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ABSTRACT

Deep learning models have gained great success in many applications, but their adoption in financial and
actuarial applications have been received by regulators with some trepidation. The lack of transparency
and interpretability of these models leads to skepticism about their resilience and reliability, which are
important factors to ensure financial stability and insurance benefit fulfillment. In this study, we use
stochastic simulation as a data generator to examine deep learning models under controlled settings. Our
study shows interesting findings in fundamental questions like “What do deep learning models learn from
noisy data?” and “How well do they learn from noisy data?”. Based on our findings, we propose an efficient
nested simulation procedure that uses deep learning models as proxies to estimate tail risk measures of
hedging errors for variable annuities. The proposed procedure uses deep learning models to concentrate
simulation budget on tail scenarios while maintaining transparency in the estimation.

1 INTRODUCTION

Machine learning models, particularly deep learning models (Hastie et al. 2009; LeCun et al. 2015),
have attracted attentions of researchers and practitioners due to the successes in solving real-world tasks
such as AlphaGo (Silver et al. 2016) and ChatGPT (OpenAI 2023). Since the first artificial neural
network model (McCulloch and Pitts 1943) and the first algorithm for training a perceptron (Rosenblatt
1958), especially after the introduction of backpropagation (Rumelhart et al. 1985) and the growth
of high-performance computing, the field of artificial neural network and deep learning in general has
grown rapidly. Two specialized neural network architectures that are relevant to our study are recurrent
neural networks (RNNs) (Williams and Zipser 1989; Sutskever et al. 2014) and long-short-term memory
(LSTM) (Hochreiter and Schmidhuber 1997; Chung et al. 2014), as we need to train proxy models that
take sequential observations as input.

Besides designing specialized neural network architectures and training algorithms, one branch of
neural network research considers the effects of noise in the input data and the error tolerance of neural
networks. For example, Luo et al. (2016) showed that adding noise to the input of a convolutional neural
network can increase the effective receptive field of the network and improve its ability to capture global
features. Srivastava et al. (2014) quantified the error tolerance by injecting noise with a custom Boltzmann
machine hardware. Yang et al. (2018) studied the error tolerance of a convolutional neural network (CNN)
on input image captured under a low-voltage setting. The aforementioned studies use real-world data, as
is typically the case for many deep learning studies, where noise is already present in the data. Users of
real-world data have little control over the noise level and usually examine the effect of noisy data by
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injecting noise. But it is unclear whether the deep learning model trained on noisy data actually learns the
real, i.e., noiseless, feature-label relationship. Due to their lack of transparency and interpretability, the
adoption of deep learning models in financial and actuarial applications has been received by regulators
with some skepticism.

The contributions of our study are two-fold:
1. We propose a two-stage nested simulation procedure that uses deep learning model to improve its

efficiency without losing transparency. In essence, a deep learning proxy model is used in the first
stage to identify a set of potential tail scenarios on which computations are performed in the second
stage. Our numerical results show that deep learning proxy models can identify the tail scenarios
accurately and so the proposed procedure can estimate tail risk measures with similar accuracy
while, at the same time, using less simulation budget.

2. We study what deep learning models learn from noisy data by training them using simulated data
based on well-designed simulation experiments. This is a novel way to study the effect of noisy
data and error tolerance of deep learning models as one can reduce noise in the data by increasing
the number of replications in a simulation model. This new way of studying deep learning models
can provide more direct evidence on their transparency and interpretability.

We are curious about fundamental questions like “What do deep learning models learn from noisy
data?” and “How well do deep learning models learn from noisy data?”. Data-driven answers to these
questions prevail in the existing literature. For example, deep supervised learning models are believed to
learn from the given data about the feature-label relationship to predict new labels for unseen features. Cross
validation using to assess a subset, i.e., the validation set, of the original data, is a common way to access
the quality of learning. Generalization error in the test set is another popular assessment metric. But the test
set is also a subset of the original data. In this study, we revisit these questions and propose an alternative
approach to answer them. Instead of relying solely on real-data (splitting it into multiple subsets), we
propose using stochastic simulation outputs as training data for deep learning models. By controlling the
simulation design parameters, such as the number of independent replications, we can control the quality
(and also the quantity) of the data fed into the deep learning model. In such a controlled environment, we
obtain more clear-cut answers to the above fundamental questions.

