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ABSTRACT 

Simulation is widely used in several areas of knowledge, from engineering to biology, including physics 
and finance. It allows the evaluation of the model’s results under different conditions, enabling performance 
analysis and more assertive decision-making. However, simulation can be computationally intensive, 
especially when we consider complex models. To deal with this problem, metamodeling has been 
increasingly used as a simulation optimization technique. In this article, we propose a new adaptive 
metamodeling method for simulation optimization, which aims to achieve better results using fewer 
experiments. This method combines machine learning and metaheuristic techniques, allowing the 
identification of the most important regions of the search space, which can be explored more efficiently to 
obtain optimal solutions. The results achieved in a manufacturing problem show that the proposed method 
presents a significant improvement in the achieved objective function value, in comparison with the 
conventional benchmark method, without compromising the simulation execution time. 

1 INTRODUCTION 

The Discrete event simulation (DES) is a technique widely used in several areas of knowledge, from 
manufacturing to services, including logistics, hospitals, retail, military, among others. DES aims to 
computationally replicate real systems, in operation or designed, allowing the responses of this system to 
be evaluated under different conditions, enabling performance analysis and more assertive decision-making 
(Santos et al. 2021). 

DES can assist in various decision-making processes, such as examining bottlenecks on a production 
line, determining the appropriate number of machines on a workstation, staffing a medical facility, testing 
different layout configurations, and scheduling assignments in a workshop, among other applications. These 
purposes usually involve several decision variables and an objective function (FO) that must be achieved, 
resulting in numerous scenarios to be evaluated. In this case, Fu (2002) emphasizes the importance of using 
simulation optimization techniques (OvS) to find the scenario that optimizes the problem. However, 
running the simulation can be computationally intensive, especially when using complex models, which 
might make the OvS process impractical due to the time required. To deal with this problem, many authors 
suggest elevating the problem to another level of abstraction, the so-called metamodeling. 

Metamodeling aims to identify and estimate the relationship between inputs and outputs of the 
simulation model, forming a simplified model (metamodel) that is used to evaluate possible solutions in the 
optimization process. According to Parnianifard et al. (2019), replacing the simulation model with the 
metamodel allows reducing the total time invested in optimization. In this way, several works proposed the 
creation of more accurate and efficient metamodeling methods, capable of outlining good results with few 
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simulation executions. Some examples include the works of (Moghaddam and Mahlooji 2017; Pang et al. 
2022; Parnianifard et al. 2018). 

Amaral et al. (2022) point out that metamodeling approaches can be classified into fixed experimental 
design (or one-shot), and incremental strategy (or infill-search). In the fixed design, a single experimental 
base with size w is selected at the beginning of the project and the metamodel is trained using only this set. 
For the incremental strategy, an initial experimental base is selected, the metamodel is trained and optimized 
and, based on the acquisition criterion, new points are added to the training base. Then, the metamodel is 
retrained with the new experimental base. This cycle continues until the stopping criterion is reached. The 
incremental strategy is the focus of this work. 

Several studies can be found in the literature involving this approach to simulation optimization, where 
the use of metamodels based on Kriging and Polynomial Regression is very common (Bharaj et al. 2015; 
Ng and Yin 2012; Wang and Ierapetritou 2017; Yaohui 2017). Thus, this study aims to propose a new 
metamodeling method, combining Design of Experiments, Ensemble models (Bagging), Gradient-Boosted 
Trees (GBT), hyper-parameter optimization and Genetic Algorithm (GA). 

Furthermore, this article compares the proposed method with Efficient Global Optimization (EGO), an 
incremental strategy method based on Kriging that is widely used in the literature (Gu 2021; He et al. 2021; 
Raponi et al. 2021). In this case, we aim to validate the results found by the proposed algorithm. Moreover, 
we adopted a real case study, a simulation model that acts as a digital twin for weekly resource allocation 
in a small/medium-sized factory in the textile sector. 

The rest of this article is divided into 4 more Sections. Section 2 presents the theoretical framework on 
which this work is based. Section 3 presents the proposed method, while Section 4 discusses its application 
in a case study. Section 5 concludes the work and proposes directions for future research. 

