literature.
Variable Name Value
µv Per capita mosquito death rate 1

14
ψv Per capita natural emergence rate of mosquitoes 0.3

βvh
Probability of transmission from an infectious human to a susceptible mosquito
given that a contact between the two occurs 0.333

βhv
Probability of transmission from an infectious mosquito to a susceptible human
given that a contact between the two occurs 0.333

σv Maximum number of bites per mosquito per unit time 0.5
σh Maximum number of bites a human can get per unit time 19
Kv Carrying capacity of the mosquitoes in the patch 1000

3.4 Submodels Patches

In the current version of the model, the temperature and the population of susceptible, exposed, and infected
mosquitoes in each patch change daily. However, the temperature assignment to each patch is based on a
random selection from a uniform distribution using the minimum and maximum temperatures of Bello in
2019 for that day. Future work will incorporate a more realistic approach by considering seasonal variations
and the geographical distribution of temperatures. To calculate the number of susceptible (Sv

k), exposed
(Ev

k), and infected mosquitoes (Iv
k) in a patch k in each time step, a system of differential equations for

patch k is created and then solved. In the section below, this process is explained in more detail.

3.4.1 Recalculate System of Differential Equations

As mentioned earlier, each patch in the model is associated with a system of differential equations that
depend on the number of humans in the patch and the temperature of the patch. Since the temperature of
the patch changes each day and humans move continuously, the system of differential equations associated
with each patch is constantly changing. The equations used for these systems of differential equations were
taken from Manore et al. (2014) and Mniszewski et al. (2014) and are presented below.

dSv
k

dt
= hv

k −λv
kSv

k −µvSv
k;

dEv
k

dt
= λv

kSv
k − vv

kEv
k−µvEv

k;
dIv

k

dt
= vv

kEv
k−µvIv

k

where the subscript v refers to the mosquito vector, the superscript k refers to the patch, hv
k is the

total birth rate of mosquitoes in patch k, λv
k is the per capita rate of infection of mosquitoes in patch k,

vv
k is the per capita rate of progression of mosquitoes from exposed state to the infectious state in patch

k, and µv is the per capita death rate of mosquitoes (parameter). The equations for calculating the total
birth rate in patch k (hv

k), per capita rate of infection of mosquitoes in patch k (λv
k), and per capita rate of

progression of mosquitoes from exposed state to the infectious state in patch k (vv
k) are described below.

The equation for calculating the total birth rate in patch k (hv
k) is the following:

hv
k = Nv

k
(

ψv −
rv ∗Nv

k

Kv

)
where ψv is the natural per capita-emergence rate of mosquitoes (parameter), rv is the mosquito population
growth rate and is defined as rv = ψv − µv, Kv is the carrying capacity of the mosquitoes in a patch
(parameter), and Nv

k is the total number of mosquitoes in the patch k and is defined as Nv
k = Sv

k +Ev
k + Iv

k.
The equation for calculating the per capita rate of infection of mosquitoes in patch k (λv

k) is calculated
as follows:

λv
k = bv

k ∗βvh ∗
(

Ih
k

Nh
k

)
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where the subscript h refers to humans, Ih
k is the number of infected humans in the patch k, Nh

k is the
total number of humans in the patch k, βvh is the probability of transmission from an infectious human to
a susceptible mosquito given that a contact between the two occurs (parameter), and bv

k is the number of
bites per mosquito per unit of time in the patch k and is defined in the following way:

bv
k =

bk

Nv
k

where bk is the total number of contacts between humans and mosquitoes (bites) in the patch k and is
defined in the following way:

bk =
σv ∗Nv

k ∗σh ∗Nh
k

σv ∗Nv
k +σh ∗Nh

k

where σv is the maximum number of bites per mosquito per unit of time (parameter) and σh is the number
of bites a human can get per unit of time (parameter).

The equation for calculating the per capita rate of progression of mosquitoes from the exposed state
to the infectious state in patch k (vv

k) is

vv
k =

1
tincv

k

where tincv
k is the incubation time of the virus in the mosquito in patch k. This time depends on

the temperature of the patch (T k) and varies depending on the virus. This incubation time is modeled
differently for each one of the viruses. For Zika, tincv

k = 7+ 0.667−0.378(T k−26)
0.299+0.027(T k−26) (Winokur et al. 2020);

for Chikungunya, tincv
k = 4+ e5.15−0.123T k

(Kakarla et al. 2019); and for Dengue: tincv
k follows a

uniform distribution, more specifically U(10,25) if 18 < T k ≤ 21, U(7,10) if 21 < T k ≤ 26 and U(4,7) if
26 < T k < 31.

