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ABSTRACT

Reinforcement learning provides a mathematical framework for learning-based control, whose success
largely depends on the amount of data it can utilize. The efficient utilization of historical samples obtained
from previous iterations is essential for expediting policy optimization. Empirical evidence has shown that
offline variants of policy gradient methods based on importance sampling work well. However, existing
literature often neglect the interdependence between observations from different iterations, and the good
empirical performance lacks a rigorous theoretical justification. In this paper, we study an offline variant
of the natural policy gradient method with reusing historical observations. We show that the biases of the
proposed estimators of Fisher information matrix and gradient are asymptotically negligible, and reusing
historical observations reduces the conditional variance of the gradient estimator. The proposed algorithm
and convergence analysis could be further applied to popular policy optimization algorithms such as trust
region policy optimization. Our theoretical results are verified on classical benchmarks.

1 INTRODUCTION

In challenging reinforcement learning tasks with large state and action spaces, policy optimization methods
rank among the most efficacious approaches. It provides a way to directly optimize policies and handles
complex and high-dimensional policy representations such as neural networks, all of which contribute
to its popularity in the field. It usually works with parametric policies and employs a policy gradient
approach to search for the optimal solution (e.g. Sutton et al. 1999). The gradients can be estimated
using various techniques, such as the REINFORCE algorithm (Williams 1992) or actor-critic methods (e.g.
Konda and Tsitsiklis 1999). These gradient estimation techniques provide a principled way to update the
policy parameters based on the observed rewards and state-action trajectories.

The aforementioned on-policy gradient approach involves an iterative approach of gathering experience
by interacting with the environment, typically using the currently learned policy. This experience is
then utilized to improve the policy. However, in many scenarios, conducting online interactions can be
impractical. This can be due to the high cost of data collection (e.g., in robotics or healthcare) or the
potential dangers involved (e.g., in autonomous driving). Additionally, even in situations where online
interaction is feasible, there may be a preference for utilizing previously collected data to improve the
gradient estimation, especially when online data are scarce.

Reusing historical observations to accelerate the learning of the optimal policy is typically achieved
by using the importance sampling (IS) technique, which could be traced back to Rubinstein and Shapiro
(1990). One significant limitation of this approach in policy optimization is that it can suffer from high
variance caused by the importance weights, particularly when the trajectory is long (this is often referred
to as trajectory-based or episode-based approach). Liu et al. (2018) propose to apply IS directly on
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the discounted state visitation distributions to avoid the exploding variance, which is often referred to as
step-based approach. Recently, Metelli et al. (2020) propose a policy optimization via importance sampling
approach that mixes online and offline optimization to efficiently exploit the information contained in the
collected samples. Zheng and Xie (2022) propose a variance reduction based experience replay framework
that selectively reuses the most relevant samples to improve policy gradient estimation.

Apart from reusing historical observations via IS to accelerate the convergence of policy gradient
algorithm, natural gradient (e.g. Amari 1998) has also been introduced to accelerate the convergence by
considering the geometry of the policy parameter space (e.g. Kakade 2001). It is observed that the natural
policy gradient algorithm often results in more stable updates that can prevent large policy swings and lead
to smoother learning dynamics (Kakade 2001). Another benefit of natural policy gradient is its invariance to
the parameterization of the policy, which allows for greater flexibility in designing the policy representation
(Amari 1998).

It should be noted that most of the existing works in IS-based policy optimization assume the IS-based
gradient estimator is unbiased (e.g. Zheng and Xie 2022), and the convergence analysis is based on the
unbiased gradient estimator. However, it is pointed out in Eckman and Henderson (2018), Eckman and
Feng (2018) and Liu and Zhou (2020) that the IS-based gradient estimator is biased in the iterative approach
due to the dependence between different iterations. Regarding the biased gradient estimator, Liu and Zhou
(2020) study the asymptotic convergence of the stochastic gradient descent (SGD) method with reusing
historical observations.

In this paper, we propose to use IS in the natural policy gradient algorithm. The IS is used to estimate
the gradient as well as the Fisher information matrix (FIM). We extend the convergence analysis of the
SGD in the context of simulation optimization (Liu and Zhou 2020) to natural policy gradient in the
context of reinforcement learning, and the additional bias caused by reusing historical observations in the
FIM complicates the analysis. We theoretically study a mini-batch natural policy gradient with reusing
historical observations (RNPG) and show the asymptotic convergence of the proposed algorithm by the
ordinary differential equation (ODE) approach. We show that the bias of the natural gradient estimator with
historical observations is asymptotically negligible, and RNPG shares the same limit ODE as the vanilla
natural policy gradient (VNPG), which only uses samples of the current iteration for FIM and gradient
estimators. Moreover, we demonstrate that the proposed RNPG can be applied to other popular policy
optimization algorithms such as trust region policy optimization (TRPO, Schulman et al. 2015).