2 BACKGROUND 

Miranda et al. (2017) describe OvS as the optimization of an objective function (OF) subject to constraints, 
which is evaluated through a stochastic simulation. OvS refers to the process of identifying the best input 
values for the variables of a simulated system, evaluating the solutions through a loop between the 
optimization algorithm and the simulation model. The OvS study field has evolved significantly in the last 
decades, with the development of several algorithms, software, and applications. However, computational 
time is still a challenge for OvS. 

According to Amaran et al. (2016), the general formulation for an OvS problem consists of finding the 
minimum value of the objective function 𝔼𝔼𝜔𝜔[𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜔𝜔)], subject to the constraints 𝔼𝔼𝜔𝜔[𝑔𝑔(𝑥𝑥,𝑦𝑦,𝜔𝜔)] ≤ 0 and 
ℎ(𝑥𝑥,𝑦𝑦) ≤ 0, where 𝑥𝑥𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑢𝑢, 𝑥𝑥 ∈  ℝ𝑛𝑛,𝑦𝑦 ∈  𝔻𝔻𝑚𝑚. The function 𝑓𝑓 is evaluated through simulation with 
continuous 𝑥𝑥 or discrete 𝑦𝑦 inputs, subject to a vector of random numbers ω. The constraints are defined by 
the values of the 𝑔𝑔 function that are evaluated at each simulation. The problem may contain other constraints 
(represented by h) that do not involve random variables, as well as constraints linked to decision variables. 

However, Oliveira et al. (2017) emphasize that OvS problems, considering complex systems with very 
large solution space, the computational time required for the optimization algorithm to converge to a good 
result might be long. To overcome this challenge, Barton (2009) mentions that researchers have developed 
specialized methods for OvS, including ranking and selection, heuristics and metaheuristics, random search 
and metamodeling. 

According to De La Fuente and Smith (2017), the complexity of the studied system directly influences 
the time required to perform the optimization. To obtain good results in a reasonable time, the authors 
suggest the use of metamodeling, an approach that consists of developing a representative model of the 
simulation model. The metamodel can capture the relationship between the decision variables and the 
simulation outputs, providing an approximation of the objective function in a much shorter time than the 
simulation. Sousa Junior et al. (2019) also highlight the effectiveness of the metamodel in reducing the 
optimization runtime. 
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According to Amaral et al. (2022a), frameworks for metamodeling can be divided into two categories: 
the fixed experimental design strategy (one-shot) and the incremental design strategy (infill-search). The 
fixed sampling strategy consists of taking a single set of samples of size w at the beginning of the project, 
in which the metamodel is trained exclusively with these samples. On the other hand, the incremental 
strategy starts with an initial sample of data of size ξ, in which the metamodel is trained and optimized to 
determine the accuracy and direction of the region in which the optimum lies. After that, the database is 
incremented with a new set of samples of size 𝛿𝛿𝑖𝑖  in each iteration of the algorithm. The metamodel is 
retrained with a base size 𝜉𝜉𝑖𝑖+1 = 𝜉𝜉𝑖𝑖 + 𝛿𝛿𝑖𝑖, where i is the number of iterations of the algorithm. 

In many works, the algorithm responsible for recursive and adaptive learning is known as EGO. In this 
algorithm, Kriging is used as a metamodel and the choice of points to be added in each iteration is usually 
determined by the acquisition function called Expected Improvement (EI), as established in Equation (1). 

 
 

𝐸𝐸[𝐼𝐼(𝒙𝒙)] = �𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑓𝑓(𝒙𝒙)�Φ�
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑓𝑓(𝒙𝒙)

𝜎𝜎 �+ 𝜎𝜎𝜎𝜎 �
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑓𝑓(𝒙𝒙)

𝜎𝜎 � (1) 

 
Where Φ is the normal cumulative distribution function and ϕ is the normal probability density function. 

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛  is the smallest value observed in the training base and 𝑓𝑓(𝒙𝒙) is the prediction of the metamodel 
(Kriging) for the point x and σ is the standard deviation of the prediction. If we evaluate the derivatives of 
the function EI with respect to 𝑓𝑓(𝒙𝒙) and σ, we will notice that the value of EI is greater with lower 𝑓𝑓(𝒙𝒙) 
and higher s. Therefore, when maximizing the EI function, it will tend to find places with the best trade-off 
between local search (smaller 𝑓𝑓(𝒙𝒙)) and global search (larger s). 