As an illustrative example, we consider an actuarial application that requires complex stochastic
simulations: estimating tail risk measures of the hedging errors for variable annuities (VAs) (Boyle and
Schwartz 1977; Boyle and Hardy 1997; Hardy 2003; Bauer et al. 2008). VAs (also known as Segregated
Funds in Canada) are tax-deferred equity-linked insurance products that are commonly used for retirement
benefits that can last for decades. By design, VAs can have significant financial market risk exposures.
The recent survey study by Feng et al. (2022) states that “Variable annuity is arguably the most complex
individual retirement planning product in the financial market.” Hedging, dynamic hedging in particular,
is a common way to manage this market risk. From an insurer’s perspective, VAs can be modeled as
embedded options. In a simplified setting, a dynamic hedging program sets up an initial hedge portfolio
at the inception of the contract then rebalances it periodically to alleviate changes of the embedded option
value due to fluctuations of the underlying risk factors. The initial costs to set up the hedge portfolio, the
periodic hedging gains and losses due to rebalancing, the unwinding of the hedge at maturity, as well as
the payment of guaranteed benefits, and the management fee income, are recognized as part of the profit
and loss (P&L) of the VA contract. The present value of these cash flows is the insurer’s overall loss and
is the loss random variable to which we apply a suitable risk measure.

Nested estimation (Gordy and Juneja 2010) is usually required for estimating tail risk measures of
the hedging errors for VAs: the outer simulation projects the underlying risk factors to quantify the loss
distribution under the real-world measure. In many risk measurement applications, the outer simulation
projects the risk factors to one future time step (Bauer et al. 2012; Feng et al. 2016; Lin and Yang 2020b,
for example). Similar to the dynamic hedging problems considered in Feng and Jing (2017), Lin and Yang
(2020a), Dang et al. (2020), Dang et al. (2023), in this study we consider multi-period outer projections,
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e.g., 20 or 40 years, and the time steps are based on the assumed hedge rebalancing frequency, e.g.,
monthly. The outer simulated paths are known as the scenarios, and may include simulated asset returns,
guarantee value, interest rates, policyholder behaviour, and longevity experience, etc. Conditional on an
outer scenario, the inner simulation estimates the risk-neutral price (and Greeks) of the guaranteed liability,
i.e., the embedded options of VA contracts, at all rebalancing dates and then estimates the present value
of the hedging error in that scenario. Despite modeling flexibility, standard nested simulation is notorious
for its heavy computational burden. Proxy modeling is a popular way to alleviate this drawback.

Borrowing terminologies from machine learning research, we can view a set of simulated outer scenarios
and the estimated hedging errors for those scenarios as the features and (noisy) labels. One can train
supervised learning models using these simulated features and labels then are used to replace the time-
consuming inner simulations by the trained models. We refer to the trained supervised learning models
as proxy models. There are many proxy models proposed in the nested simulation literature: parametric
regression (also known as least-squares Monte Carlo) (Longstaff and Schwartz 2001; Broadie et al. 2015;
Ha and Bauer 2015), kernel smoothing (Hong et al. 2017), Gaussian process modeling (also known as
Kriging) (Liu and Staum 2010; Gan 2013), and the likelihood ratio method (Dang et al. 2023; Zhang
et al. 2022), just to name a few. These proxies have been shown, theoretically or numerically, to work
well when the scenarios, i.e., the features, have relatively low dimensions. For complex nested simulation
model and high-dimensional scenarios, more powerful proxy models are needed. Inspired by Dang et al.
(2020), Dang et al. (2022), Dang et al. (2023), in this study we propose a two-stage nested simulation
procedure to estimate tail risk measures for the hedging errors of VAs. Stage I uses a deep learning proxy
model to identify a set of proxy tail scenarios. Stage II performs computations only on the proxy scenarios
to save simulation budget.

The rest of this article is organized as follows: Section 2 presents the problem settings for tail
risk measures and dynamic hedging of VAs. Section 3 proposes an efficient two-stage nested simulation
procedure that uses machine learning models as proxies to help reduce simulation budget by only performing
computations on identified tail scenarios. Section 4 demonstrates the efficiency of deep learning proxies
and examines error tolerance of two LSTM proxy models with different numbers of trainable parameters.

2 TAIL RISK ESTIMATION FOR DYNAMIC HEDGING ERRORS OF VARIABLE ANNUITIES

In this section we present notations, problem settings, and a simulation model for tail risk estimation for
hedging errors of variable annuities. For readers who are interested in the examination of a machine learning
proxy model, it is sufficient to understand that our simulation model generates data with 240 features and
1 real-value label.

