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ABSTRACT

The problem of reinforcement learning is considered where the environment or the model undergoes a
change. An algorithm is proposed that an agent can apply in such a problem to achieve the optimal long-
time discounted reward. The algorithm is model-free and learns the optimal policy by interacting with the
environment. It is shown that the proposed algorithm has strong optimality properties. The effectiveness of
the algorithm is also demonstrated using simulation results. The proposed algorithm exploits a fundamental
reward-detection trade-off present in these problems and uses an algorithm for the quickest detection of
the model change. Recommendations are provided for faster detection of model changes and for smart
initialization strategies.

1 INTRODUCTION
We study the problem of reinforcement learning (RL) with model changes in this paper. In an RL problem,
an agent interacts with an environment by taking a sequence of actions to learn the optimal way to interact
and optimize a long-term reward criterion (Sutton and Barto 2018; Bertsekas 2012; Bertsekas and Tsitsiklis
1996; Meyn 2022). In many applications, the statistical or physical properties of the environment may
change over time. It then becomes necessary for the agent to adapt its strategy to the changes. For example,
in an inventory control problem, the decision-maker has to consider the time-varying distribution of the
demands to achieve the maximum possible profit. In an autonomous driving system, an autonomous car
has to derive the driving policy considering the position and velocity of other vehicles (Guan et al. 2018)
and also adapt to changing weather conditions. In a recommendation system, the agent must adapt its
recommendations based on changing user preferences. In the framework of Markov decision processes
(MDP), a change in the environment may correspond to a change in the transition probabilities of the
Markov process being controlled or a change in the reward process.

The problem of RL in a nonstationary environment has been extensively studied in the literature. We
refer the readers to (Banerjee et al. 2017) and the references therein to review the literature. Some more
recent references are discussed below. In the MDP context, if the transition probabilities of the model are
known and the distribution of the change points (the times at which the model changes) are also known,
then the problem can be reformulated in a Partially Observable MDP (POMDP) framework where a hidden
state can be used to represent the true model. However, such model information is rarely known in practice.

In this paper, we provide a model-free solution to this problem and demonstrate its performance through
examples. The proposed solution is based on strong theoretical arguments. Specifically, our contributions
are as follows:
1. We first argue that under reasonable assumptions it is 𝜖-optimal to execute the optimal policy for the

learned model, use a quickest change detection (QCD) algorithm (Veeravalli and Banerjee 2014) to
detect the model changes, and switch to learning a new model after a model change is detected. The
𝜖-optimality is established by comparing the performance with that of an oracle that knows the location
of change points, see Section 2.
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2. Next, we show that the policy that is optimal for optimizing rewards may not be optimal to detect the
model change. Thus, there exists a trade-off between detection and immediate reward optimization
that can be exploited to optimize the overall reward. Our proposed algorithm exploits this trade-off,
see Section 4.

3. In the above context, we show that in problems like inventory control, there exists a universal policy
that helps detect the model change fastest. The universal policy there corresponds to the policy that
keeps the inventory full at all times, see Section 6.3.

4. We also show that we can use the structural results from the MDP literature to initialize the system
after a change is detected, see Section 6. We demonstrate through simulation results that this leads to
faster convergence and better overall reward, see Section 6.2.

The existence of the reward-detection trade-off was first reported in (Banerjee et al. 2017), where a
model-based solution is provided. We show in this paper that the benefit of this trade-off can be exploited
even in the model-free setting by carefully designing the algorithm. In addition, in this paper, we show
the existence of universal change detection policies and also discuss smart initialization strategies.

We note that it is sometimes possible for the agent to detect the model or environment change using an
external sensor. For example, a change in driving conditions (e.g., weather, friction, or traffic conditions)
for autonomous cars can often be detected using external sensors. The more challenging problem is when
the change in the model can only be observed through the state of the system. For example, a change in
user preference or demand may not always be detected using an external sensor. In this paper, we focus
on the latter problem.

While the problem has been extensively researched in the literature, its natural analytical complexity
has made it challenging to solve directly. A lot of previous works have focused on developing approximate
solutions. For instance, (Hadoux et al. 2014) and (Dayan and Sejnowski 1996) have reformulated the
problem as a Partially Observable MDP (POMDP) and utilized approximate POMDP to solve the problem.
In (Da Silva et al. 2006) and (Doya et al. 2002), they keep the estimates of the current MDP parameters and
use the next state or reward to evaluate whether the parameters of the current MDP have changed. Other
approaches, such as hidden mode MDPs and mixed observable MDPs (MOMDP), have been employed to
effectively capture the transition between distinct MDPs, and obtain an approximation solution, see (Chades
et al. 2012) and (Choi et al. 2001). The changes in the properties of MDPs, such as transition kernels
or rewards, will lead to alterations in the state-action sequence. In (Allamaraju et al. 2014) and (Hadoux
et al. 2014), sequential detection methods were employed where the optimal policy for each MDP was
executed, and a change detection algorithm was utilized to detect model changes, but they have not paid
attention to the detection-reward trade-off. Other papers where a QCD approach is considered are (Dahlin
et al. 2023; Chen et al. 2022). A formal and extensive comparison with other proposed solutions is part
of our future work. We see our method as another candidate for an off-the-shelf algorithm with theoretical
guarantees that a user can try in their RL problem.