With the development of computing resources, several algorithms were used to improve the execution 
speed, accuracy and reliability of metamodeling. In their systematic literature review, Amaral et al. (2022a) 
concluded that the main metamodels used in OvS are Kriging, Polynomial Regression, Neural Networks, 
GBT, Random Forest, Radial Basis Function, and Support Vector Machine. Additionally, the works 
proposed by Amaral et al. (2022b) and Amaral et al. (2022c) compared several metamodels in the one-shot 
strategy in manufacturing problems, concluding that the GBT algorithm obtained the best performance. 
Based on these results, and others highlighted in the literature (Ganjisaffar et al. 2011; Louk and Tama 
2023), the method proposed in this work will use the Bagging algorithm with GBT as base-learner as 
metamodel. 

According to Friedman (2002), GBT is a machine learning (ML) algorithm widely used in several 
applications, including regression and classification problems. GBT is a form of boosting algorithm that 
builds a set of decision trees iteratively, where each new tree is built to correct the errors of the previous 
ones. The algorithm starts by building a single decision tree and, at each iteration, a new decision tree is 
added to the set. The new tree is built by fitting the negative gradient of the current model's loss function, 
which updates the model's predictions. The final model is obtained by combining the predictions of all 
decision trees in the set (Zhang and Haghani 2015). 

GBT has several advantages over other ML algorithms. It can handle numerical and categorical features 
and it is robust to outliers and missing data. Additionally, GBT can capture complex nonlinear relationships 
between features and the target variable, making it suitable for high-dimensional data. GBT has been 
successfully applied in various fields such as finance, healthcare, and marketing to solve a wide range of 
problems including fraud detection, disease diagnosis, and customer churn prediction (Praveena and 
Jaiganesh 2017; Xia et al. 2017; Zhang and Haghani 2015). However, GBT is computationally intensive 
and requires careful tuning of hyper-parameters to achieve optimal performance (Amaral et al. 2022b). 

The Bagging algorithm (Bootstrap Aggregating) is an Ensemble technique that involves the 
combination of multiple ML models, called base-learners, trained on randomly sampled data sets according 
to the bootstrapping technique (Breiman 1996). Let D be the original dataset with n data points and let B 
be the number of models we want to train. Let 𝑫𝑫𝒊𝒊 be the ith subset of D, with m data points randomly 
sampled with replacement from D. For each b = 1, 2, ..., B, 𝐵𝐵𝑏𝑏 model is trained with subset 𝑫𝑫𝒊𝒊 using some 
supervised learning algorithm, which in our case is GBT (Hastie et al. 2008). 
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The Bagging model error is measured by the out-of-sample R2 (OOB), which is calculated using the 
training samples that were not selected for a specific model during the bagging process. Thus, for each 
OOB sample, the bagging algorithm uses all models that were not sampled during training to make a 
prediction. This results in a set of predictions for each OOB sample on which R2 is calculated. More details 
on OOB can be found in (Ramosaj and Pauly 2019; Schonlau and Zou 2020). 

According to Hastie et al. (2008), after training, the Bagging model predictions 𝑓𝑓(𝒙𝒙)  are defined by 
aggregating the predictions of each base-learner, defined by 𝑓𝑓∗𝑏𝑏(𝒙𝒙), generating a final prediction which is 
more stable and generally more accurate than any individual model. The final prediction and standard 
deviation of the prediction of the Bagging model are defined by Equations (2) and (3). 