2.1 Tail Risk Measures: VaR and CVaR

Measuring and monitoring risks, particularly tail risks, are important risk management tasks for financial
institutions like banks and insurance companies. Two most popular tail risk measures are Value-at-Risk
(VaR) and Conditional Value-at-Risk (CVaR) (Rockafellar and Uryasev 2002). Other names of CVaR
include Conditional Tail Expectation (CTE), Tail Value-at-Risk (TailVaR), and Expected Shortfall (ES).

Consider a loss random variable L whose losses and gains lie in the right and left tails, respectively,
of its distribution. For a given confidence level α ∈ [0,1], the α-VaR is defined as the α-quantile of
L: VaRα = qα = inf{q : Pr(L ≤ q)≥ α} . The α-CVaR of L is defined as CVaRα = 1

1−α

∫ 1
v=α

qvdv. Tail
risk measures like VaR and CVaR are widely used for setting regulatory and economic capital, which is
the amount of capital a financial institution holds to cover its risk. For example, European insurers set
regulatory capital at 99.5%-VaR according to Solvency II (EIOPA 2014). In Canada, the regulatory capital
requirement for VAs is set based on CVaRs as prescribed in OSFI (2017).

Let L1,L2, . . . ,LM be M independent and identically distributed (i.i.d.) simulated losses of L and let
L(1) ≤ L(2) ≤ . . .≤ L(M) be the corresponding ordered losses. For a given confidence level α (assume that
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αM is an integer for simplicity), α-VaR can be estimated by the sample quantile V̂aRα = L(αM). Also,
α-CVaR can be estimated by

ĈVaRα =
1

(1−α)M

M

∑
i=αM+1

L(i) =
1

(1−α)M ∑
i∈T(1−α)M

Li,

where we define a true tail scenario set of size k as Tk = {i : Li > L(M−k)}. In this study, the loss random
variable of interest is the hedging error for VA (Section 2.3).

2.2 Simulation Model for Variable Annuity Payouts

Variable annuity contracts offer different types of guarantees. Generally speaking, a portion of the VA
premium is invested in a sub-account whose return is linked to some stock indices.

Two relevant types of guarantees in our studies are:
• Guaranteed Minimum Maturity Benefit (GMMB): A GMMB contract pays a maturity benefit

equal to the greater of the sub-account value and a fixed guarantee value. The guarantee value is
often set as a percentage, e.g., 75% or 100%, of the initial premium.

• Guaranteed Minimum Withdrawal Benefit (GMWB): A GMWB contract guarantees the mini-
mum amount of periodic withdrawal the policyholder can take from the sub-account until maturity,
even if the sub-account value reduces to zero. The minimum withdrawal benefit is typically a fixed
percentage of the guarantee value. The guarantee value will decrease if the withdrawal exceeds
the guaranteed minimum. The GMWB is typically offered with an accumulation period, during
which no withdrawals are made but a GMDB is usually offered. Additional features offered with
the GMWB include roll-up, ratchet, and reset (The Geneva Association 2013).

For a comprehensive review of other types of VA contracts such as Guaranteed Minimum Death Benefit
(GMDB), Guaranteed Minimum Accumulation Benefit (GMAB) and Guaranteed Lifetime Withdrawal
Benefit (GLWB), we refer readers to Hardy (2003).

Consider a generic VA contract with maturity T > 0 periods, e.g., T = 240 months. Let St , Ft , and Gt be
the indexed stock price, the subaccount value and the guarantee value, respectively, at time t = 1,2, . . . ,T .
Evolution of the subaccount value and the guarantee value of a VA contract affect the contract payout.
Note that the policyholder’s (random) time of death also affects the timing of the benefit payout for certain
types of VA such as GMDB, but this is not considered in our study for simplicity. For clarity, we use Ft
and Ft+ to denote the sub-account value just before and just after the withdrawal at time t, if any. Let ηg
be the gross rate of management fee that is deducted from the fund value at each period and let ηn < ηg
be the net rate of management fee income to the insurer. The difference between the gross management
fee and the net management fee income represents the incurred investment expenses.

