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ABSTRACT

This paper introduces a conversational framework that enhances the usability of smart energy system
simulations. This study is centered around OpenAI’s Generative Pre-trained Transformer (GPT), a fine-tuned
conversational model that allows users to communicate with the system in a natural way. Therefore, users
can describe their simulation scenarios in plain language and GPT seamlessly translates these descriptions
into Python scripts, used as inputs to the simulation environment, in our case, AnyLogic Simulation
Software. Our framework is based on the i7-AnyEnergy core framework to compute distribution flows and
relevant statistics. The proposed human-machine interface facilitates and accelerates simulation modeling,
as demonstrated through the two scenarios we have provided in this paper. Overall, our conversational
framework has the potential to significantly improve the user experience of smart energy system simulation
environments. By simplifying the interaction between users and complex simulation models, we enable
users to obtain valuable insights rapidly and more easily.

1 INTRODUCTION

Simulation modeling has become a powerful tool for decision-making in the design and management of
complex systems and processes. This technique enables the study, analysis, and evaluation of situations
that would be otherwise difficult, costly, or in some cases impossible to explore. In today’s fast-paced, data-
oriented business environments, simulation modeling has become an essential planning tool for managers,
designers, and engineers across a range of domains, from public health (Zhang et al. 2023) to natural
disasters (Song et al. 2016), defense applications (Lalbakhsh et al. 2018), traffic management (Long et al.
2023), etc. Simulation modeling strategies and tools are now being used as core cogs of other higher-level
decision support systems such as digital twins (Jones et al. 2020), and they are being used on a broad scale,
from the microscale (Pan et al. 2023) to the macroscale (Wittor and Gaspari 2023), to address different
challenges.

The evolution of power grid technology has been motivated not only by the goal of increasing energy
security and decreasing carbon emissions but also by the need to address the urgent issue of climate change
(He et al. 2023). The shift in priorities has led to a surge of interest and investment in the research and
development of smart energy systems and the transition from conventional power systems to microgrids,
which in turn introduces new challenges, such as the integration, management, and optimization of storage
devices and renewable energy sources to the grid (Saeed et al. 2021).
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Simulation tools are extensively employed across various domains of power systems, including power
production, distribution, and consumption. They provide users with the ability to create and evaluate diverse
scenarios, optimize performance, and predict outcomes to improve the efficiency of various aspects of the
power grid. However, the accuracy and effectiveness of simulation results depend significantly on the
expertise and skills of the user in developing scenarios. Additionally, each simulation environment has
its own set of limitations due to its architecture, development language, interoperability, and target aspect
of the power grid it is designed for. Therefore, it is usually necessary for the user to gain a thorough
understanding of the simulation environment before starting to be productive with it.

While technical limitations can be a challenge to the effectiveness of simulation tools, poorly designed
and complex human-computer interfaces can also hinder the full potential of simulation environments. This
issue is particularly relevant when users have to rely on Command-Line (CL) interfaces or use a specific
high-level or proprietary scripting language (King and ChatGPT 2023). Such limitations can slow down
the development process, limit the usability of the tool, and prevent users from utilizing its capabilities
to the fullest extent. This study aims to address this challenge. Initially, the only way to communicate
with computers was through machine language, a string of zeros and ones. However, with the emergence
of advanced Large Language Models (LLMs), computers can now understand conversations and natural
prompts, turning the tables on human-computer communication (Geerling et al. 2023).

This study introduces a novel conversational simulation framework for enhancing the end-user experience
considering simulation environments. This framework is specifically applied to smart energy systems,
building upon the i7-AnyEnergy framework, which is available at https://github.com/cs7org/i7-AnyEnergy
as open-source software (Bazan 2017). To the best of our knowledge, this is the first study introducing a
conversational simulation framework for energy systems. Despite the hype surrounding LLMs and their
applications, particularly in areas such as AI ethics (Liebrenz et al. 2023), social privacy (Tlili et al. 2023),
and plagiarism (Anders 2023), there is still limited research on its practical implementations. In terms
of real-world applications, Microsoft’s robotics control framework, powered by the OpenAI’s GPT model
(Vemprala et al. 2023), serves as an inspiring example that has motivated this research. Furthermore,
there are ongoing discussions regarding the potential of LLMs for industrial applications such as intelligent
vehicles and autonomous driving (Du et al. 2023) and sustainable manufacturing (Rathore 2023).