 
 

𝑓𝑓(𝒙𝒙) =
1
𝐵𝐵
�𝑓𝑓∗𝑏𝑏(𝒙𝒙)
𝐵𝐵

𝑏𝑏=1

 (2) 

 
𝜎𝜎 =

1
𝐵𝐵
��𝑓𝑓(𝒙𝒙)− 𝑓𝑓∗𝑏𝑏(𝒙𝒙)�

2
𝐵𝐵

𝑏𝑏=1

 (3) 

 
According to Louk and Tama (2023), when GBT is used as a base-learner for Bagging, it can bring 

several benefits. First, Bagging can help reduce the overall variance of the model, improving the accuracy 
of predictions. Furthermore, the sequential nature of GBT means that each subsequent model can focus on 
correcting the previous model's errors, which can lead to reduced forecast bias. Finally, Bagging can help 
improve model robustness by reducing the impact of outliers or imbalanced data on the original dataset. 
Therefore, the association of these two techniques allows the reduction of the variance and bias of the model 
(Ganjisaffar et al. 2011). 

3 MATERIALS AND METHOD 

Figure 1 presents the method proposed in this work. This method is based on five main techniques: Latin 
Hypercube Design (LHD), Hyper-parameters Optimization, GBT, Bagging, and Genetic Algorithm for 
optimization of the acquisition function (Balanced Expected Improvement). The implementation of this 
method was carried out in the Python language (version 3.0). 

Figure 1: Proposed optimization method. 
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This method includes two macro phases, the initialization phase and the recursive phase. Step 1 of the 
initialization phase comprises the generation of the initial array (𝑫𝑫𝟎𝟎 = [𝑿𝑿,𝑓𝑓(𝑿𝑿)] ) for training the 
metamodel. For this, the initial arrangement will be outlined by the Design of Experiments technique known 
as Latin Hypercube Design (LHD). The LHD is a very popular stratified sampling method in metamodeling 
studies. Given n samples and s variables, the LHD divides the region of each variable into n disjoint 
intervals with equal probability, and then the sample space is selected by constructing the n x s matrix, 
where the columns are randomly selected from the permutation of [1, ..., n] and each line corresponds to a 
cell of a hyper-rectangle. After building the matrix, a point from each of the cells is sampled (Luo et al. 
2019). The suggested sample size for the initial LHD array is 2x to 10x, where x is the problem dimension 
(Bharaj et al. 2015; Wang and Ierapetritou 2017). In Step 2, the experimental arrangement X is evaluated 
in the simulation model, generating the response f(X) for the points, forming the initial training base of the 
metamodel. 

Step 3 optimizes the GBT hyper-parameters through the Genetic Algorithm (GA). GA is an 
optimization technique based on the theory of natural selection that has been successfully used in 
hyperparameter optimization. In GA, the search space is composed of candidate solutions, represented by 
chromosomes composed of genes that encode the possible solutions of the problem (Li et al. 2010). The 
purpose of GA is to combine the genes to generate new chromosomes with better FO values. For hyper-
parameter optimization and GBT training, GA uses the k-fold cross-validation technique to calculate the 
error associated with each combination of parameters of the ML algorithm. The k-fold cross-validation 
divides the training data into k equal and random parts, using k – 1 parts for training and calculating the 
error on the rest of the data. Each set of parameters has its error calculated k times, and in each interaction 
a different part 𝑘𝑘𝑖𝑖′  is selected for testing, with i = {1, ..., k}. Finally, the error is calculated on the average 
of the k parts (Bergmeir and Benítez 2012). 

In Step 4, the recursive phase of the method begins and comprises the training of the metamodel. In 
this step, the Bagging algorithm with optimized GBT (base-learner) is recursively trained with the training 
base 𝑫𝑫𝒊𝒊 of size ξ, in which a point is added to each iteration i of the algorithm, 𝜉𝜉𝑖𝑖+1 = 𝜉𝜉𝑖𝑖 + 1. In this step, 
the R2 (OOB) of the metamodel is also calculated, which will be used in the next step. Step 5 is related to 
the Exploration-Exploitation criteria draw. This criterion is a fundamental trade-off that arises in decision-
making considering uncertain or unknown situations. It refers to the choice between exploring new options 
or taking advantage of known options. Exploration involves searching for new options, collecting 
information and experimenting with different alternatives, that is, regions where the metamodel prediction 
error is high. This approach is useful when the environment is unpredictable and there is a need to learn 
about new opportunities or find optimal solutions. On the other hand, Exploitaition involves maximizing 
current knowledge by choosing the best option in known regions of the solution space, i.e., best value of 
𝑓𝑓(𝒙𝒙) (Ajdari and Mahlooji 2014). 