For Zika and Dengue viruses, if the temperature of the patch is less than 15 °C, the incubation time
of the virus in the mosquitoes is not defined, and the rate of progression of mosquitoes from exposed
to infected (vv

k) is zero. Similarly, for Chikungunya, if the temperature in the patch is less than 12 °C,
the mosquito incubation time is not defined in this patch, and the rate of progression of mosquitoes from
exposed to infected (vv

k) is zero. This happens because, at low temperatures, the incubation time of the
virus in mosquitoes is really long so mosquitoes reach life expectancy and die before incubating the virus.

The system of differential equations needs to be solved to calculate the number of susceptible (Sv
k),

exposed (Ev
k), and infected (Iv

k) mosquitoes in each patch k. To solve this system, the method Runge
Kutta of 4th order was implemented with a time step of h=0.1.

3.5 Submodels Humans

As mentioned previously, humans have assigned activities that are performed during the day. The movement
of each human is determined by their assigned activities, and during this movement, several variables are
updated, including the infection state, time since the successful bite, and time since infection. In the following
sections, these submodels will be explained in more detail, providing a comprehensive understanding of
their functioning and impact within the model.

3.5.1 Movement

Each day, the human individuals in the model start at their respective homes. To determine their first activity,
the coordinates of the activity from their list are selected, and the humans are then moved to those specific
coordinates. The probability of infection in each patch is different, so with every movement a human
makes, the submodel “update SEIR state" is called to calculate the probability of infection and determine
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if the human will get infected in this new place or not. Then, the human is moved to the coordinates of
the second activity, and the submodel “update SEIR state" is called again. Then, the human returns to its
home location, and the “update SEIR state" is called for the last time.

3.5.2 Update SEIR State

The actualization of the SEIR state is modeled using probabilities. A susceptible human in patch k becomes
exposed with a probability of pSEh

k. An exposed human becomes infected with a probability of pEIh
k, and

an infected human becomes recovered with a probability of pIRh
k. The probability pSEh

k is obtained by
calculating the rate of infection of humans in patch k. On the other hand, both pSEh

k and pIRh
k are obtained

by using a random variable approach. A more detailed description of how these three probabilities are
calculated is provided below.

The equation for calculating the probability of a human passing from susceptible to exposed in patch
k (pSEh

k) is the following: pSEh
k = 1− e−λh

k
where λh

k is the rate of infection of humans in patch k and
is defined as

λ
k
h = bh

k ∗βhv ∗
(

Iv
k

Nv
k

)
where Iv

k is the number of infected mosquitoes in patch k, Nv
k is the total number of mosquitoes in patch

k, βhv is the probability of transmission from an infectious mosquito to a susceptible human given that a
contact between the two occurs (parameter), and bh

k is the number of bites a human receives per unit time
in the patch k and is defined in the following way: bh

k = bk

Nh
k , where bk is the total number of contacts

between humans and mosquitoes (bites) in the patch k (is defined previously) and Nh
k is the total number

of humans in patch k.
As stated previously, the probability of a human passing from exposed to infected in patch k (pEIh

k)
is calculated by using a random variable approach. In this case the incubation time of the virus in
patch k (tinch

k) is a random variable that follows a different probability distribution for each virus. For
Zika it is tinch ∼ Weibull (α = 2.69,β = 6.70) (Krow-Lucal et al. 2017); for Chikungunya it is tinch ∼
Lognormal (µ = 1.099, σ = 0.139) (Leung 2020) and (Manore et al. 2014); and for Dengue it is tinch ∼
Gamma(α = 5.5, β = 1.12) (Chan and Johansson 2012).

pEIh
k is obtained by calculating the probability that the random variable(tinch

k) is exceeded by the time
passed since the human received a successful bite (timeSinceSuccessfulBite) which is a state variable of
the human. The equation for this probability calculation is described below.

pEIh
k = p(tinch

k ≤ timeSinceSuccess f ulBite)

In this manner, every time a human moves, pEIh
k is calculated in the patch k using the human’s state

variable timeSinceSuccessfulBite. Knowing this probability, it is then used to determine if the human gets
infected or not.

The probability of a human passing from infected to recovered in patch k (pIRh
k) is also calculated by

using a random variable approach. In this case, the time of infection of the virus in patch k (tin f h
k) is a random

variable that follows a different probability distribution for each virus. For Zika tin f h
∼ norm(µ = 6,σ = 1)

(Fontaine et al. 2018); for Chikungunya tin f h
∼ Uni f orm(a = 3,b = 7) (Manore et al. 2014) and for

Dengue tin f h
∼Uni f orm(a = 2,b = 7) (Chan and Johansson 2012).

pIRh
k is obtained by calculating the probability that the random variable (tin f h

k) is exceeded by the
time passed since the human got infected (timeSinceInfected) which is a state variable of the human. The
equation for this probability calculation is presented below.

pIRh
k = p(tin f h

k ≤ timeSinceIn f ected)
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3.5.3 Update Times

Both state variables time since successful bite and time since infected are updated similarly. These variables
can either an integer or be null (when the individual has not been bitten). If the variable is not null, it
increases by one unit for each tick (day).