The rest of the paper is organized as follows. Section 2 gives the problem formulation and presents the
RNPG algorithm. Section 3 analyzes the convergence behavior of RNPG by the ODE method. Section 4
demonstrates the performance improvement of RNPG over VNPG on a classical benchmark. Section 5
concludes the paper and outlines some future research directions.

2 PROBLEM FORMULATION AND ALGORITHM DESIGN

2.1 Preliminaries

2.1.1 Markov Decision Processes

Consider an infinite-horizon MDP defined as (S ,A ,P,R,γ,ρ0), where S is the state space, A is the
action space, P is the transition probability with P(st+1|st ,at) denoting the probability of transitioning
to state st+1 from state st when action at is taken, R is the reward function with R(st ,at) denoting the
cost at time stage t when action at is taken and state transitions from st , γ ∈ (0,1) is the discount factor,
ρ0 is the probability for the initial state, i.e., s0 ∼ ρ0.

Consider a stochastic parameterized policy πθ : S → ∆(A ), defined as a function mapping from the
state space to a probability simplex ∆(·) over the action space, parameterized by θ ∈ Rd . For a particular
probability (density) from this distribution we write πθ (a|s). There are a large number of parameterized
policy classes. For example, in the case of direct parameterization, the policies are parameterized by
πθ (a|s) = θs,a, where θ ∈ ∆(A )|S | is within the probability simplex on the action space. In the case
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of softmax parameterization, πθ (a | s) = exp(θs,a)

∑a′∈A exp(θs,a′)
. The policies can also be parameterized by neural

networks, where significant empirical successes have been achieved in many challenging applications, such
as playing Go (Silver et al. 2016).

The performance of a policy is evaluated in terms of the expected discounted return η(πθ ) =
Es0,a0,... [∑

∞
t=0 γ tR (st ,at)], where s0 ∼ ρ0 (s0) ,at ∼ πθ (at | st) ,st+1 ∼ P (st+1 | st ,at). Denote by dπθ (s)

the discounted state visitation distribution induced by the policy πθ , dπθ (s) = (1−γ)∑
∞
t=0 γ tP (st = s | πθ ).

It is useful to define the discounted occupancy measure as dπθ (s,a) = dπθ (s)πθ (a|s). Using the discounted
occupancy measure, we can rewrite the expected discounted return as η(πθ ) = E(s,a)∼dπθ (s,a)[R(s,a)]. The
goal is for the agent to find the optimal policy πθ ∗ that maximizes the expected discounted return, or
equivalently, θ ∗ = argmaxθ∈Θ η(πθ ). We use the following standard definitions of the value function V πθ ,
the state-action value function Qπθ , and the advantage function Aπθ : V πθ (st) = Eat ,st+1,...

[
∑

∞
l=0 γ lr (st+l)

]
,

Qπθ (st ,at) = Est+1,at+1,...

[
∑

∞
l=0 γ lr (st+l)

]
, and Aπθ (s,a) = Qπθ (s,a)−V πθ (s).

2.1.2 Natural Policy Gradient

In the policy gradient algorithm, at each iteration n, we can iteratively update the policy parameters by

θn+1 = ProjΘ (θn +αn∇η (θn)) ,

where αn is the step size, ProjΘ(θ) is a projection operator that projects the iterate of θ to the feasible
parameter space Θ, and ∇η (θn) is the policy gradient. For ease of notations, we use parameter θ to indicate
a parameterized policy πθ . The gradient is taken with respect to θ unless specified otherwise. The policy
gradient (e.g. Sutton et al. 1999) is given by

∇η(θ) =
1

1− γ
E(s,a)∼dπθ (s,a)[A

πθ (s,a)∇ logπθ (a|s)].