In this step, the objective is to define the value of the binary variable λ, which assumes the value 0 for 
Exploration and 1 for Exploitation. Considering ρ a uniformly distributed random number, such that ρ ~ 
Uniform(a,b), where a and b are the lower and upper bounds for the draw, respectively. In this work, the 
value of a was defined as the minimum value between 0.85 and R2, and b as 1, representing the minimum 
desirable R2 to start an Exploitation search and the maximum value to allow Exploration, respectively. The 
value of λ is selected based on the drawn value for ρ and the R2 calculated in the previous step. Therefore, 
a higher R2 value means a greater probability of Exploitation (λ=1), according to Equation (4). 

 
 

λ = �1,                    𝑖𝑖𝑓𝑓 𝜌𝜌 < 𝑅𝑅2
0,                 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

 (4) 

 
Step 6 comprises the optimization of the acquisition function, whose objective is to select the best point 

to be simulated and added to the training base in the next iteration of the algorithm. The acquisition function 
proposed in this work is a variation of the EI, called Balanced Expected Improvement (BEI), defined by 
Equation (5). 
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𝐵𝐵𝐸𝐸𝐼𝐼(𝒙𝒙) = (1 − λ)𝜎𝜎𝜎𝜎�

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑓𝑓(𝒙𝒙)
𝜎𝜎 �+ λ𝑓𝑓(𝒙𝒙) (5) 

  
 Where 𝜎𝜎 represents the probability density function, 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 is the smallest value observed in the training 
base, 𝑓𝑓(𝒙𝒙) v and σ are the forecast and standard deviation of the metamodel forecast for the point x, defined 
by Equations (2) and (3), respectively. The first term of Equation (5) describes the Exploration component, 
and the second term represents the Exploitation component. Note that the value of λ found in the previous 
step is the criterion that defines whether the acquisition function will weigh Exploration or Exploitation. 
The goal is to find the point x that maximizes the value of BEI, and to achieve this goal, GA is used as a 
search engine. As GA parameters, a population size of 10 individuals was used, the tournament as a 
selection criterion, the type of mutation as uniform, the mutation probability of 0.1, the number of 
generations fixed at 100 and maximum number of generations without improvement equal to 10.  

In Step 7, the best solution found by the GA is evaluated in the simulation model, returning the value 
of 𝑓𝑓(𝒙𝒙) for this point. After this step, the new point is added to the metamodel training base, 𝑫𝑫𝒊𝒊+𝟏𝟏 = 𝑫𝑫𝒊𝒊 +
[𝒙𝒙,𝑓𝑓(𝒙𝒙)], and steps 4 – 8 are repeated until the stopping criterion is reached. In this article, the stopping 
criterion was defined as the maximum number of iterations. When it is reached, the algorithm is terminated 
and the solution 𝒙𝒙∗ with the best value of 𝑓𝑓(𝒙𝒙∗) is returned as the solution to the problem. 

4 RESULTS AND DISCUSSION 

4.1 Case Study 

To explore the effectiveness of the proposed method, this section presents its application in a real resource 
allocation problem in the textile industry. The case represents a small/medium-sized factory of a fast-
fashion manufacturing sector, whose main characteristic is the rapid change in demand and product mix, 
short cycle time, high volatility, low predictability and high level of impulsive buying and price 
competition. To meet these sector requirements, the key business factors comprise a flexible production 
system and decision-making based on effective and fast-responsive tools. The company works with weekly 
demand forecasts, to which on Friday the manager receives next week's demand and must decide on the 
allocation of productive resources (machines) and staff to meet such demand and boost the profits of the 
factory. We focused on the main production line of the factory. The manager might lease equipment and 
employees from other production lines of the company; however, it may result in additional operational 
costs. More details about this case can be found in Santos et al. (2021). The DES model, presented in Figure 
2, was developed and validated in the FlexSim® simulation software (version 22.2.3). 
 
 

Figure 2: DES model. 
 