At the inception of the contract, i.e., t = 0, we assume that the whole premium is invested in the
stock index and the guarantee base is set to the sub-account value: that is, S0 = F0 = G0. At each time
t = 1, . . . ,T , the following events take place in the following order:

1. The sub-account value changes according to the growth of the underlying stock and the (gross)
management fee is deducted. That is, Ft = F(t−1)+ · St

St−1
· (1−ηg), where (x)+ = max{x,0} and

F(t−1)+ will be defined later. The insurer’s income at time t is the net management fee, i.e., Ftηn.
2. The guarantee value ratchets up (ratcheting is a common feature in GMWB) if the sub-account

value exceeds the previous guarantee value, i.e., Gt = max{Gt−1,Ft}.
3. The withdrawal is made (for GMWB) and is deducted from the sub-account value, i.e., Ft+ =(Ft −It)+,

where It = γGt . A GMMB can be modeled with γ = 0.
We see from the above modeling steps that the status of a generic VA contract is summarized by a

triplet (St ,Ft ,Gt) whose evolution is driven by the stochasticity of St . In practice, the simulation model
may also incorporate additional complications like mortality, lapse, and excess withdrawal, etc.
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At any time t = 1, . . . ,T , the insurer’s liability in a VA contract is the present value of all payments,
net of the fee income. For example, suppose that the per-period risk-free rate is r, then the insurer’s time-t
liability for a GMMB contract is Vt = e−r(T−t) · (GT −FT )

+ −∑
T
s=t+1 e−r(T−s)Fsηn. Also, the insurer’s

time-t liability for a GMWB contract is Vt = ∑
T
s=t+1 e−r(T−s)[(Is −Fs)

+−ηnFs].
For example, consider the time-t liability Vt of a GMWB: Suppose that given the stock sample path,

e.g., an outer path S1, . . . ,St , one can simulate future stock prices S̃t+1, . . . , S̃T , e.g., inner sample paths,
based on some asset model such as a Black-Scholes model. The tilde symbol (∼) over a quantity denotes
its association with the inner simulation. Given the time t state (St ,Ft ,Gt), following Cathcart et al. (2015)
the sensitivity of Vt with respect to St can be estimated by a pathwise estimator (Glasserman 2004)

∆t(S̃t+1, . . . , S̃T |St) =
∂Vt

∂St
=

T

∑
s=t+1

e−r(T−s)

[
111{Ĩs > F̃s} ·

(
∂ Ĩs

∂St
− ∂ F̃s

∂St

)
−ηn

∂ F̃s

∂St

]
, t = 0, . . . ,T −1, (1)

where 111{·} is an indicator function and

∂ F̃s

∂St
= 111{Ĩs−1 < F̃s−1} ·

(
∂ F̃s−1

∂St
− ∂ Ĩs−1

∂St

)
· S̃s

S̃s−1
· (1−ηg),

∂ G̃s

∂St
= 111{G̃s−1 < F̃s} ·

∂ F̃s

∂St
+111{G̃s−1 ≥ F̃s} ·

∂ G̃s−1

∂St
,

∂ Ĩs

∂St
= γ

∂ G̃s

∂St
.

The recursion is initialized with (S̃t , F̃t , G̃t) = (St ,Ft ,Gt), ∂ F̃s
∂St

= F̃t
St

, and ∂ G̃s
∂St

= ∂ Ĩs
∂St

= 0.

2.3 Dynamic Hedging for Variable Annuities

Below we provide a scheme used to perform a multi-period nested simulation in estimating (profit and
loss) P&L for one outer scenario.

t = 0 t = 1 t = k t = T

· · · · · ·

outer scenario S(i) under P

Estimated loss L̂i = L̂(S(i)) =
∑T−1

t=0 ∆̂
(i)
t (e−rtS

(i)
t − e−r(t+1)S

(i)
t+1) + V̂0

inner paths

S̃
(ij)
t

under Q

inner paths

S̃
(ij)
t

under Q

inner paths

S̃
(ij)
t

under Q

estimate ∆̂
(i)
t

new hedge Ht
−

brought-forward
hedge portfolio Hbf

t

HEt = Ht −Hbf
t

estimate ∆̂
(i)
t

new hedge Ht
−

brought-forward
hedge portfolio Hbf

t

HEt = Ht −Hbf
t

estimate V̂0 & ∆̂0

initial hedge H0

unwind final
hedge Hbf

T

Figure 1: Illustration of multi-period nested simulation that estimates the P&L for one outer scenario.