2 PROBLEM FORMULATION AND 𝜖-OPTIMAL POLICIES
Suppose we have a family of Markov Decision Processes {M𝜃 }, where 𝜃 takes value in some index set Θ.
For each 𝜃, one MDP M𝜃 = (𝑆, 𝐴,𝑇𝜃 , 𝑅𝜃 ) is defined by a tuple with four components: state space 𝑆, action
space 𝐴, transition kernel 𝑇𝜃 , and reward function 𝑅𝜃 (Banerjee et al. 2017). We observe a sequence of
states {𝑆𝑡 }, and for each observed state 𝑆𝑡 , we make a decision 𝐴𝑡 . For each state-action pair (𝑆𝑡 , 𝐴𝑡 ), the
next state 𝑆𝑡+1 is acquired according to the transition kernel 𝑇𝜃 , where

𝑇𝜃 (𝑠, 𝑎, 𝑠′) = P(𝑆𝑡+1 = 𝑠′ |𝐴𝑡 = 𝑎, 𝑆𝑡 = 𝑠).
The reward 𝑅𝜃 (𝑆𝑡 , 𝐴𝑡 , 𝑆𝑡+1) is acquired after observing the next state 𝑆𝑡+1. When the context is clear, we
simply refer to the reward at time 𝑡 by 𝑅𝑡 .

In a non-stationary environment, the transition kernel and reward structure change over time. For
simplicity and ease of exposition, in this paper, we restrict our attention to only one change point. At some
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time 𝛾, the MDP parameter changes from 𝜃 = 𝜃0 to 𝜃 = 𝜃1:

P(𝑆𝑡+1 = 𝑠′ |𝐴𝑡 = 𝑎, 𝑆𝑡 = 𝑠) =
{
𝑇𝜃0 (𝑠, 𝑎, 𝑠′), 𝑡 < 𝛾, Model M0

𝑇𝜃1 (𝑠, 𝑎, 𝑠′), 𝑡 ≥ 𝛾, Model M1.

A policy is defined as the potentially infinite-length vector of Markov maps:

Π = [𝜇0, 𝜇1, . . . ],

where each 𝜇𝑡 is a map from state 𝑆𝑡 to action 𝐴𝑡 . If the model is stationary and the parameter 𝜃 remains
the same, then one of the classical ways to solve the MDP problem is to seek a policy to maximize the
long-term discounted reward:

𝐽∗𝜃 (𝑠0) = max
Π

E𝜃

[ ∞∑︁
𝑡=0

𝛽𝑡𝑅𝑡

��� 𝑆0 = 𝑠0

]
.

where 𝛽 ∈ (0,1) is a discount factor and the expectation is with respect to the true 𝜃. We will use
Π∗

𝜃
= [𝜇∗

𝜃
, 𝜇∗

𝜃
, . . . ] to denote the optimal stationary policy for this problem when the true model parameter

is 𝜃. In a non-stationary environment where the MDP changes from M0 to M1 (𝜃0 to 𝜃1) at change point
𝛾 (𝛾 is unknown to the agent), we modify the discounted cost problem as

𝐽∗𝜃0, 𝜃1
(𝑠0) = max

Π
E𝜃0, 𝜃1

[
𝛾−1∑︁
𝑡=0

𝛽𝑡𝑅𝑡 +
∞∑︁
𝑡=𝛾

𝛽𝑡−𝛾𝑅𝑡

��� 𝑆0 = 𝑠0

]
. (1)

This way of resetting the discounting gives equal weight to the performance of a policy before and after
the change. We now define the concept of an oracle:
Definition 1 (Oracle Policy) A policy is called an oracle policy if it has knowledge of the change point
𝛾, and executes the policy Π∗

𝜃0
before the change and the policy Π∗

𝜃1
after the change.

It is clear that if the change point 𝛾 is large enough, the discounted reward for an oracle policy is
approximately equal to the value 𝐽∗

𝜃0, 𝜃1
(𝑠0) for any initial state 𝑠0. We now show that using a quickest

change detection algorithm (Veeravalli and Banerjee 2014) one can achieve the performance of an oracle
under modest assumptions on the problem.
Definition 2 (Quickest Change Detection (QCD) Algorithm and QCD-based policy) By a QCD algorithm
we mean a stopping time 𝜏 whose value is decided based on the sequence of states 𝑆0, 𝑆1, . . . , actions
𝐴0, 𝐴1, . . . , and rewards 𝑅0, 𝑅1, . . . . At time 𝜏 we declare that a change in the model has occurred. A policy
that employs a QCD stopping rule to detect change is called a QCD-based policy.