Our framework leverages the power of Generative Pre-trained Transformer (GPT), an advanced conver-
sational interface, to enable users to describe simulation scenarios in natural language, without requiring any
technical expertise of the underlying system. At the time of writing this paper, we resorted to the ChatGPT
service (https://chat.openai.com/) which was based on a GPT-4 series model. A high-level function library
provides GPT with the necessary information to create a variety of scenarios according to the user inputs. Us-
ing this information, GPT can interpret the scenario described by the user and map it into an i7-AnyEnergy
construct, which is then dynamically built and executed under the AnyLogic simulation environment,
specifically the AnyLogic 8.7.12 University Researcher Version (https://www.anylogic.com/downloads/).

2 MODELING A CELLULAR ENERGY SYSTEM

In this study, we resort to the modeling of energy systems based on the so-called Cellular Energy System
(CES) which was originally introduced by the Verband der Elektrotechnik (VDE) (German for "Association
for Electrical Engineers") (VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. 2019) and
aims to overcome the challenges that occur by an increasing amount of decentralized energy production
and storage in carbon-neutral energy systems. The main idea of a CES is to combine coherent elements
of energy systems at different levels into a single Energy Cell (EC), whereby a hierarchical structure is
formed. Furthermore, ECs can also communicate on the same level, leading to neighborhood connections.

Since the proposal of the VDE gives only some rough concepts instead of precise modeling instructions for
a simulation environment, we follow a concrete modeling and simulation approach as presented in (Dengler
et al. 2022). According to this approach, an EC can be considered as:
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Figure 1: Small example of a CES architecture as used in this paper.

• an atomic component, such as a consumer, producer, or storage unit,
• a Hierarchical Controller (HC) with an arbitrary amount of aggregated subordinate ECs,
• or a Local Controller (LC) that has exactly one underlying EC and any number of neighboring LCs.

Figure 1 presents an illustrative model that this study is based on. The figure showcases the various
components and their corresponding use cases. This visualization shows how a pair of HCs and LCs, for
instance, can be used to represent hierarchical and neighborhood connections. We clearly differentiate
between HCs and LCs. HCs are introduced specifically to aggregate multiple subordinate ECs, whereas
in cases where such aggregation is unnecessary (e.g., EC 2 in the figure), this modeling approach allows
for the omission of the HC component. Additionally, the load-balancing process is semantically divided
into two distinct parts: one for hierarchical relations and another for neighborhood relations. This division
enables independent customization of the algorithmic procedures for each, granting the ability to fine-tune
and optimize load balancing individually.

The chosen approach in this work offers two-fold benefits. Firstly, it facilitates the implementation
of different load-balancing strategies such as self-sufficiency, enabling a realistic modeling of future
microgrids. However, it is important to note that this work does not delve into the calculation of energy
balancing based on the given model, as the focus lies solely on the system’s structure. Secondly, the
object-oriented representation of CES components, including atomic components and controllers, provides
an easily understandable Application Programming Interface (API) definition for the LLM, simplifying the
creation of scenarios.

It is worth acknowledging that there are many other approaches addressing the CES concept, for
example, the definition by Björn Uhlemeyer et al. (Uhlemeyer et al. 2021) or the C/Sells project (Haller
et al. 2020). Additionally, there are similar studies that follow the idea of recursively constructed energy
systems, named Autonomous Energy Grids (Kroposki et al. 2020) or Fractal Grids (Retière et al. 2017).