Insurers commonly use dynamic hedging to mitigate a market risk exposure in VA contract’s embedded
options. In a dynamic hedging program, a hedge portfolio is set up and periodically rebalanced for a
portfolio of VA contracts using stocks, bonds, futures, and other derivatives. For simplicity, in this study
we consider delta hedging for a generic VA liability using one stock and one bond. The machine learning
proxy algorithm in Section 3 can be trivially adapted to more general hedging strategies.
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Consider a generic VA contract whose delta hedge portfolio at any time t, t = 0,1, . . . ,T −1, consists
of ∆t units in the underlying stock and Bt amount of a risk-free zero-coupon bond maturing at time T .
The value hedge portfolio at time time-(t −1) is Ht−1 = ∆t−1St−1 +Bt−1, where St is the underlying stock
price and any time t > 0. This hedge portfolio is brought forward to the next rebalancing time t, when its
value becomes Hb f

t = ∆t−1St +Bt−1er. Therefore, the time t hedging error, i.e., the cash flow incurred by
the insurer due to rebalancing at time t, is

HEt = Ht −Hb f
t , t = 1, . . . ,T −1. (2)

The P&L of the VA contract includes the cost of the initial hedge (H0), the hedging errors (2), the unwinding
of the hedge at maturity (Hb f

T ), and the unhedged liability (V0). Mathematically, the present value of these
cash flows is given by

L = H0 +
T−1

∑
t=1

e−rtHEt − e−rT Hb f
T +V0 =

T−1

∑
t=0

∆t(e−rtSt − e−r(t+1)St+1)+V0, (3)

where the second equality holds by a telescopic sum simplification of e−rtBt , t = 0, . . . ,T −1.
In (3), ∆t and V0 are determined by using a risk-neutral measure Q while the distribution of L is under

a real-world measure P. If ∆t and V0 cannot be calculated analytically, a nested simulation is required to
estimate the tail risk measure of L. Recall from Section 2.2 that the stock sample path, regardless of the
inner or outer simulation or a combination of both, determines the evolution of the triplet (St ,Ft ,Gt). For
example, for GMWB, a standard nested simulation procedure to estimate the α-CVaR of L is as follows:

1. For i = 1, . . . ,M, simulate outer scenarios SSS(i) = (S(i)1 , . . . ,S(i)T ) under the real-world measure P.
Figure 1 illustrates the inner simulation experiments needed for an outer scenario.

2. For t = 0, simulate time-0 inner paths S̃SS
( j)
0 = (S̃( j)

1 , S̃( j)
2 , . . . , S̃( j)

T ), j = 1, . . . ,N under Q and then
estimate V0 by V̂0 = ∑

T
s=1 e−r(T−s)[(Is −Fs)

+−ηnFs] and estimate ∆̂0 = ∆0(S̃
( j)
1 , . . . , S̃( j)

T |S0) based
on (1). Note that S0 is known, so these inner paths do not depend on any outer scenario. The same
V̂0 and ∆̂0 are used in all scenarios.

3. Given each scenario SSS(i), the following inner simulation is needed to estimate the corresponding
loss L̂i for that scenario.

(a) At each time t = 1, . . . ,T −1, simulate inner paths S̃SS
(i j)
t = (S̃(i j)

t+1, . . . , S̃
(i j)
T ), j = 1, . . . ,N under

Q and then estimate ∆t by ∆̂
(i)
t = ∆t(S̃

(i j)
t+1, . . . , S̃

(i j)
T |SSS(i)t ) based on (1).

(b) Use scenarios SSS(i) and V̂0 and ∆̂
(i)
t to calculate losses L̂MC

i , t = 0, . . . ,T −1, based on (3). Then
sort them as L̂MC

(1) ≤ L̂MC
(2) ≤ ·· · ≤ L̂MC

(M).

4. Estimate α-CVaR of L by ĈVaR
MC
α = 1

(1−α)M ∑
M
i=αM+1 L̂MC

(i) = 1
(1−α)M ∑i∈T̂ MC

(1−α)M
L̂MC

i where T̂ MC
k

denotes a Monte Carlo tail scenario set associated with the largest k estimated losses.
We refer to the collection of experiments needed conditional on one scenario SSS(i) to estimate Li, that

is, all upward arrows in Figure 1, as one inner simulation experiment. We make three observations:
(1) each inner simulation is time-consuming, as it includes T simulation experiments, one at each time
t = 0, . . . ,T − 1, (2) after running inner simulations for M scenarios, we obtain simulated data, that is,
feature-label pairs, (SSS(i), L̂i), i = 1, . . . ,M; the feature vector SSS is T dimensional, and (3) most importantly,
when estimating tail risk measures such as α-CVaR, only a small number of estimated losses, that is, those
associated with the set of tail scenarios T̂k are used in the estimator.