The steepest descent direction of η(θ) in the policy gradient is defined as the vector dθ that minimizes
η(θ +dθ) under the constraint that the squared length ||dθ ||2 is held to a small constant. This squared
length is defined with respect to some positive-definite matrix F(θ) such that ||dθ ||2 = dθ T F(θ)dθ . The
steepest descent direction is then given by F−1(θ)∇η(θ) (Amari 1998). It can be seen that the policy
gradient descent is a special case where F(θ) is the identity matrix, and the considered parameter space Θ

is Euclidean. The natural policy gradient (NPG) algorithm (Kakade 2001) defines F(θ) to be the Fisher
information matrix (FIM) induced by πθ , and performs natural gradient descent as follows:

θn+1 = ProjΘ
(
θn +αnF−1(θn)∇η (θn)

)
, (1)

where F(θ) = E(s,a)∼dπθ (s,a)[∇ logπθ (a|s)(∇ logπθ (a|s))T ]. In practice, both the FIM and policy gradient
are estimated by samples. Specifically, at each n-th iteration in stochastic natural policy gradient, we can
iteratively update the policy parameters by

θn+1 = ProjΘ
(

θn +αnF̃−1(θn)∇̃η (θn)
)
,

where F̃(θn) and ∇̃η (θn) are estimators for FIM and policy gradient, respectively.

2.2 Natural Policy Gradient with Reusing Historical Observations

For ease of notations, we denote by ξ i
n = (si

n,a
i
n) the i-th state-action pair sampled from the discounted

occupancy measure dπθn (s,a) at iteration n. We assume {ξ i
n, i = 1, · · · ,B} are independent and identically

distributed (i.i.d.) samples (observations) from the stationary distribution of the Markov decision process
under the policy πθn . This i.i.d. assumption does not hold in practice (see e.g. single path generation in
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Schulman et al. 2015), but it is widely used in order to show the convergence (see e.g. Zheng and Xie
2022). A vanilla baseline FIM estimator F̃ (θn) and gradient estimator ∇̃η (θn) can be obtained as:

F̃ (θn) =
1
B

B

∑
i=1

S(ξ i
n,θn), ∇̃η (θn) =

1
B

B

∑
i=1

G(ξ i
n,θn),

where S(ξ ,θ) = ∇ logπθ (a|s)(∇ logπθ (a|s))T and G(ξ ,θ) = Aπθ (s,a)∇ logπθ (s,a). It is easy to see that
F̃ (θn) and ∇̃η (θn) are unbiased estimators of the FIM F(θn) and the gradient ∇η (θn), respectively.
However, in the vanilla stochastic natural policy gradient (VNPG), a small batch size B, which is often the
case when there is limited online interaction with the environment, could lead to a large variance in the
estimator. An alternative FIM and gradient estimator, which reuse historical observations, are as follows
(see e.g. Liu and Zhou 2020; Zheng and Xie 2022):

F̂ (θn) =
1

KB

n

∑
m=n−K+1

B

∑
i=1

ω(ξ i
m,θn|θm)S(ξ i

m,θn), (2)

∇̂η(θn) =
1

KB

n

∑
m=n−K+1

B

∑
i=1

ω(ξ i
m,θn|θm)G(ξ i

m,θn), (3)

where we reuse previous K−1 iterations’ observations, ω(ξ i
m,θn|θm) =

dπθn (ξ i
m)

dπθm (ξ i
m)

is the likelihood ratio. The
update of stochastic natural policy gradient with reusing historical observations (RNPG) is then as follows.

θn+1 = ProjΘ
(

θn +αnF̂−1(θn)∇̂η (θn)
)
. (4)

We summarize RNPG in Algorithm 1.
Algorithm 1: Natural Gradient Descent with Reusing Historical Observations

1. At iteration n = 0, choose an initial parameter θ0. Draw i.i.d. samples {ξ i
0, i = 1, · · · ,B} from

discounted occupancy measure dπθ0 (s,a) by interacting with the environment.
2. At iteration n+1, conduct the following steps.

2.1 Update θn+1 according to (4).
2.2 Draw i.i.d. samples {ξ i

n+1, i = 1, · · · ,B} from discounted occupancy measure dπθn+1 (s,a) by
interacting with the environment.

2.3 n = n+1. Repeat the procedure 2.
3. Output θn and πθn when some stopping criteria are satisfied.

As pointed out by Liu and Zhou (2020) and prior works Eckman and Henderson (2018), and Eckman and
Feng (2018), the dependence between iterations makes the FIM and the gradient estimators with historical
observations ∇̂η(θn) biased. This is in contrast to Zheng and Xie (2022), where the authors ignore the
bias and their assumption of unbiased gradient estimator cannot be satisfied. It should also be noted that
the likelihood ratio in (3) is usually hard to compute, since the discounted occupancy measure does not
admit a closed form expression. We defer the discussion on some approximations to make Algorithm 1
more practical to Section 3.