3 SCENARIO GENERATION

Figure 2 presents the overall pipeline of the suggested approach and the involved components. We start with
the high-level description from the user that will be given to an LLM, which was prepared with an initial
preamble. The model now creates a Python script that assumes the availability of functions as defined in
the preamble. With an implementation of these functions from the preamble we can execute this created
code and generate the input files for the actual simulation environment. In our case we are dealing with
Comma-separated values (CSV) files as input for i7-AnyEnergy (Bazan 2017), a second-layer framework
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Figure 2: Proposed architecture.

to the simulation environment AnyLogic. The output can be visualized in two ways: the first is to use the
built-in visualization feature from AnyLogic directly, and the other one is to make use of the generated
output files (given in CSV format) from i7-AnyEnergy and present them in a human-understandable way.

With this setup, the user only needs to formulate the desired scenario in a high-level description without
the necessity to understand the individual details of the used frameworks. This makes huge simulation
frameworks far more accessible. The reason why to use an intermediate API instead of letting the LLM
create the individual input files directly is to give the LLM a framework that is as easy to use as possible.
The input files of i7-AnyEnergy are rather complex and need much more text to create than using a Python
API. This Python API can give an easy interface to construct a CES from a semantic perspective and is
based on a programming language that the LLM is already aware of. Furthermore, this intermediate step can
decrease the run-time of the LLM input generation for large scenarios substantially. This applies especially
to sections in the input data where the created code can make use of widely used programming techniques
such as functions, loops, or recursion. Although we use OpenAI’s GPT for the developed prototype, we
can easily exchange it with another language model like Google Bard (https://bard.google.com/).

We would also be able to make use of an LLM as an intermediate layer between the generated outputs
of the simulation and the presentation to the user, e.g., by letting the LLM extract the important details of
the output. However, our paper does not focus on this part, as we think that classical analysis methods are
better suited for this application. Compared to the high-level input description from the user, the output
files are given in a structured way, so they can easily be analyzed by a program. One potential scenario
where an LLM could be useful is when the user desires to extract specific information from the output.
In such cases, the LLM could serve as a translation layer, facilitating the transformation of user requests
into alternative representations, such as the integration of the Wolfram Language in ChatGPT (Wolfram
2023), but this is a topic out of the focus of this paper.

3.1 Communication with the Large Language Model

As suggested earlier, we use an LLM as a tool to translate the high-level description of the scenario from
the user to a corresponding Python code. To achieve this, we provide the LLM with an initial message
comprising three essential components:

1. The first part entails explaining the fundamental concept of a CES and introducing the terminology
within this domain.
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2. Following that, we make the model familiar with the goal of writing a small Python program. We
introduce the relevant data types and deliver a detailed Python API description.

3. Lastly, we specify that any uncertainties regarding the user input should be ignored and we seek
confirmation from the model to ensure everything has been understood correctly.

The concrete input message is given as follows:

Preamble to GPT and corresponding answer

The following task is to create input examples for a simulation environment for Cellular Energy
Systems. The basis of the Cellular Energy System is the Energy Cell. An Energy Cell can be an atomic
component like a consumer, producer, storage unit, or an aggregation of multiple underlying Energy
Cells with the help of a controller. Several Energy Cells can be combined to form a hierarchically
superordinate Energy Cell. These hierarchically superordinate Energy Cells can in turn be combined
and thus form a complex hierarchy. Furthermore, there exist neighborhood connections that allow
additional energy exchange between controllers. Note to add no circular dependencies for controllers,
e.g., a child of a controller cannot be a neighbor of a controller at the same time.

The goal is to write a Python program for any of the following inputs that give a high-level description
of the wanted scenario.

The central data type is controller which describes a controller instance that aggregates an
underlying number of Energy Cells. Do not assume that there exist any class fields or functions for
the controller data structure. Only assume that the following Python functions are available to
define the Cellular Energy System structure:

(Python API description as explained in Section 3.2)

Note to use generate_root() exactly once at the beginning of the program execution and append
every directly connected controller to it. For any other layer, recursively append the controllers to
form a tree-like structure.

If anything is unclear regarding the user input description, try to reasonably fill the information gap
by yourself.

Are you ready?

Yes, I’m ready. Please provide the input scenario you want to create for the Cellular Energy System
simulation environment.