3 MACHINE LEARNING PROXY MODELS FOR NESTED SIMULATION

Based on the three observations above and inspired by Dang et al. (2020), we propose a two-stage nested
simulation procedure which uses machine learning proxies to identify potential tail scenarios. We present
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our proposed procedure as a competitor to the standard procedure with M outer scenarios and N inner
replications for each outer scenario, as described in Section 2.3. We propose a two-stage procedure with
a machine learning proxy that aims to produce a CVaR estimate that’s as accurate as that of the standard
procedure, but uses less computations as than latter. An overview of the proposed procedure is as follows:

I. Train machine learning proxy using simulation data.
– Use a fraction of the total budget to run Steps 1, 2, and 3 in the standard procedure with the same

number of outer scenarios, M, but a much smaller number of inner replications, i.e., N′ ≪ N, in
each scenario. Then obtain M simulated data points, i.e., feature-label pairs, (SSS(i), L̂i), i = 1, . . . ,M.

– Use the simulated data, (SSS(i), L̂i), i = 1, . . . ,M to train a machine learning model. We refer to the
trained model as a proxy model as denote it by L̂PX(SSS). Denote the proxy losses for the outer
scenarios by L̂PX

i = L̂PX(SSS(i)), i = 1, . . . ,M.
– Sort the proxy losses L̂PX

(1) ≤ L̂PX
(2) ≤ ·· · ≤ L̂PX

(M) to identify a proxy tail scenario set associated with

the largest proxy losses, i.e., T̂ PX
m := {i : L̂PX

i > L̂PX
(M−m)}. The number of proxy tail scenarios, m,

is a user’s choice and will be discussed later.
II. Concentrate simulation on proxy tail scenarios.

– Run Steps 2 and 3 of the standard procedure with the same number of inner replications, N, but
only on the proxy tail scenarios, i.e., scenarios associated with T̂ PX

m . Denote a estimated losses
and sorted losses by L̂ML

i and L̂ML
(i) , respectively, i = 1, . . . ,m.

– Estimate α-CVaR of L by ĈVaR
ML
α = 1

(1−α)M ∑
M
i=αM+1 L̂ML

(i) = 1
(1−α)M ∑i∈T̂ ML

(1−α)M
L̂ML

i where T̂ ML
k

denotes a machine learning tail scenario set associated with the largest k estimated losses.
Similar to Dang et al. (2020), the proposed two-stage procedure uses the proxy model to identify the

proxy tail scenario set in Stage I. But, different from their fixed-budget simulation design, we attempt to
achieve a target accuracy. Specifically, in Stage II we propose using the same number of inner replications,
N, as the competing standard procedure. We believe that the goal of designing an efficient simulation
procedure is to solve practical problems faster, so a target-accuracy design is more suitable, which refers
to obtaining a similar level of accuracy as the standard procedure but with much less simulation budget.

The size of the proxy tail scenario set in Stage I, m, is an important experiment design parameter that
affects the correct identification of true tail scenarios and ultimately affects the estimation accuracy for
CVaR. Clearly, there is a lower bound m ≥ (1−α)M because the α-CVaR is estimated by the average of
(1−α)M largest losses at the end of Stage II. For ease of reference, we call the additional percentage of
proxy tail scenarios above this lower bound, i.e., ε = m−(1−α)M

M , as a safety margin. On one hand, large ε is
not desirable because it increases computations in Stage II. On the other hand, ε should be set reasonably
large so more true tail scenarios are included in the the proxy tail scenario set T̂ PX

m and are ultimately
included in T̂(1−α)M at the end of Stage II. The selection of m is highly dependent on the choice of the
proxy model. In the numerical experiments, we examine the relationship between the safety margin and
the correct identification of true tail scenarios for different proxy models.