The purpose of the model is to provide support for this decision-making. Through OvS, it seeks to find 
the allocation of resources that optimizes the profit of the factory. The decision variables, 𝒙𝒙 =
[𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5 𝑥𝑥6 𝑥𝑥7 𝑥𝑥8]T, are the size of the team dedicated to the group of tasks type 1 and type 2 (𝑥𝑥1 
and 𝑥𝑥2), and the amount of equipment of different types allocated to the process (𝑥𝑥3 to 𝑥𝑥8). Given the lower 
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bounds, 𝑳𝑳 = [2 2 1 2 2 2 2 2]T , and upper bounds, 𝑼𝑼 = [10 10 3 10 10 10 10 10]T , of the decision 
variables subject to the weekly unit cost 𝑪𝑪 = [800 800 500 500 500 300 350 300]T. The profit function 
is given by Equation (6). 
 

𝐿𝐿(𝒙𝒙) = �𝜓𝜓𝑗𝑗𝜐𝜐𝑗𝑗

𝐽𝐽

𝑗𝑗=1

−�𝑥𝑥𝑖𝑖𝐶𝐶𝑖𝑖

8

𝑖𝑖=1

 (6) 

 
Where 𝐿𝐿(𝒙𝒙) represents the profit, 𝜓𝜓𝑗𝑗 is the weekly production achieved by the model, and 𝜐𝜐𝑖𝑖 is the 

contribution margin for product j. The objective function comprises the maximization of the expectation 
for the profit function, max𝑓𝑓(𝒙𝒙) =  𝔼𝔼𝜔𝜔[𝐿𝐿(𝒙𝒙,𝜔𝜔)] , which can be obtained by averaging 𝐿𝐿(𝒙𝒙)  of the 
simulation model replications, subject to distinct ω random seeds. For this model, 15 replications were 
adopted. 

To evaluate its effectiveness, the proposed method was applied to optimize this OvS problem, given a 
limited simulation budget. In addition, the EGO method, implemented by the python package Surrogate 
Modeling Toolbox (Bouhlel et al. 2019) was chosen as a benchmark, given its proven effectiveness in 
several studies and since it is one of the most used in studies involving metamodeling (Amaral et al. 2022a). 
For comparison purposes, in both algorithms, the stopping criterion was defined as the maximum number 
of simulations, with 50% destined to generate the initial training base. 

For this evaluation, two tests were performed, the first with a total of 80 experiments (80 simulations 
with 15 replications each one) and the second with 160 experiments. Furthermore, given the stochastic 
character of these methods, the optimization process was repeated 10 times for each method, in order to 
evaluate their responses and the achieved robustness. The following section presents the results of the 
algorithms in each budget. 

4.2 Test 1 Results 

This section presents the optimization results of the problem presented in Section 4.1 considering a 
simulation budget of 80 experiments. Figure 3 (a) presents the mean and error for the convergence graph 
obtained with the EGO method. At the end of the 80 experiments, the EGO obtained an average result of 
$47,827.07 and standard deviation of $936.42, reaching results that varied between $46,900.4 and 
$49,512.0 of profit in the worst and best repetition of the algorithm, respectively. 

Figure 3: Convergence graph for EGO (a) and the proposed method (b) with 80 experiments. 
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Figure 3 (b) presents the results of the 10 replicates of the proposed method considering the budget of 
80 experiments. On average, the proposed method achieved a profit of $51,322.95 and a standard deviation 
of $974.89, with results varying between $49,332.71 and $52,516.80, as shown in Figure 4 (a). Comparing 
the results of the methods using the non-parametric Mann-Whitney statistical test (Fay and Proschan 2010), 
it appears that the proposed method presents significantly better results than the EGO method (p-value < 
0.001), with a difference of $3,627.20 in the median and $3,495.88 on average. Regarding the time required 
to perform the optimization, there was no significant difference between both methods, with the EGO 
requiring an average of 1,554 seconds and the proposed method requiring 1,535 seconds, as shown in Figure 
4 (b). 

 Figure 4: Boxplot for profit value achieved after 80 experiments (a) and time spent on optimization (b). 
 

4.3 Test 2 Results 

This section discusses the results obtained with the optimization by the EGO and the proposed method 
considering a simulation budget of 160 experiments (with 15 replicates each one). Figure 5 shows the 
convergence graph for both methods. 