3 CONVERGENCE ANALYSIS

In this section, we first analyze the convergence behavior of RNPG by the ordinary differential equation
(ODE) method. We will show that the RNPG and VNPG share the same limit ODE, while the bias resulting
from the interdependence between iterations gradually diminishes, ultimately becoming insignificant in the
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asymptotic sense. Moreover, we demonstrate that RNPG effectively reduces the conditional variance of
each iterate in comparison to VNPG. This observation implies that RNPG offers more stable convergence
characteristics and allows for the utilization of larger step sizes. At last we apply the proposed algorithm
to some popular policy optimization algorithms such as trust region policy optimization, and propose some
approximations to make the proposed algorithm more practical.

3.1 Regularity Conditions for RNPG

We study the asymptotic behavior of Algorithm 1 by the ODE method (please refer to Kushner and Yin
(2003) for a detailed exposition on the ODE method for stochastic approximation). The main idea is that
stochastic gradient descent (SGD, and in our case is stochastic natural policy gradient, NPG) can be viewed
as a noisy discretization of an ODE. Under certain conditions, the noise in NPG averages out asymptotically,
such that the NPG iterates converge to the solution trajectory of the ODE. We first summarize the regularity
conditions for RNPG that are used throughout the paper.
Assumption 1

• (A.1.1) The step size {αn}n satisfies ∑
∞
n=0 α2

n < ∞, ∑
∞
n=0 αn = ∞, limn→∞ αn = 0, αn > 0,∀n ≥ 0.

• (A.1.2) The absolute value of the reward R(s,a) is bounded uniformly, i.e., ∀(s,a) ∈S ×A , there
exists a constant Ur > 0 such that |R(s,a)| ≤Ur.

• (A.1.3) The policy πθ is differentiable with respect to θ , Lipschitz continuous in θ , and has bounded
norm uniformly. That is, there exist constants LΘ,UΘ > 0 such that ||∇πθ1(a|s)−∇πθ2(a|s)|| ≤
LΘ||θ1 −θ2||, ∀θ1,θ2 ∈ Θ, ||∇πθ (a|s)|| ≤UΘ, ∀(s,a) ∈ S ×A .

• (A.1.4) ||πθ1(·|s)− πθ2(·|s)||TV ≤ UΠ||θ1 − θ2||,∀θ1,θ2 ∈ Θ,∀s ∈ S , for some constant UΠ > 0,
where ||P−Q||TV stands for total variation norm between two probability distributions P and Q
with support x, i.e., ||P−Q||TV = 1

2
∫

x |P(x)−Q(x)|dx.
• (A.1.5) There exists a constant εd > 0 such that the discounted occupancy distribution dπθ (s,a)≥

εd ,∀(s,a) ∈ S ×A ,∀θ ∈ Θ.
• (A.1.6) Θ is a nonempty compact set in Rd . Moreover, Θ is convex.

(A.1.1) essentially requires the step size diminishes to zero not too slow (∑∞
n=0 α2

n < ∞) nor too fast
(∑∞

n=0 αn = ∞). For example, we can choose αn =
α

n for some α > 0. (A.1.2) and (A.1.3) are standard
assumptions on the regularity of the MDP problem and the parameterized policy. (A.1.4) is from Xu
et al. (2020) and holds for any smooth policy with bounded action space. (A.1.5) ensures the discounted
occupancy distribution is bounded away from zero. (A.1.6) guarantees the uniqueness of the projection in
the solution iterate.

3.2 Asymptotic Convergence by the ODE Method

Before proceeding to our main convergence result, we introduce the continuous-time interpolation of the
solution sequence {θn}. Define t0 = 0 and tn = ∑