Lastly, we note that other studies, such as Liu and Staum (2010), Broadie et al. (2015), Hong et al.
(2017), and Zhang et al. (2022) use stochastic kriging, regression, kernel smoothing, and the likelihood
ratio method, respectively, as proxy models in nested simulation procedures. Our proposal has two key
distinctions over the existing ones: (1) our proxy model’s input, or feature, has high dimension. For example,
for a 20-year VA contract whose hedge is rebalanced monthly, the feature vector is 240 dimension, which
is at least one order of magnitude larger than the input dimension in the aforementioned studies, and (2)
our proxy model is only used for tail scenario identification but is not used in the estimation of the tail
risk measures at the end of Stage II. This is a feature designed particularly to convince regulators that the
losses used in estimating the risk measure are based on a transparent inner simulation model rather than
on some black-box proxy models.
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4 NUMERICAL EXPERIMENTS

We conduct a series of simulation experiments to (1) demonstrate the efficiency of the proposed two-stage
procedure and (2) examine the error tolerance to noisy training data in deep learning models. The problem
settings in our experiments are identical to those in Dang et al. (2020): we consider estimating the 95%
CVaR of the hedging loss of a GMWB contract, which is one of the most complex VA contracts in the market.
The VA contracts have a 20-year maturity and are delta-hedged with monthly rebalancing, i.e., T = 240
rebalancing periods. The gross and net management fees are ηg = 0.2% and ηn = 0.1%, respectively. The
risk-free rate is 0.2% per period and the underlying asset St is modeled by a regime-switching geometric
Brownian motion with parameters specified in Table 2 of Dang et al. (2020).

To compare the numerical performances of different simulation procedures, we create a benchmark
dataset with a large-scale nested simulation: We first simulate M = 50,000 outer scenarios, i.e., 240-periods
stock paths SSS(1), . . . ,SSS(M) under P and used these outer scenarios in all further experiments. Note that the
5% tail scenario set includes 2,500 scenarios. As the hedging loss for these scenarios cannot be calculated
analytically, we run inner simulations with a large number of replications, N = 10,000, conditional on each
of the M scenarios. We denote these losses by L1, . . . ,LM and will refer to them as true losses. We also
use these true losses to estimate ĈVaR95% and denote the corresponding true tail scenario set by T2500.
Lastly, we refer to the set of feature-label pairs {(SSS(i),Li) : i = 1, . . . ,M} as a true dataset. Note that the
feature vector SSS is a 240-dimension stock path.

We compare our two-stage procedure to a standard nested simulation procedure that runs N = 1,000
inner replications for each of the M = 50,000 outer scenarios. In Stage I of the proposed procedure, we
first running inner simulations with N′ = 100 inner replications for each of the M = 50,000 outer scenarios.
So, Stage I’s simulation budget is 10% of the standard procedure’s. The resulting feature-label pairs
{(SSS(i), L̂i) : i = 1, . . . ,M} is used for training different proxy models. Specifically, following the convention
in machine learning research, we split this dataset into three parts: The training, validation, and test sets
have 42,300, 4,700, and 3,000 data points (84.6%, 9.4%, and 6% of the dataset), respectively. At the end
of Stage I, m proxy tail scenarios, are identified. In Stage II, N = 1,000 inner replications are run for all
proxy tail scenarios. Stage II’s simulation budget is m

M of the standard procedure’s. In short, the two-stage
procedure uses 15%−30% of the standard procedure’s budget for safety margin between 0%−15%.

Five proxy models are considered in the experiment: multiple linear regression (MLR), quadratic
polynomial regression (QPR) without interaction terms, feed-forward neural network (FNN), recurrent
neural network (RNN), and long short-term memory (LSTM) network. MLR and QPR are considered as
extensions of regression proxy models in the nested simulation literature. FNN is a generic deep learning
model while RNN and LSTM are specialized models to accommodate the sequential structure of time-
series. A tanh activation function is used for RNN and LSTM layers, and a ReLU activation is used for
the fully-connected layers. All neural network proxies are trained by the Adam optimizer (Kingma and Ba
2014) with an initial learning rate of 0.001 and a exponential learning rate decay schedule. FNN is trained
with a dropout rate of 20%. RNN and LSTM are trained with a dropout rate of 10%. The architectures and
training settings are typical choices in the deep learning literature. The training labels are normalized to
have zero mean and unit standard deviation. The architectures and the numbers of trainable parameters are
shown in the first two columns of Table 1. We see that the three deep-learning proxy models’ have orders of
magnitudes more trainable parameters than the two regression models. In machine-learning terminologies,
the three deep-learning proxy models have much higher capacities.