We define the information number (Banerjee et al. 2017; Lai 1998)

𝐼𝜃0, 𝜃1 = lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑘=1

log
𝑇𝜃1 (𝑆𝑘 , 𝐴𝑘 , 𝑆𝑘+1)
𝑇𝜃0 (𝑆𝑘 , 𝐴𝑘 , 𝑆𝑘+1)

, when 𝛾 = 1. (2)

Theorem 1 (𝜖-optimality of QCD-based policy) When the transition functions are known, then to achieve
𝜖 optimality in the problem in (1), it is enough to search over QCD-based policies.
Proof. We only provide a sketch of the proof. We construct a policy and show that under certain
conditions it is 𝜖-optimal for the problem in (1). Consider the policy that initially employs Π∗

𝜃0
before the

change, detects the change using a QCD stopping rule, and then switches to the policy Π∗
𝜃1

after the change
is detected. If the rewards are bounded by 𝑀 and the optimal QCD algorithm is used, then the performance
of this algorithm will be within E(𝜏−𝛾)𝑀 + 𝛿 of the oracle. Here 𝛿 is a small positive constant. Also, the
expectation is taken with respect to the distribution of the underlying Markov process. This distribution
depends on the policy chosen. It is well-known that the detection delay of the optimal algorithm is inversely
proportional to the information number 𝐼𝜃0, 𝜃1 . Thus, if this number is large enough, the term E(𝜏− 𝛾)𝑀
will be small enough. Since the Oracle policy is 𝜖-optimal, so is the proposed policy. □
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In practice, we do not know the models and hence cannot directly use the optimal policy and also
cannot employ the optimal QCD algorithm. However, we can use algorithms like Q-learning to learn the
optimal policy and use nonparametric methods in QCD to achieve the oracle performance. In the rest of
the paper, we make the assumption that the change point 𝛾 is large enough so that the Q-learning algorithm
has a reasonable amount of time to converge to the optimal policy. In other words, we assume that the
stationarity is slowly changing.

3 Q-LEARNING ALGORITHM WITH DECREASING EPSILON GREEDY ACTION SELECTION
We use a modified version of the classical Q-learning algorithm (Watkins and Dayan 1992; Bertsekas and
Tsitsiklis 1996) to learn the optimal policy for each model, before and after the change. We provide a brief
overview of the modified Q-learning algorithm here.

It is well-known that the optimal reward function 𝐽∗
𝜃

satisfies the Bellman equation.

𝐽∗𝜃 (𝑠) = max
𝑎

∑︁
𝑠′

𝑇𝜃 (𝑠, 𝑎, 𝑠′)
[
𝑅𝜃 (𝑠, 𝑎, 𝑠′) + 𝛽𝐽∗𝜃 (𝑠′)

]
.

The 𝑄-function is defined as

𝑄∗𝜃 (𝑠, 𝑎) =
∑︁
𝑠′

𝑇𝜃 (𝑠, 𝑎, 𝑠′)
[
𝑅𝜃 (𝑠, 𝑎, 𝑠′) + 𝛽𝐽∗𝜃 (𝑠′)

]
.

With the definition, the 𝑄-function also satisfies a fixed-point equation given by

𝑄∗𝜃 (𝑠, 𝑎) =
∑︁
𝑠′

𝑇𝜃 (𝑠, 𝑎, 𝑠′)
[
𝑅𝜃 (𝑠, 𝑎, 𝑠′) + 𝛽max

𝑎′
𝑄∗𝜃 (𝑠′, 𝑎′)

]
.

The problem of Q-learning is to estimate, for any fixed 𝜃, the optimal Q-function 𝑄∗
𝜃
(𝑠, 𝑎) without knowing

the transition function 𝑇𝜃 (𝑠, 𝑎, 𝑠′). In the 𝑄-learning algorithm this estimation is done using a stochastic
approximation algorithm (Borkar 2022; Harold, Kushner, and Yin 1997).

For a sequence of states and actions 𝑆0, 𝐴0, 𝑆1, 𝐴1, 𝑆2, 𝐴2, . . . , the Q-learning algorithm estimates the
𝑄-function for each state-action pair using the updates

𝑇𝐷← 𝑅𝑡 + 𝛽max
𝑎

𝑄(𝑆𝑡+1, 𝑎) −𝑄(𝑆𝑡 , 𝐴𝑡 )

𝑄(𝑆𝑡 , 𝐴𝑡 ) ←𝑄(𝑆𝑡 , 𝐴𝑡 ) +𝛼𝑇𝐷,

where 𝑄(𝑆𝑡 , 𝐴𝑡 ) is the current Q value of state-action pair (𝑠, 𝑎), max𝑎𝑄(𝑆𝑡+1, 𝑎) is the estimation of
optimal future value, 𝑅𝑡 is the received reward when taking action 𝐴𝑡 at state 𝑆𝑡 , 𝛽 is the discount factor
(0 ≤ 𝛽 ≤ 1), and 𝛼 is the learning rate (0 < 𝛼 ≤ 1). For the 𝑄-learning to converge to the optimal 𝑄∗, we
must visit each state-action pair infinitely often (Bertsekas and Tsitsiklis 1996). This is achieved by using
an 𝜖-greedy strategy where a random action is chosen with probability 𝜖 and the optimal action (based on
current estimates of 𝑄) is chosen with probability 1− 𝜖 . To ensure faster convergence in a nonstationary
environment, we use a variant of 𝑄-learning in which the learning rate and the exploration rate are reduced
over time. The entire algorithm is given in Algorithm 1.