n−1
i=0 αi,n ≥ 1. For t ≥ 1, let N(t) be the unique n such that

tn ≤ t < tn+1. For t < 0, set N(t) = 0. Define the interpolated continuous process θ 0 as θ 0(0) = θ0 and
θ 0(t) = θN(t) for any t > 0, and the shifted process as θ n(s) = θ 0(s+ tn). To work on the projected ODE,
we define a set C (θ) as follows. When Θ is a hyperrectangle, for θ ∈ Θ0 , the interior of Θ, C (θ) contains
only the zero element; for θ ∈ αΘ, the boundary of Θ, let C (θ) be the infinite convex cone generated by
the outer normals at Θ of the faces on which θ lies. For other more general compact spaces, we refer the
readers to Chapter 4.3 in Kushner and Yin (2003) for the construction of set C (θ). We then show in the
following theorem the limiting behavior of the solution trajectory in Algorithm 1.
Theorem 1 Let Dd [0,∞) be the space of Rd-valued operators which are right continuous and have left-hand
limits for each dimension. Under Assumption 1, there exists a process θ ∗(·) to which the subsequence of
{θ n(·)}n converges with probability one (w.p.1) in the space Dd [0,∞), where θ ∗(·) satisfies the following
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ODE

θ̇ = F−1(θ)∇η(θ)+ z, z ∈ −C (θ), (5)

where z is the projection term, i.e., the minimum force needed to keep the trajectory of the ODE θ(·) from
leaving the solution space Θ. The solution trajectory {θn}n in Algorithm 1 also converges w.p.1 to the
limit set of the ODE (5).

Before the formal proof of Theorem 1, we first give a high-level proof outline. Note that in the update
(4), we can decompose the natural gradient estimation into three components: the true natural gradient,
the noise caused by the simulation error, and the bias caused by reusing historical observations. We then
separately analyze the noise and bias effects on the estimation of FIM and gradient, and show the noise
and bias terms are asymptotically negligible.

For any s > 0, let ξξξ s := (ξ 1
s , · · · ,ξ B

s ), ddds := (dπθ
s (ξ 1

s ), · · · ,d
πθ
s (ξ B

s )), effective memory eees := (ξξξ s−K+1,
ddds−K+1, · · · ,ξξξ s−1,ddds−1), and non-decreasing filtration Fn := σ{(θs,eees),s ≤ n}. With an explicit projection
term zn, we can rewrite (4) as follows

θn+1 = θn +αn

(
F−1(θn)∇η(θn)+F−1(θn)∇̂η(θn)−E[F−1(θn)∇̂η(θn)|Fn]︸ ︷︷ ︸

δMn

+E[F−1(θn)∇̂η(θn)|Fn]−F−1(θn)∇η(θn)︸ ︷︷ ︸
ζn

+(F̂−1(θn)−F−1(θn))∇̂η(θn)︸ ︷︷ ︸
ιn

+zn

)
, (6)

where δMn is the noise term caused by the simulation error in the gradient estimator, ζn is the bias term
caused by reusing historical observations in gradient estimator, and ιn is due to the inexact estimation of
FIM. We can further decompose ιn as follows

ιn = (F̂−1(θn)− F̄−1(θn))∇̂η(θn)︸ ︷︷ ︸
δFn

+(F̄−1(θn)−F−1(θn))∇̂η(θn)︸ ︷︷ ︸
Dn

, (7)

where F̄(θn) := E[F̂(θn)|Fn]. To prevent the FIM from becoming singular, we add a small perturbation
εId to the FIM to ensure its positive definiteness, where ε > 0 is some small positive number and Id is a
d-by-d identity matrix. We will then show in the rest of the section that the continuous-time interpolations
of δMn, ζn and ιn do not change asymptotically. The formal definition of zero asymptotic rate of change
is given below, which is from Chapter 5.3 in Kushner and Yin (2003).
Definition 1 (Zero asymptotic rate of change) A stochastic process X(t) is said to have zero asymptotic
rate of change w.p.1 if for some positive number T ,

lim
n

sup
j≥n

max
0≤t≤T

|X( jT + t)−X( jT )|= 0 w.p.1.

We first have the following lemma to show the continuous-time interpolations of δMn and δFn have
zero asymptotic rate of change.

Lemma 2 Let the continuous-time interpolations of δMn and δFn be M(t) = ∑
N(t)−1
i=0 αiδMi and H(t) =