It becomes apparent that we do not distinguish here between HCs and LCs and only see a pair of
HC and LC as a controller. The reason for this decision is to simplify the model architecture to reduce
the risk that the LLM violates some constraints of the model, e.g., allowing an LC to have more than
one subordinate EC. The underlying API implementation automatically creates an HC-LC pair for every
controller, regardless of the number of subordinate ECs or neighbor ECs, but it could also detect if an HC
or an LC is necessary and only insert them if necessary.

It is important to note that we explicitly state at some points that the LLM should not assume the
existence of functions or fields available to the central data type controller. It prevents the LLM from
attempting to utilize non-existent fields in controllers (e.g. controller.children), which could lead
to errors during code execution. To address any potential information gaps or uncertainties, we instruct the
LLM to autonomously fill in the missing information. This ensures the generation of a reasonable output
and facilitates the smooth execution of subsequent steps in the architecture’s pipeline. However, the main
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drawback of this design choice is that the user is not informed about the assumptions made by GPT, which
can lead to undefined behavior for poorly designed inputs. To accompany these issues, we could exchange
this instruction with a request to additionally state uncertainties, giving the users some hints on how to
adjust their input.

3.2 Delivered Python API

The Python API makes use of the recursive structure of the considered CES modeling approach. The
hierarchical connections can be defined by starting with the root controller (generate_root()) and
then adding subordinate controllers step by step (add_sub_controller()). As a final step, we can
add atomic components like producers, consumers, and storage units. After the creation of the controllers,
the neighborhood connections can be added (add_neighborhood_connection()). Due to the large
number of parameters for the storage units, we define default values for each of them in case not all of
them are specified by the user. The depicted example values should represent an initially half-charged
small battery that loses some energy during operation. Furthermore, there exists a function to define the
duration of the simulated time (set_simulation_duration()) and one to confirm the end of the
generation script (write_output()).

The detailed API description, which is also given to the LLM, is as follows:

Python API description in preamble given to GPT

- set_simulation_duration(hours):
Sets the duration of the simulation run in hours. When this function is not called, a duration
of 24 hours of simulated time is assumed.

- generate_root():
Generates the root controller and returns it. This function has to be called exactly once in the
beginning, whereas every Energy Cell is a child of that root controller.

- add_sub_controller(controller):
Creates a subordinate controller and adds it to the current controller. This function returns the
newly created controller.

- add_neighborhood_connection(controller1, controller2):
Creates a neighborhood connection between the controllers controller1 and
controller2. controller1 and controller2 have to be created beforehand. There
should be at most one connection between two controllers.

- add_sub_consumer(controller, values):
Adds a consumer to a controller. The values array is a Python list that contains the generation
specifying the generation in kW with an accuracy of five minutes. So, for a 24-hour day, the
values array contains 24 ·12 = 288 entries.

- add_sub_producer(controller, values):
Adds a producer to a controller. The values array is a Python list with the same behavior
as in the function add_sub_consumer.

- add_sub_storage(controller, capacity=3.0, start_soc=50.0,
max_charge=3.0, max_discharge=3.0, min_charge=0.99,
min_discharge=0.99, leak_fraction=0.1, charge_eff=0.9,
discharge_eff=0.9):
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Adds a storage unit to a controller. Thecapacity defines the maximum state of charge in kWh.
start_soc defines the load of the storage unit in percent at the beginning. max_charge and
max_discharge define the maximum charge and discharge speed in kW, min_charge and
min_discharge define the minimum charge and discharge speed in kW. leak_fraction
defines the loss in the state of charge per hour. charge_eff and discharge_eff define
the efficiency of the charge and discharge process. If not otherwise specified, use the default
values.

- write_output():
Finishes the simulation setup. Must be printed exactly one time in the end.

4 EVALUATION

In this section, two simple examples of small CESs are presented that show the capabilities of GPT and
the limitations of the approach. During the writing of the paper, we resorted to a GPT-4 series model.
Both examples aim to generate a small CES with a few layers and some atomic components, whereas the
load/production curves of consumers and producers should have a typical real-world behavior: a consumer
should represent a household with a peak consumption during forenoon and afternoon, while a producer
should represent a photovoltaic unit which usually peaks generation during midday. The only differences
between the two examples are the number of layers, three for the first and five for the second one, and that
the second one adds neighborhood connections, whereas the first one omits these.