Figure 5: Convergence graph for EGO (a) and the proposed method (b) with 160 experiments. 
 
Considering the new experiment budget as a stopping criterion, the EGO method reached, on average, 

a profit of $48,262.04, varying between $47,148.80 and $49,017.60 (Figure 6 (a)), demanding an average 
time of 3,351 seconds (Figure 6 (b)). On the other hand, the proposed method obtained an average profit of 
$52,558.13, varying between $51,955.20 and $52,750.40, demanding an average time of 3,374 seconds. 
We noted that the proposed method reached a result significantly superior to the EGO, confirmed by the 
Mann-Whitney test (p-value < 0.001), with a difference of $3,903.64 for the median and $4,296.09 for the 
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mean. Furthermore, an expressive reduction in the variability of the results is highlighted, demonstrating 
the robustness of the method. 

Figure 6: Boxplot for profit value achieved after 160 experiments (a) and time spent on optimization (b). 

5 CONCLUSION 

Discrete event simulation aims to computationally replicate real systems and evaluate performance under 
different conditions. However, running the simulation might be computationally intensive, especially when 
using complex models, making the optimization process impractical due to the time required. In this sense, 
metamodeling emerges as a viable solution to reduce the total time involved in the optimization. 

This work proposes an optimization method based on metamodeling that combines Design of 
Experiments, Bagging model, GBT, hyper-parameter optimization and Genetic Algorithm. The proposed 
method is formulated in ten macro steps, as detailed in Section 3, and aims to train the metamodel based on 
an incremental sampling strategy, where, at each iteration, a new point is selected to be simulated and 
incorporated into the metamodel training database. This new point is selected based on the optimization 
(via GA) of the BEI acquisition function, which expresses the trade-off between Exploration and 
Exploitaition based on the predictions of the previously trained metamodel. 

To exemplify the applicability of the proposed method, this article presents an OvS case in the fast-
fashion sector. The case was modeled via DES and aims at the optimal allocation of productive resources, 
in order to meet the weekly demand predicted. The problem aims to optimize the factory's profit and 
presents eight discrete decision variables, comprising a search space with 14,348,907 possible solutions. 
To evaluate its performance, the proposed method was used to optimize this problem considering two 
simulation budgets, 80 experiments and 160 experiments. The results demonstrated the effectiveness of the 
proposed method in comparison with another metamodeling method commonly used in the literature, the 
EGO, which was defined as the benchmark of this work. Both methods were submitted to 10 replicates, in 
order to analyze their results and their robustness against randomness. 

For the first test, with a budget of 80 experiments, the proposed method reached an average profit of 
51,322.95, while the EGO reached an average profit of 47,827.07. In the second test, with 160 experiments, 
the proposed method reached an average profit of 52,558.13 compared to 48,262.04 achieved by the EGO. 
Considering the non-parametric test for Mann-Whitney medians, in both tests the proposed method was 
superior to the benchmark (p-value < 0.001), demanding the same computational time. 

The proposed method demonstrated consistent results for the presented case, which represents a typical 
resource allocation problem in DES, which exhibits peculiar characteristics, such as high stochasticity, 
process interdependence, nonlinearity, and possible discontinuity of the objective function. These features 
require the use of metamodels with high learning capacity, such as those used in this work. It is noteworthy 
that EGO is an optimization method based on metamodeling that is widely used in the literature and with 
excellent results in a wide variety of problems. Therefore, it is recommended that future research evaluate 
and compare the proposed method in new DES problems and/or other optimization problems. 
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This article proposes the use of an adaptive acquisition function, called BEI. However, future works 
can explore other acquisition functions within the proposed method, as well as EI, Probability of 
Improvement, Surrogate-based, Lower-bound Confidence, among others. Another extension would be the 
evaluation of other algorithms to act as base-learners for Bagging, e.g., Support Vector Machine, Neural 
Networks and Extreme Gradient Boosting. Considering that the initial arrangement has a strong influence 
on the optimization results, the study of better techniques for its creation and/or the ideal size of the initial 
training base may be an important contribution to the research area. 
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