∑
N(t)−1
i=0 αiδFi, respectively. Then M(t) and H(t) have zero asymptotic rate of change w.p.1 under Assump-

tion 1.
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We then adopt the fixed-state method and apply Theorem 6.6.1 in Kushner and Yin (2003) to show the
convergence of RNPG. Let P(eeen+1|eeen,θn) be the transition probability given the current iterate θn. Note that
eeen = (ξξξ n−K+1,dddn−K+1, · · · ,ξξξ n−1,dddn−1), eeen+1 = (ξξξ n−K+2,dddn−K+2, · · · ,ξξξ n,dddn). Given eeen, the component of
eeen+1 that remains unknown are ξξξ n and dddn, which are random variables that only depend on θn. Then eeen has
the Markov property: P(eeen+1|eeem,θm,m ≤ n) = P(eeen+1|eeen,θn). For a fixed state θ , the transition probability
P(eee′|eee,θ) defines a Markov chain denoted as {eeen(θ)}. We expect that the probability law of the chain for
a given θ is close to the probability law of the true {eeen} if θn varies slowly around θ . We are interested
in {eeei(θn) : i ≥ n} with initial condition eeen(θn) = eeen. Thus, this process starts at value eeen at time n and
evolves as if the parameter value were fixed at θn forever after, and the limit ODE obtained in terms of
this fixed-state chain approximates that of the original iterates.

To explicitly express the estimators’ dependence on the history of data eeeb, let

∇̂η(θ ,eeem) =
1

KB

m

∑
j=m−K+1

B

∑
i=1

dπθ (ξ i
j)

dπθ j (ξ i
j)

G(ξ i
j,θ), F̂(θ ,eeem) =

1
KB

m

∑
j=m−K+1

B

∑
i=1

dπθ (ξ i
j)

dπθ j (ξ i
j)

S(ξ i
j,θ).

It is easy to check ∇̂η(θn,eeen) = ∇̂η(θn) and F̂(θn,eeen) = F̂(θn). Similarly, we can define F̄(θ ,eeem(θ)) =

E[F̂(θ ,eeem)|eeem(θ) = eeem,θ ]. Define the function vn(θ ,eeen) and the function νn(θ ,eeen) as follows

vn(θ ,eeen) =
∞

∑
i=n

αiF−1(θ)E[∇̂η(θ ,eeei(θ))−∇η(θ)|eeen(θ) = eeen,θ ],

νn(θ ,eeen) =
∞

∑
i=n

αi(F̄−1(θ ,eeei(θ))−F−1(θ))∇̂η(θ).

vn(θ ,eeen) and νn(θ ,eeen) represent the accumulated bias brought by reusing historical observations in
the gradient estimator and FIM estimator, respectively, in the fixed-state chain with fixed state θ . Next we
show the bias in the fixed-state chain with fixed state θn vanishes.
Lemma 3 Under Assumption 1, limn→∞ vn(θn,eeen) = 0 and limn→∞ νn(θn,eeen) = 0 w.p.1.

We then consider a perturbed iteration θ̃n = θn − vn(θn,eeen)−νn(θn,eeen). The use of the perturbation
removes F̂−1(θn)∇̂η(θn) and replaces it by F−1(θn)∇η(θn). For the gradient estimator, an error bn (due
to the replacement of θn+1 by θn in vn+1(θn+1,eeen+1), and a new martingale difference term δBn were
introduced in the process, and similarly for the FIM estimator. We refer the readers to Chapter 6.6 in
Kushner and Yin (2003) for the detailed discussion on the perturbation. Lemma 3 implies the perturbed
iteration θ̃n asymptotically equals to θn. We can rewrite the perturbed iteration as follows

θ̃n+1 = θ̃n +αn
(
F−1(θn)∇η(θn)+δMn +δFn + zn

)
+bn +δBn +un +δUn,

where bn = vn+1(θn+1,eeen+1)−vn+1(θn,eeen+1), δBn = vn+1(θn,eeen+1)−E[vn+1(θn,eeen+1)|eeen(θ) = eeen,θn], un =
νn+1(θn+1,eeen+1)−νn+1(θn,eeen+1), δUn = νn+1(θn,eeen+1)−E[νn+1(θn,eeen+1)|eeen(θ) = eeen,θn]. Our next step
is to show the continuous-time interpolations of bn, δBn, un, δUn have zero asymptotic rate of change.

Lemma 4 Let the continuous-time interpolations of bn, δBn, un, and δUn be B(t) = ∑
N(t)−1
i=0 bi, I(t) =

∑
N(t)−1
i=0 δBi, U(t) = ∑

N(t)−1
i=0 ui, and J(t) = ∑

N(t)−1
i=0 δUi, respectively. Then B(t), I(t), U(t), and J(t) have

zero asymptotic rate of change w.p.1 under Assumption 1.
We can then relate the bias term ζn in (6) and Dn in (7) to bn, δBn and un, δUn, respectively, and show

the corresponding continuous-time interpolations have zero asymptotic rate of change in the next corollary.