4 QUICKEST CHANGE DETECTION ALGORITHMS AND EFFECT OF POLICY
To detect a model change using the state and reward processes, we use a quickest change detection algorithm
(Banerjee et al. 2017; Veeravalli and Banerjee 2014; Tartakovsky et al. 2014) . The basic ideas are from
(Wald 2004) and (Shiryaev 1963). If the transition kernels 𝑇𝜃0 (𝑠, 𝑎, 𝑠′) and 𝑇𝜃1 (𝑠, 𝑎, 𝑠′) are known and it is
also known that the model will change from parameter 𝜃0 to 𝜃1, then we can use the generalized cumulative
sum (CUSUM) algorithm from (Lai 1998). In the following algorithm, referred to as the Shiryaev algorithm
(Tartakovsky and Veeravalli 2005), we compute a sequence of statistics

𝑊𝑛 = max
1≤𝑘≤𝑛

𝑛∑︁
𝑖=𝑘

log
𝑇𝜃1 (𝑆𝑖−1, 𝐴𝑖−1, 𝑆𝑖)
𝑇𝜃0 (𝑆𝑖−1, 𝐴𝑖−1, 𝑆𝑖)

,
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Algorithm 1: Q-learning algorithm with decreasing epsilon greedy action selection
Data : initialized Q-table, initial learning rate 𝛼0, initial exploration rate 𝜖 , discount factor 𝛽,

cut-off greedy probability 𝜖𝑐, cut-off learning rate 𝛼𝑐.
Result: a trained Q-table that gives optimal (or near-optimal) policy

1 initialization: set 𝑆0 = 0, learning rate 𝛼 = 𝛼0, 𝜖 = 𝜖0
2 for k = 1 : time-horizon do
3 𝑐← 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)
4 if 𝑐 < 𝜖 then
5 𝑎← 𝑟𝑎𝑛𝑑𝑜𝑚.𝑐ℎ𝑜𝑖𝑐𝑒(action space A)
6 else
7 𝑎← argmax𝑎 (𝑄(𝑠, ·))
8 𝑇𝐷← 𝑅𝑘 + 𝛽max𝑎′𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)
9 𝑄(𝑠, 𝑎) ←𝑄(𝑠, 𝑎) +𝛼𝑇𝐷

10 𝑠← 𝑠′

11 if 𝜖 > 𝜖𝑐 then
12 𝜖 ← 𝜖 −Δ /* decrease exploration rate */

13 if 𝛼 > 𝛼𝑐 then
14 𝛼← 𝛼−Δ /* decrease learning rate */

15 return a new Q-table whose argmax𝑎 (𝑄(𝑠, ·) gives an optimal or near-optimal policy

and stop the first time this statistic is above a pre-defined threshold:

𝜏𝑐 = min{𝑛 ≥ 1 : 𝑊𝑛 > 𝐴}.

If 𝛾 is a constraint on the meantime to a false alarm, then it has been shown in (Lai 1998) that under mild
conditions, the delay of the generalized CUSUM algorithm is given by

E1 [𝜏𝑐] =
log𝛾
𝐼𝜃0, 𝜃1

, as 𝛾→∞, (3)

where 𝐼𝜃0, 𝜃1 is defined in (2). Note that the delay is inversely proportional to the information number 𝐼𝜃0, 𝜃1 .
This number depends on the policy through the choice of action sequence {𝐴𝑡 }. Thus, different policies
will lead to different values of 𝐼𝜃0, 𝜃1 and hence different detection delays. In general, this characteristic
and dependence on information number is shown by almost all popular QCD algorithms.

If the state and action spaces are finite, there must exist an optimal policy for quickest change detection.
We note that the best policy may depend on the algorithm used for QCD.
Definition 3 (Best QCD Policy) A policy is called the best QCD policy if when applied to the system
leads to the fastest detection of a model change.

Since we do not have access to the transition kernels, we cannot use the above CUSUM algorithm. If
the state space is high-dimensional (or even moderate-dimensional), then tracking changes in the state-space
model becomes intractable. As a result, we use the nonparametric CUSUM algorithm (Basseville and
Nikiforov 1993) applied to the reward process {𝑅𝑘}. The stopping rule remains the same, but we compute
the statistic 𝑊𝑛 using (for example)

𝑊𝑛 = max
{
0,𝑊𝑛−1 +𝑅𝑛 − 𝜇0−𝜂𝜎0

}
.