The concrete input description and the output from GPT for the first scenario is the following:

Input and answer from GPT for the first scenario

Create a three-layered Cellular Energy System, where each controller has two children. The simulated
time should be 24 hours. Randomly add consumers, producers, and storage units to the lowest
layer. The consumers should represent households that have a demand peak in the forenoon and
the afternoon. The producers should represent a typical photovoltaic unit, e.g., by having a peak at
midday and no generation during the night. The storage units have an average capacity of 10 kWh.
Do not add neighborhood connections to the system.

Here’s a Python program to create the described Cellular Energy System scenario:

1 import random
2

3 def create_consumer_values():
4 values = [0] * 288
5 for i in range(72, 132): # Forenoon peak
6 values[i] = random.uniform(0.5, 2)
7 for i in range(204, 264): # Afternoon peak
8 values[i] = random.uniform(0.5, 2)
9 return values

10

11 def create_producer_values():
12 values = [0] * 288
13 for i in range(108, 204): # Midday peak
14 values[i] = random.uniform(0.5, 2)
15 return values
16

17 def add_energy_cells(controller):
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18 cell_type = random.choice([’consumer’, ’producer’, ’storage’])
19 if cell_type == ’consumer’:
20 add_sub_consumer(controller, create_consumer_values())
21 elif cell_type == ’producer’:
22 add_sub_producer(controller, create_producer_values())
23 else:
24 add_sub_storage(controller, capacity=10.0)
25

26 # Generate root controller
27 root = generate_root()
28

29 # Set simulation duration
30 set_simulation_duration(24)
31

32 # Create three-layered Cellular Energy System
33 for _ in range(2):
34 first_layer = add_sub_controller(root)
35 for _ in range(2):
36 second_layer = add_sub_controller(first_layer)
37 for _ in range(2):
38 third_layer = add_sub_controller(second_layer)
39 add_energy_cells(third_layer)
40

41 # Write output
42 write_output()

This program creates a three-layered Cellular Energy System with no neighborhood connections.
The consumers and producers have demand and generation peaks as described, and the storage units
have an average capacity of 10 kWh.

Here, we see, that GPT successfully generated the three layers using three loops. An illustration of
the output is given in Figure 3. Furthermore, GPT adds a detailed explanation of what the code does. It
is worth noting that depending on the specific execution, GPT may also utilize recursion for the model
setup. At the lowest layer, it generates the input curves for the consumers and producers. These are also
illustrated in Figure 4. This figure shows that the instructions to model peaks during specific times during
the day have been successfully realized, but the curves do not resemble realistic behaviors and only model
the peaks as given by the user.

HC

HC HC

HC HC HC HC

HC HC HC HC HC HC HC HC

Prod. Cons. Stor. Stor. Stor. Cons. Stor. Stor.

Figure 3: Generated structure from GPT for the first scenario description.

For the second scenario, we provided the following input and received the following output from GPT:
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(b) Curve for a producer.

Figure 4: Generated curves of one consumer and producer from GPT for the first input.

Input and answer from GPT for the second scenario

Create a five-layered Cellular Energy System, where each controller has two children. The simulated
time should be 24 hours. Randomly add consumers, producers, and storage units to the lowest
layer. The consumers should represent households that have a demand peak in the forenoon and
the afternoon. The producers should represent a typical photovoltaic unit, e.g., by having a peak at
midday and no generation during the night. The storage units have an average capacity of 10 kWh.
Randomly add neighborhood connections between controllers on the same layer.