Corollary 5 Let the continuous-time interpolations of ζn and Dn be Z(t) = ∑
N(t)−1
i=0 αiζi and D(t) =

∑
N(t)−1
i=0 αiDi, respectively. Then Z(t) and D(t) have zero asymptotic rate of change w.p.1 under Assumption 1.
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We are now ready to show the formal proof of Theorem 1.

Proof. The update (4) in Algorithm 1 can be written as:

θn+1 = θn +αn
(
F−1(θn)∇η(θn)+δMn +ζn +δFn +Dn + zn

)
,

where δMn is the noise term caused by the simulation error in the gradient estimator, ζn is the bias term
caused by reusing historical observations in gradient estimator, δFn and Dn are due to the inexact estimation
of FIM. By Lemma 2, the continuous-time interpolations of δMn and δFn have zero asymptotic rate of
change. By Corollary 5, the continuous-time interpolations of ζn and Dn have zero asymptotic rate of
change. Therefore, the limit ODE is determined by the natural gradient F−1(θ)∇η(θ) and the projection.
By Theorem 6.6.1 in Kushner and Yin (2003), the solution trajectory {θn}n in Algorithm 1 also converges
w.p.1 to the limit set of the ODE (5).

It should be noted that Theorem 1 only shows the convergence of RNPG to the same limit set of ODE
as VNPG. In the next section, we study the benefit of reusing historical observations in terms of reduced
conditional variance.

3.3 Reduction of Conditional Variance

We show that reusing historical observations reduces the variance of each iterate conditioned on the
history. For simplicity, we only show the reduced conditional variance by reusing historical observations in
gradient estimator, while we assume the FIM can be exactly computed. Denote by θ RNPG and θ VNPG the
iterates in RNPG and VNPG, respectively. Denote the filtration F VNPG

n = σ{θ VNPG
m ,m ≤ n}, F RNPG

n =

σ{θ RNPG
m ,eeem,m ≤ n}. Denote by d the dimension of θ . For any vector V ∈ Rd , denote by V (i) the i-th

dimension of V , where i ≤ d. The next theorem shows a sufficient condition on K, the number of reused
iterations, for reduction in the conditional variance.
Theorem 6 If K satisfies the following condition

K ≥

√√√√√maxθ∈ΘEξ∼dπθ

[
((F−1(θ)(G(ξ ,θ)−∇η(θ)))(i))2

]
minθ∈ΘEξ∼dπθ

[
((F−1(θ)(G(ξ ,θ)−∇η(θ)))(i))2

] ,
then we have Var[θ (i),RNPG

n+1 |F RNPG
n ]≤ Var[θ (i),VNPG

n+1 |F VNPG
n ], w.p.1 ∀n > 0, i ≤ d.

3.4 Extension and Approximation

In this section, we discuss the extension of the proposed RNPG algorithm to trust region policy optimization
(TRPO), which is an online natural policy gradient algorithm. With a linear approximation to the objective
and quadratic approximation to the constraint, the optimization in each iteration in TRPO can be written as

max
θ

∇η(θn)(θ −θn)

s.t.
1
2
(θn −θ)T F(θn)(θn −θ)≤ δ .

F(θn)i j =
∂

∂θi

∂

∂θ j
Es∼dπθn (s)[DKL(πθn(·|s)||πθ (·|s))]|θ=θn , where DKL(P||Q) :=

∫
log

(
dP
dQ

)
dP denotes the

Kullback-Leibler divergence from distribution P to distribution Q, and F(θn) is the same FIM as in (1).
Therefore, the update iterate in TRPO can be written as θn+1 = θn +αnF−1(θn)∇η(θn). In practical

implementation, TRPO performs a line search in the natural gradient direction, ensuring that the objective
is improved while satisfying the nonlinear constraint. We can replace F(θn) and ∇η(θn) by F̂(θn) and
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∇̂η(θn) in (4) that reuse the historical observations while still ensuring the convergence of the TRPO
algorithm.