The algorithm works as follows. The parameters 𝜇0,𝜎0 are the (estimated) mean and standard deviation of
𝑅𝑛 before the change, and 𝜂 is a control parameter. Before the change, 𝑅𝑛 and 𝜇0 cancel each other giving
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the reflected random walk 𝑊𝑛 a negative drift. After the change, if the average reward increases more
than 𝜂𝜎0, then the drift becomes positive and can be detected using a large positive threshold 𝐴. Thus,
𝜂 controls the amount of change in the average reward that we would like to tolerate before sounding an
alarm. We note that the notion of the Best QCD policy is well-defined even when we use the nonparametric
CUSUM algorithm: it is the policy that leads to the fastest delay when using the algorithm.

5 𝜖-OPTIMAL POLICIES AND EXPLOITING REWARD-DETECTION TRADE-OFF

Based on the result in Theorem 1 on the 𝜖-optimality of QCD-based policies, we can argue that it is enough
to restrict our search to this class of policies. In addition, the discussion in the previous section suggests
that the reward-detection trade-off should be exploited and the Best QCD policy should be used to achieve
better performance. In (Banerjee, Liu, and How 2017) it was shown that in the model-based setting, this
exploitation is possible and leads to better rewards. It is not clear a priori that this trade-off can be used
even when the model parameters are not known. In addition to the fact that using the Best QCD policy is
not optimal for rewards, we also learn the best policy locally using 𝑄-learning.

We show in this paper that exploitation is possible even in the model-free or RL setting. To demonstrate
this, we compare two basic algorithms, one in which the Best QCD policy is used, and another, in which
it is not used.

5.1 Single-Threshold Change Detection: A Policy without Using Best QCD Policy

In this section, we propose an end-to-end algorithm for RL with model changes. We call the algorithm the
Single-Threshold Adaptive 𝑄-Learning (STAQL) algorithm. In STAQL, we first learn the optimal policy

Algorithm 2: Single-Threshold Adaptive 𝑄-Learning (STAQL) algorithm
Presets: threshold A, and stabilizer 𝜂
Result : a detected change point �̂�, discounted reward

1 initialization 𝑆0 = 0,𝑤 = 0
2 found=False
3 set a smart initial Q-table according to the demand
4 for t = 1 : time-horizon do
5 do one step Q-learning, updating the Q-table according to the transition kernel
6 document each step reward 𝑅𝑡

7 if 𝑡 == 𝛿 then
8 take the single step reward 𝑅[𝜏 : 𝛿] as the bench mark, and compute the mean and

standard deviation 𝜇0 = 𝑚𝑒𝑎𝑛(𝑅[𝜏 : 𝛿]), 𝜎0 = 𝑠𝑑 (𝑅[𝜏 : 𝛿])
9 if 𝑡 > 𝛿 & not found then

10 compute the change detector 𝑤
11 𝑤←max(0,𝑤 +𝑅𝑡 − 𝜇0−𝜂𝑠𝑑0) (if average reward changes from low to high)
12 or 𝑤←min(0,𝑤 +𝑅𝑡 − 𝜇0 +𝜂𝑠𝑑0) (if average reward changes from high to low)
13 if |𝑤 | > 𝐴 then
14 found=True

/* change is detected! */
15 document the detected change �̂�← 𝑡

16 reset Q-table according to the next stage demand
17 reset learning parameters 𝜖 , 𝛼

18 return detected change time �̂�, discounted reward
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for M0 using our 𝑄-learning algorithm discussed in Algorithm 1. We initialize the 𝑄-matrix using numbers
that can help with achieving faster convergence and more rewards. In the next section, we discuss how
to smartly initialize an inventory control system. The system starts at time 0. Let 𝜏 be the time at which
the 𝑄-learning converges and learns the optimal policy for model M0. We can learn the time 𝜏 through
simulations and experience with the system. From time 𝜏 to another time 𝛿 we learn the baseline reward
statistics and estimate

𝜇0 = 𝑚𝑒𝑎𝑛(𝑅[𝜏 : 𝛿]), 𝜎0 = 𝑠𝑑 (𝑅[𝜏 : 𝛿]).
Here 𝑅[𝜏 : 𝛿] denotes the vector of rewards collected from time 𝜏 to 𝛿. Starting time 𝛿, we apply the
nonparametric CUSUM algorithm to detect the model change. Here, we are assuming that 𝛾, the change
point, satisfies 𝛾 ≫ 𝛿. If the average reward is expected to change from low to high, we use the statistical
update

𝑊𝑛 = max
{
0,𝑊𝑛−1 +𝑅𝑛 − 𝜇0−𝜂𝜎0

}
. (4)

or if the average reward is expected to change from high to low, we use the following instead,

𝑊𝑛 = min
{
0,𝑊𝑛−1 +𝑅𝑛 − 𝜇0 +𝜂𝜎0

}
. (5)

If the average reward can change in any direction, we can use both statistics in parallel. The change is
declared at