Here’s a Python code snippet for creating the described Cellular Energy System:

1 import random
2

3 def create_consumer_values():
4 values = []
5 for i in range(288):
6 hour = i // 12
7 if 7 <= hour <= 10 or 16 <= hour <= 20:
8 value = random.uniform(0.8, 1.2)
9 else:

10 value = random.uniform(0.1, 0.3)
11 values.append(value)
12 return values
13

14 def create_producer_values():
15 values = []
16 for i in range(288):
17 hour = i // 12
18 if 9 <= hour <= 15:
19 value = random.uniform(2.0, 4.0)
20 else:
21 value = 0.0
22 values.append(value)
23 return values
24

25 def create_energy_cells(controller, layer):
26 if layer == 5:
27 cell_type = random.choice([’consumer’, ’producer’, ’storage’])
28 if cell_type == ’consumer’:
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29 add_sub_consumer(controller, create_consumer_values())
30 elif cell_type == ’producer’:
31 add_sub_producer(controller, create_producer_values())
32 else:
33 add_sub_storage(controller, capacity=10.0)
34 else:
35 sub_controller1 = add_sub_controller(controller)
36 sub_controller2 = add_sub_controller(controller)
37 create_energy_cells(sub_controller1, layer + 1)
38 create_energy_cells(sub_controller2, layer + 1)
39 if random.random() < 0.5:
40 add_neighborhood_connection(sub_controller1, sub_controller2)
41

42 set_simulation_duration(24)
43 root_controller = generate_root()
44 create_energy_cells(root_controller, 1)
45 write_output()

(Explanation from GPT omitted)

Structure file grid.csv (representing HCs):

1 id;controller_type;output_file
2 grid_0_0;greedy;../output/test/grid_0_0.csv
3 grid_1_0;greedy;../output/test/grid_1_0.csv
4 grid_1_1;greedy;../output/test/grid_1_1.csv
5 [...]

[...]

Time series input file consumer0.csv:

1 year;month;day;hour;minute;value
2 2023;1;1;0;0;0.254202480633273
3 2023;1;1;0;5;0.14071140458586193
4 2023;1;1;0;10;0.2648200686375549
5 [...]

[...]

(a) Small selection of input files. (b) AnyLogic user interface.

Figure 5: Generated input files in the second scenario for i7-AnyEnergy and running simulation in AnyLogic.

For this example, GPT uses recursion which tracks the current recursion depth to find out when the
recursion should be terminated. By the given API description, GPT needs to manage the controllers for
possible neighborhood connections by itself and cannot resort to fields storing subordinate or neighbor
controllers. In this case, this was managed successfully, since in each recursion step the code creates
two sub-controllers, and only adds a neighborhood connection between those sub-controllers. However,
note that it can happen that GPT falsely assumes at some points that the controller data type has the
subordinate controllers or other information stored as a field, although the opposite was explicitly stated in
the preamble. In such a case, the execution fails. This would require either user adjustments or automatic
fallback techniques, e.g., re-running the code generation or removing malicious lines in the code.

Figure 5 demonstrates the next steps that occur in the pipeline. For the given Python API description,
we have developed an implementation that creates CSV files for the AnyLogic environment. These CSV
files are used for setting up i7-AnyEnergy to spawn the HCs, LCs, and atomic components with the help
of AnyLogic Populations and connect them afterward. Our implementation automatically finds suitable
names for HCs and LCs based on the current layer. As one can see, the representation using CSV files is
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well suited to be used in the setup process for the AnyLogic simulation environment, but is less intuitive
than the usage of the Python API, showing the need for the intermediate Python representation.

5 CONCLUSION

This study introduces an innovative approach to enhance the end-user experience in complex simulation
frameworks through the utilization of an LLM such as OpenAI’s GPT. The user does not need to have precise
knowledge about the structure of the input files, but can instead specify the desired scenario in a high-level
description. We made use of Python scripts as an intermediate layer to facilitate the complexity and size of the
output generated from GPT. The evaluation shows that the current version is able to understand the preamble
as well as the user input description and create a meaningful scenario configuration script. However, there
are limitations to GPT’s capabilities. It occasionally produces non-executable codes, particularly as the
model complexity increases. Additionally, certain aspects of the system, such as production and generation
curves, are rudimentary and lack realistic behavior. The improvement of these issues, either by adjusting
the preamble itself or by improving the language model, will be the main focus of future work.
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