Note that in Algorithm 1, we use step-based natural policy gradient algorithm. It requires a single
likelihood ratio per state-action pair. However, when computing the likelihood ratio, there is usually no
closed-form expression for the discounted state visitation distribution dπθ (s). To make the algorithm more
practical, we could replace the likelihood ratio ω(ξ ,θn|θm) =

dπθn (ξm)

dπθm (ξm)
by ω̂(ξ ,θn|θm) =

π(ξm;θn)
π(ξm;θm)

(e.g.
Degris et al. 2012). Even though it introduces additional bias into the gradient estimator, we can show in
the next corollary that the solution trajectory in Algorithm 1 with the likelihood ratio ω̂(ξ ,θn|θm) converges
w.p.1 to the same limit set of the ODE (5).
Corollary 7 Under Assumption 1, the solution trajectory {θn}n in Algorithm 1 with the likelihood ratio
ω̂(ξ ,θn|θm) converges w.p.1 to the limit set of the ODE (5).

4 NUMERICAL EXPERIMENTS

In the numerical experiment, we demonstrate the performance improvement of RNPG over VNPG on
CartPole, an OpenAI benchmark problem. The goal is to balance a pole on a cart by moving the cart left
or right. The state is a four-dimensional vector representing position of the cart, velocity of the cart, angle
of the pole and velocity of the pole. The action space is binary: push the cart left or right with a fixed
force. The environment caps episode lengths to 200 steps and ends the episode prematurely if the pole falls
too far from the vertical or the cart translates too far from its origin. The agent receives a reward of one
for each consecutive step before the termination. The discount factor is γ = 0.99. For the same considered
problem, we compare the performance of the following algorithms. (i) vanilla policy gradient (VPG) and
policy gradient with reusing historical observations (RPG); (ii) TRPO and TRPO with reusing historical
observations (TRPO-R). Note that the performance difference between VNPG and TRPO has already been
shown in Schulman et al. (2015), so we directly build RNPG on top of TRPO.

Figure 1: Mean and standard error of the reward over n = 1000 iterations for VPG and RPG run on CartPole.

We show the average reward over episodes (i.e., number of iterations) for different algorithms. The
reward is averaged over 20 macro replications. The policy network is a fully-connected two-layer neural
network with 32 neurons and Rectified Linear Unit (ReLU) activation function. We use softmax activation
function on top of the neural network. The policy parameter is updated by Adam optimizer with step size
(or learning rate) α = 0.005. We should note that similar performance can be obtained by using SGD
optimizer with an appropriate decay rate. For policy gradient algorithms (VPG and RPG), the number of
observations generated in each iteration (i.e., batch size) is B = 4. For natural policy gradient algorithms
(TRPO and TRPO-R), the batch size is B = 64. Figure 1 shows the mean and standard error of the reward
over n = 1000 iterations for VPG and RPG algorithms, respectively. Figure 2 shows the mean and standard
error of the reward over n = 1000 iterations for TRPO and TRPO-R algorithms, respectively. For RPG
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Figure 2: Mean and standard error of the reward over n = 1000 iterations for TRPO and TRPO-R run on
CartPole.

and TRPO-R, the numbers of reused iterations are K = 2 and 100, respectively. We have the following
observations from Figure 1 and Figure 2.

(i) Reusing historical observations accelerates the convergence of the policy gradient algorithm (the
convergence of RPG is faster than that of VPG) and the natural policy gradient algorithm (the
convergence of TRPO-R is faster than that of TRPO).

(ii) Both RPG and TRPO-R have a much smoother trajectory, compared with their vanilla counterpart
VPG and TRPO. This can be seen from smaller standard errors of RPG and TRPO-R, compared
to VPG and TRPO. It indicates that reusing historical observations reduces the variance of iterates
and improves the stability of the algorithm.

(iii) For RPG and TRPO-R, as we reuse more historical observations from previous iterations (larger
K), the faster the algorithm converges and the smoother the trajectory is. But this comes with the
increased memory for computation.

5 CONCLUSION

In this paper, we study the convergence of an offline variant of natural policy gradient in reinforcement
learning with reusing historical observations (RNPG). We show that the biases of the proposed estimators
of Fisher information matrix and gradient are asymptotically negligible, and reusing historical observations
reduces the conditional variance of the gradient estimator. We further demonstrate that popular policy
optimization algorithms, such as trust region policy optimization, could benefit from reusing historical
observations with guaranteed convergence. Two potential research directions merit further exploration in
the future. First, when showing the reduction in the conditional variance, we assume the exact FIM and
only consider the benefit of reusing historical observations in the gradient estimator. Extending the analysis
to further consider the benefit of reusing historical observations in FIM will be left for a future work.
Second, the ODE method solely examines the mean behavior of RNPG, without providing an explanation
for its effectiveness resulting from the reduction in variance by reusing historical observations. The study
of the improved convergence rate of RNPG will be left for a future work.
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