�̂� = min{𝑛 ≥ 𝛿 : 𝑊𝑛 > 𝐴}.
After the change is detected at �̂�, we reinitialize the 𝑄-matrix to smart values and start the 𝑄-learning again
(Algorithm 1) to learn the optimal policy for model M1. The STAQL algorithm is written in algorithmic
form in Algorithm 2 and can also be represented using the following equation:

ΠSTAQL = (�̃�, ..., �̂�0, �̂�0, ...︸           ︷︷           ︸
|𝑤 | ≤𝐴,�̂�−1

, �̃�, ..., �̂�1, �̂�1, ...︸           ︷︷           ︸
|𝑤 |>𝐴,�̂� onward

),

where �̃� is the Markov map generated from the initial 𝑄-table, �̂�0 (respectively, �̂�1) is the optimal policy
for model M0 (respectively, M1) learned using 𝑄-learning.

5.2 Two-Threshold Change Detection: Policy Exploiting Reward-Detection Trade-Off

In this section, we propose another end-to-end algorithm for RL with model changes. We call the algorithm
the Two-Threshold Adaptive 𝑄-Learning (TTAQL) algorithm. The TTAQL exploits the reward-detection
trade-off and uses the Best QCD policy to optimize the overall reward.

Similar to STAQL, the TTAQL algorithm also uses a smart initialization followed by 𝑄-learning to
learn the optimal policy for M0. Again, similar to the STAQL algorithm, the TTAQL algorithm learns the
baseline reward statistics using

𝜇0 = 𝑚𝑒𝑎𝑛(𝑅[𝜏 : 𝛿]), 𝜎0 = 𝑠𝑑 (𝑅[𝜏 : 𝛿]).

Starting time 𝛿, however, a two-threshold version of the nonparametric CUSUM algorithm is applied
to detect the model change. To clarify concepts, we assume that the average reward is expected to decrease.
We will then use the statistic

𝑊𝑛 = min
{
0,𝑊𝑛−1 +𝑅𝑛 − 𝜇0 +𝜂𝜎0

}
.

The change is declared at
�̂� = min{𝑛 ≥ 𝛿 : 𝑊𝑛 > 𝐴}.
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Algorithm 3: Two-Threshold Adaptive 𝑄-Learning (TTAQL) algorithm

Presets: quick change detection policy 𝜋𝑞𝑐𝑑 , threshold B, threshold �̃� and stabilizer 𝜂
Result : a detected change point �̂�, discounted reward

1 initialization 𝑆0 = 0,𝑤 = 0
2 found=False
3 suspect=False
4 set a smart initial Q-table according to the demand
5 for t = 1 : time-horizon do
6 if not suspect then
7 do one step Q-learning, updating the Q-table according to the transition kernel
8 else
9 apply 𝜋𝑞𝑐𝑑 policy

10 update the state 𝑆𝑡 according to the transition kernel
/* do not update the Q-table while applying QCD policy */

11 document each step reward 𝑅𝑡

12 if 𝑡 == 𝛿 then
13 take the single step reward 𝑅[𝜏 : 𝛿] as the benchmark, and compute the mean and

standard deviation 𝜇0 = 𝑚𝑒𝑎𝑛(𝑅[𝜏 : 𝛿]), 𝜎0 = 𝑠𝑑 (𝑅[𝜏 : 𝛿])
14 if 𝑡 > 𝛿 & not found then
15 compute the change detector 𝑤, using (4) or (5)
16 if |𝑤 | > 𝐵 then
17 suspect=True
18 else
19 suspect=False

20 if suspect then
21 if |𝑤 | > �̃� then
22 found=True

/* change is detected! */
23 suspect=False
24 document the detected change �̂�← 𝑡

25 reset Q-table, and learning parameters 𝜖 , 𝛼

26 return detected change time �̂�, discounted reward

However, the algorithm uses another threshold 𝐵 < 𝐴 to choose which policy to use at any time after
time 𝛿. Specifically, if �̂�0 denotes the Markov map for model M0 learned using 𝑄-learning and 𝜋𝑞𝑐𝑑
denotes the Markov map for the Best QCD policy, then we use the following strategy:

If 0 ≤ |𝑊𝑛 | ≤ 𝐵, use map �̂�0 at time 𝑛+1

If 𝐵 < |𝑊𝑛 | < 𝐴, use map 𝜋𝑞𝑐𝑑 at time 𝑛+1.
After the change is detected at �̂�, we reinitialize the 𝑄-matrix to smart values and start the 𝑄-learning again
(Algorithm 1) to learn the optimal policy for model M1. The TTAQL algorithm is written in algorithm
form in Algorithm 3, and can also be represented using the following equation:

ΠTTAQL = (�̃�, ..., �̂�0,︸   ︷︷   ︸
|𝑤 |<𝐵

𝜋𝑞𝑐𝑑 , ...𝜋𝑞𝑐𝑑︸         ︷︷         ︸
𝐵< |𝑤 |<�̃�

, �̂�0, �̂�0, ...,︸     ︷︷     ︸
|𝑤 |<𝐵

𝜋𝑞𝑐𝑑 , ...𝜋𝑞𝑐𝑑 ,︸          ︷︷          ︸
𝐵< |𝑤 |<�̃�, before �̂�−1

�̃�, ..., �̂�1, �̂�1, ...︸           ︷︷           ︸
|𝑤 |>�̃�, �̂� onward

).
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6 SIMULATION RESULTS: APPLICATION TO AN INVENTORY CONTROL PROBLEM
In this section, we apply the STAQL and TTAQL algorithms to an inventory control problem and show
that the TTAQL algorithm can outperform the STAQL algorithm. We also show that the Best QCD policy
for this problem is universal: there exists an interpretable policy that can detect the change fastest for any
realization of the inventory control problem. We also discuss the convergence rate for smart initializations.

6.1 Inventory Control Problem
Consider the inventory control problem (Szepesvári 2010) with inventory level or state 𝑆𝑡 , 𝑆𝑡 ∈ {0,1, ...𝑁},
and 𝑁 is the maximum inventory size of the warehouse. Let action 𝐴𝑡 be the number of new orders in
the morning of the day 𝑡, 𝐴𝑡 ∈ {0,1, ...𝑁}. During the day, customers come with a stochastic demand 𝐷𝑡 ,
where 𝐷𝑡 is an independent and identically distributed sequence of Poisson random variables with some
rate 𝜆: 𝑆𝑡+1 = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑆𝑡 + 𝐴𝑡 , 𝑁) −𝐷𝑡 ,0).
The reward or income on the day 𝑡 is

𝑅𝑡 = −𝑘𝕀(𝐴𝑡 > 0) − 𝑐(𝑚𝑖𝑛(𝐴𝑡 , 𝑁 − 𝑆𝑡 )) − ℎ𝑆𝑡+1 + 𝑝(𝑚𝑖𝑛(𝑆𝑡 + 𝐴𝑡 , 𝑁) − 𝑆𝑡+1) − rent.

The income on the day 𝑡 is determined as follows: there is a fixed entry cost 𝑘 of ordering nonzero items
and each item must be purchased at a fixed price 𝑐, so the cost associated with purchasing 𝐴𝑡 items is
𝑘𝕀(𝐴𝑡 > 0) + 𝑐𝐴𝑡 . In addition, there is a cost of ℎ for holding an unsold item. If there are 𝑥 leftovers at the
end of the day 𝑡, the manager will pay ℎ𝑥 for holding the items the next morning. Finally, upon selling
𝑧 items the manager receives a payment of 𝑝𝑧. To make the warehouse running, we must have 𝑝 > ℎ,
otherwise, there is no incentive to order new items.

We use the following set of parameters for the simulations. The parameters we use here are: warehouse
capacity 𝑁 = 5, discounted factor 𝛽 = 0.9999, change point 𝛾 = 1000, 𝑡𝑖𝑚𝑒ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = 5000, stabilizer 𝜂 = 0.92,
𝐴 = 6𝑠𝑑0, 𝐵 = 3.35𝑠𝑑0, �̃� = 6.67𝑠𝑑0, fixed cost 𝑘 = 0.5, per unit cost 𝑐 = 3, holding cost ℎ = 2, profit per
sale 𝑝 = 8, and rent=4.8, initial learning rate 𝛼0 = 0.2, cut-off learning rate 𝛼𝑐 = 0.05, initial exploration
rate 𝜖0 = 0.2, cut-off exploration rate 𝜖𝑐 = 0.05, step decent Δ = 0.001. We use the 𝑅𝑡 ,∀𝑡 ∈ [500,600] as
the bench mark, where 𝜇0 = 𝑚𝑒𝑎𝑛(𝑅[500 : 600]), 𝑠𝑑0 = 𝑠𝑑 (𝑅[500 : 600]). All results are averaged over
10,000 iterations.

(a) (b)
Figure 1: Q-learning with different initialization.

6.2 Using Smart Initialization in 𝑄-Learning
It is well known that the optimal Markov map in the inventory control problem is linear and nonincreasing
(Bertsekas 2012). In Figure 1, we show that if we initialize the 𝑄-tables with values that correspond
to a monotonically decreasing policy that it leads to faster convergence (Figure 1a) and better overall
rewards (Figure 1b). In the figure, 𝑄-random corresponds to a randomly initialized 𝑄-table, and 𝑄-pyramid
corresponds to a policy that is unimodal, increasing first, and then decreasing after the mode. We see
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this pattern as long as the demand is high. If the demand is low, we have observed that initializing with
𝑄-random leads to the best overall reward.

6.3 A Universal Change Detection Policy
In general, for every realization of the problem, one may have to search for the Best QCD policy through
simulations. In the inventory control problem, however, we show that there is a universal Best QCD policy
that is Best QCD policy for every realization of the inventory problem. This policy corresponds to the
one that keeps the inventory full at all times. This is intuitive since if the demand is low, it is optimal to
keep the inventory low. If there is a sudden increase in demand, items may appear out of stock and a user
may never place an order. The system will fail to detect a sudden increase in demand from low to high.
However, if we keep the inventory full at all times, we can always capture the fluctuations in demand.