4 RESULTS

Due to the large population of Bello and the complexity of the human behavior considered in the model,
it is time-consuming to conduct experiments under real-life conditions. Thus, we only present the results
for one execution of the model. As part of a larger project focused on vector-borne disease prevention, the
next stage addresses computational challenges, allowing for statistical analysis of multiple runs.

This approach will enable further sensitivity analysis and more realistic experimentation with the
model; nevertheless, we conducted a simple and exploratory sensitivity analysis for the Chikungunya virus
to evaluate how changing the initial number of infected humans affects the total infections that occur in the
simulation. We considered three scenarios: a base scenario with 1000 infected humans at the beginning of
the simulation and two additional scenarios with 0 and 10000 infected humans, respectively. The second
scenario resulted in a decrease of 1.28% of the total number of infected humans at the end of the simulation
compared to the base scenario while the third scenario showed an increase of 3.19%.

To ensure accuracy and clarity, separate models were developed for Dengue, Zika, and Chikungunya,
considering their unique characteristics. Initially, simulations were conducted using historical temperature
data from Bello. Two additional scenarios involving high and low temperatures were explored to demonstrate
the influence of temperature on the spread of these viruses. It is important to note that the extreme temperature
scenarios did not represent Bello’s actual conditions but served as illustrative examples. Future enhancements
to the model will focus on incorporating seasonal variations and geographical temperature distributions for
a more realistic analysis of mosquito populations and disease dynamics.

As mentioned in the previous section, a total of three scenarios were considered for the simulation of
each of the viruses. Figure 1 compares the output of each of the models for Dengue, Zika, and Chikungunya
based on the temperature of the municipality of Bello. These plots display how each virus propagates over
time in Bello, Colombia; recall that the time horizon used for the simulation is one year with a step size
of one day, i.e., one tick represents one day of simulation. It can be evidenced that of all the considered
diseases, the Chikungunya’s behavior was the most pronounced. Besides, humans infected with Dengue
and Zika had similar behavior; they both peaked in approximately the first 50 days of the simulation. This
is because infection times differ according to the virus.

In the same way, it is expected for the propagation of the disease to have a peak, just like actual disease
outbreaks do. It is evident in Figure 1 that this happens at the beginning of the simulation. However,
simulations showed that after this major peak of infections, no further significant spread of these diseases
occurred. After approximately 100 days of simulation, human states regarding the diseases vary little to
none; one of the factors we consider as the cause for this phenomenon is that we do not contemplate
reinfection of the diseases. This means once a human has recovered from a specific disease, it can not
suffer it again in the future. Also, it is crucial to understand that all the virus simulations run in a separate
environment so that simulation can be more straightforward, meaning agents only experience one disease
at a time; they were not exposed to Dengue, Zika, and Chikungunya simultaneously.

To analyze the impact of temperature on the spreading of these diseases, three ranges of temperatures were
considered: low temperatures [T = (12◦,16◦)], actual temperatures, and high temperatures [T = (25◦,30◦)].
For these scenarios, the same conditions for the simulation were considered, except for the temperature
variation. The results of this experimentation can be evidenced in Figure 2; for visualization purposes, only
infected humans were included in the plots since it was the state in which the peak of the disease was more
pronounced. These results may be explained by the fact that infection times are temperature-dependent; in
Section 3.4.1, a broad explanation for the infection times is presented.
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Figure 1: Comparison between simulations for Dengue, Zika, and Chikungunya in Bello, Colombia.

5 CONCLUSIONS

The study demonstrates the utility of a Hybrid ABMS model in simulating the spread of Dengue, Zika, and
Chikungunya viruses in an urban area. Integrating geospatial and environmental characteristics differentiates
from other models presented in the literature since it allows us to realistically capture the spatial context,
human behavior, and disease transmission patterns. While there are assumptions and simplifications in the
model that require validation, they generally reflect the behavior of these viruses based on the observed
patterns of susceptible, exposed, infected, and recovered individuals.

This research is an essential step in a larger project; subsequent stages will refine the model through
high-performance computing, real data incorporation, and addressing computational challenges. The
primary purpose of the project at large is to develop a comprehensive and reliable model that informs
policy development and targeted disease control strategies. This proposed model would be beneficial to
authorities in Colombia who are already experimenting with control strategies such as using pyriproxyfen
in different urban areas.

Further work needs to be carried out to validate and calibrate the model with historical data in Bello.
Possible improvements include making the model more realistic, like scaling the grid to the actual size of
Bello territory and considering the distribution of temperatures per day and per geographic zone in Bello.
As well as considering real-scale industrial, educational, living, and leisure zones. These improvements
could aid in identifying high-risk areas and evaluating control strategies and targeted interventions.
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Figure 2: Temperature experimentation for infected humans.
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