The last three columns in Table 1 display the average squared errors between the proxy losses and
the losses (labels) in different datasets. We first observe that the two regression proxy models’ errors are
larger than those of three deep-learning models. This is because the regression models’ capacities are too
low to learn the complex dynamic hedging simulation model. There are also differences among the three
deep-learning models. The FNN is a generic model, its test error is larger than the training error, which is a
sign of over-fitting and poor generalization. In contrast, RNN and LSTM are networks designed to capture
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Table 1: Architectures and MSEs of proxy models for GMWB dynamic hedging losses.

Model Layer size # parameters Training errors Test errors True errors

MLR N/A 241 0.7075 0.6885 0.6932
QPR N/A 481 0.5415 0.5411 0.5294
FNN 240×128×16×1 35,009 0.2119 0.3053 0.2089
RNN (240,32),(240,4),32 32,021 0.1264 0.1702 0.1198
LSTM (240,32),(240,4),32 35,729 0.0902 0.0958 0.0789

temporal relationship in the feature. As a result, they have lower training errors, i.e., they fit the data better,
and have lower testing error, i.e., they generalize better. Notably, the true errors for the deep-learning proxy
models are lower than the test errors. Recall that all three data sets are generated from the same simulation
model, but the true data set is less noisy than the training and test data. Part of the test error is due to
simulation noise, and this noise is smaller in the true error. We observe that the two regression proxy
models not only generalize to the test data poorly but also generalize to the true data poorly. In contrast,
the deep-learning proxy models generalizes better to the true data than to the test data. This implies that
these models indeed learn the true feature-label relationship in the dynamic hedging simulation model (i.e.,
true data) even though they are trained on noisy observations (e.g., training data) of the model.

(a) QPR proxy model (b) LSTM proxy model

Figure 2: QQ-plots between proxy losses (x-axis) and true losses (y-axis) for the same outer scenarios.

Figure 2 shows the quantile-quantile (QQ) plots between the true losses and the proxy losses. We see
that the LSTM proxy models’ QQ-plots closely follow that 45-degree line. Again, these proxy models are
trained on noisy data, so the good fit to the true data should not be taken for granted. Figure 2 and Table 1
both show that well-chosen deep learning models can cut through the noise in the training data and learn
the true underlying feature-label relationship.

Figure 3: Percentage of correctly identified true tail scenarios by different proxy models.

3010



Li, Feng, and Wirjanto

Next we examine the proxy models’ abilities to correctly identify true tail scenarios, which is crucial
for the performance of the proposed two-stage procedure. Figure 3 depicts the percentage of correctly
identified true tail scenarios by different proxy models for different safety margins. We see that a poor
proxy model like the QPR identifies less than 40% of the true tail scenario without any safety margin. In
contrast, a good proxy model like the LSTM identifies more than 75% of the true tail scenarios without
any safety margin and more than the QPR proxy does with 15% of safety margin. For comparison, the
horizontal line shows the true tail identification percentage for the standard nested simulation procedure.
The LSTM proxy reaches similar percentage with 5% of safety margin, which corresponds to 5 times less
simulation budget than the standard procedure’s.

(a) Safety margin 0% - 15%. (b) Safety margin 7.5% - 15%.

Figure 4: 95%-CVaR estimates by different procedures. Right figure is a zoomed-in version of left figure.

Lastly, we return to our original goal of estimating the 95%-CVaR of the dynamic hedging error. Figure 4
shows the 95%-CVaR estimates for different proxy models with different safety margins. Figure 4b is a
zoomed version of Figure 4a. Because the safety margin only affects the two-stage procedure, the true
95%-CVaR and the one estimated by the standard procedure are horizontal (solid and dotted, respectively)
lines in Figure 4. We see that, with reasonable safety margins, the two-stage procedures with RNN and
LSTM proxy models produce estimates that are closer to the true value than the standard procedure’s
estimate. The LSTM proxy model is particularly superior as it accurately identifies the true tail scenarios
and produces highly accurate estimates with small safety margins.

5 CONCLUSION

The proposed two-stage nested simulation procedure with a machine learning proxy model results in
substantial computational savings in estimating CVaR of the hedging loss of a VA contract from accurately
identifying the tail scenarios. An LSTM fueled by noisy observation pairs cuts through the noise and learns
the true inner simulation model. When new outer scenarios are generated, a trained machine learning proxy
model can distinguish between tail and non-tail scenarios without the need to run new inner simulations.
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