Table 1 compares the detection performances of the Best QCD policy and the learned optimal policy
in the situation where the demand for M0 is high and then it switches to a lower demand after the change
point 𝛾 = 1000. We note that in the table, the learned optimal policy �̂�0 changes with the choice of demand
rates. In Table 2, we show similar results when the demand of M0 is low and the demand for M1 is high.

Table 1: Best QCD policy vs �̂�0: demand from high to low.
high to low 𝜂 Best QCD policy delay FA �̂�0 delay FA
𝜆0=4, 𝜆1=1.8 0.92 96 0.009 228 0.009

0.7 26 0.008 53 0.008
𝜆0=3, 𝜆1=1 0.9 48.9 0.0091 165 0.0096

0.7 17.5 0.0089 22 0.0094
𝜆0=3.5, 𝜆1=2.5 0.2 89 0.0069 170 0.0073

0.1 109 0.0084 160 0.0101

6.4 Comparison of STAQL and TTAQL Policies
In the previous section, we showed that the Best QCD policy can detect changes faster. However, it can
also cause a loss of immediate rewards. In Figure 2, we show that the TTAQL algorithm can also achieve
a better overall reward. In the figure, oracle policy refers to the oracle policy discussed in Definition 1
except the policies are learned using 𝑄-learning. The ignore policy simply ignores the change and incurs
heavy losses due to a high holding cost. The table in the figure shows the expected discounted reward
at the end of the horizon with Rwd(mdp1) as the reward collected beginning at the change point. In the
figure on the right in Figure 2, we plot the cumulative reward beginning at the change point, averaging over
10000 realizations. The figure shows that the TTAQL performs better almost at each point in the entire
horizon. To guarantee a fair evaluation of the two aforementioned methods, we maintain a false alarm rate
of roughly 1%. When computing the average delay and average reward, we exclude only the false alarm
instances. Additionally, if there are any cases where the agent fails to detect a change, we assume that the
agent detects the change at the last possible moment.

In Figure 3, we show the results for the inventory control problem with the maximum warehouse
capacity 𝑁 = 7. Most of the parameters are the same to the 𝑁 = 5 case, except for 𝜆0 = 6, 𝜆1 = 2.5, 𝜂 = 1.2,
𝐵 = 4𝑠𝑑0, 𝐴 = 8𝑠𝑑0, and �̃� = 6.9𝑠𝑑0.

Table 2: Best QCD policy vs �̂�0: demand from low to high.
low to high 𝜂 Best QCD policy delay FA �̂�0 delay FA
𝜆0=2,𝜆1=4 0.3 19 0.0066 175 0.0101

0.1 20 0.0088 100 0.0092
𝜆0=1.5,𝜆1=3.5 0.4 13 0.0074 95 0.0083

0.3 12 0.0084 35 0.0096
𝜆0=2,𝜆1=3 0.2 63 0.0074 344 0.0092

0.05 50 0.01 225 0.01
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TTAQL STAQL Ignore Oracle
Rwd(mdp1) 264 185 -3210 424
Rwd(total) 8376 8310 4928 8601
avg-delay 145 227 ∞ 0

true-detect% 97.78 96.78 0 1
miss% 1.16 2.09
F-A % 1.06 1.13

Figure 2: Discounted reward and delay using different change detection policies, 𝜆0 = 4,𝜆1 = 1.8 N=5.

TTAQL STAQL Ignore Oracle
Rwd(mdp1) 603 521 -3838 718
Rwd(total) 10645 10552 6251 10812
avg-delay 63 139 ∞ 0

true-detect% 98.77 97.78 0 1
miss% 0.41 1.26
F-A % 0.82 0.96

Figure 3: Discounted reward and delay using different change detection policies, 𝜆0 = 6,𝜆1 = 2.5 N=7.

7 CONCLUSION

We proposed an algorithm called the Two-Threshold Adaptive 𝑄-Learning (TTAQL) algorithm that can be
used for RL with model changes. This algorithm exploits a fundamental trade-off between detection delay
and immediate reward optimization that is present in RL in nonstationary environments. We also showed
that this algorithm belongs to a class of policies called QCD-based policies. We argued in Theorem 1 that
in the search for optimal policies, it is enough to restrict the search to QCD-based policies because one can
achieve 𝜖-optimality. We also showed that in some applications like inventory control, there is a universal
policy that provides the fastest detection delay. This policy can be used to exploit the reward-detection
trade-off. In addition, smart initialization in the 𝑄-learning algorithm can lead to faster convergence and
better overall rewards. In the future, we plan to apply the TTAQL algorithm to more complex RL problems,
develop better change detection algorithms for this domain, and also develop deeper theoretical insights.
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