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ABSTRACT 

This paper details the simulation and performance results of a Sparse Hyper-Distributed Robust Efficient 
Neural Network (SpHyRE-Net) architecture that performs anomaly detection for real-world time-series 
data. SpHyRE-Net is an innovative, novel, low size, weight and power (SWaP) machine learning solution 
for devices operating at the tactical edge. It utilizes bit operations and sparse hyper-dimensional 
representations for bio-inspired learning via a Hebbian-like rule that results in a combined power-latency 

reduction of 2-orders of magnitude over ordinary deep networks. The paper details the application of 
SpHyRE-Net to real-world cell-traffic datasets as well as the simulation requirements needed to minimize 
latency and memory use. Also discussed are the mechanisms necessary for implementing the architecture 
on an FPGA as a precursor to realization on a neuro-morphic ASIC with ultra-low power profile. 

1 INTRODUCTION 

Here we detail the development of bio-inspired neural-network architecture called Sparse Hyper-

Distributed Robust Efficient Neural Networks (SpHyRE-Net) to provide a 3rd generation AI capability for 
anomaly detection over time-series data on small size weight and power (SWaP) edge devices. The primary 
goals included simpler digital logic operations compared with the multiply-accumulate cycles (MAC) of 
deep neural networks (DNN) in order to greatly reduce latency and power consumption. The ultimate 
objective for future work is the implementation of a high-performing, very low-power neuro-morphic 
application-specific integrated circuit (ASIC), capable of performing military relevant communication and 

edge sensing application(s). These gains are expected in comparison to state-of-the-art MAC-based DNN 
such as long short-term memory (LSTM) and recurrent neural networks (RNN). This paper reports our 
accomplishments in developing a software simulation prototype for SpHyRE-Net that greatly reduces the 
compute burden compared to conventional DNNs.  

Figure 1 shows the high-level concept of the SpHyRE-Net architecture that has been implemented as a 
multi-threaded simulation.  A dataset representing time-series data encoded and presented to the input of a 

spatial-pooling layer consisting of columns of cells (proximal layer) with each column acting as a single 
perceptron that counts the number of active inputs and becomes active if the count is above a threshold.  
Cells within the column (distal layer) form a temporal layer in which cells within a column attempt to 
predict whether the column will become activated by the next input from the time-series.  A count of which 
columns were correctly predicted is presented to a statistical threshold unit to determine whether this 
number has deviated from normative, given the past activity of this indicator.  When the number of correct 
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predictions becomes too low, an anomaly is flagged for the time-series at this point.  The objective of the 
system is to adjust weights within the proximal and distal layers over time to learn the normative 
characteristics of the time-series in order to detect when a significant deviation occurs.  More details of the 

system are described below. 

Figure 1: Overall SpHyRE-Net architecture to be simulated. 

The SpHyRE-Net simulator was inspired by hierarchical temporal memory (HTM) theory called the 
“Thousand Brains Theory of Intelligence” (Baralacchi 2015; Hawkins 2016) to model biological learning 
in the brain. As an alternative state-of-the-art learning algorithm, the HTM is based on a theory of human 
neocortex, and has shown results in performing anomaly detection Hirakawa (2021). The HTM algorithm 

substantially differs from traditional DNNs by employing sparse hyper-dimensional vectors (post-encoding 
dimension > 500) in order to enable training and query cycles using massively parallel bit operations. The 
model performs sequence learning over a time-series of such vector embeddings in order to model the series 
and detect anomalies according to the current model. This allows the model to continually update itself to 
handle non-stationary sequences. 

Besides demonstrating the effectiveness of SpHyRE-Net for detection of anomalies in time-series data, 

the primary objective was to determine whether the simulator could be architected in a way that facilitates 
the eventual realization as a Field-programmable gate array (FPGA) as a prelude to realization as an 
application specific integrated circuit (ASIC). In this paper, we describe standard HTM-based architecture 
and operation, the innovations introduced to SpHyRE-Net by this investigation for the implementation of 
the simulator and eventual realization as an FPGA. We then discuss the datasets for evaluating the model, 
and finally our experiments, results and conclusions. 

2 HTM-BASED ARCHITECTURE AND OPERATION 

2.1 Original HTM Architecture 

The model is defined in terms of the input dimension, N, the number of columns (also N), each containing 

M cells. The model is fed by a (filtered) time-series data-stream and each value arriving from the stream 

is encoded as a sparse distributed representation (SDR) onto a N-dimensional binary “data vector”, Di ,for 

i = 0,1,2,… N and presented to the model’s input layer at the beginning of its “input cycle” (Figure 2). 
Every column is a perceptron fed by a “proximal segment" of binary links that samples a sparse subset 

of the input units. A link is considered to be “potential” or “connected” as determined by the connection’s 
“permanence” parameter having a value between 0 and 1.  If the permanence value is above a prespecified 
threshold, Tc, then the connection is considered to be “connected” with a weight of 1, otherwise it is called 
“potential” and has a connection weight of 0. During training the permanences are adjusted using a Hebbian 
rule, and this causes the binary links to switch between being connected and partial. However only activated 
columns are allowed to adjust their permanences.  A column becomes active whenever the number of active 

inputs on its connected links exceeds a threshold, activation threshold Ta.   
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Figure 2: Standard HTM Architecture. 

Each of a column’s cells “owns” one or more perceptrons, called “distal segments”, that sample the 
activations of a sparse random selection of the other network cells.  The activation state of a particular 
segment is only provided to the owning cell. The rule for adjusting permanences is the same for proximal 
and distal segments. 

The HTM has a two-phase “input cycle” (or “cycle”), each cycle is identified by a sequential integral 

time-value, t, starting at 0 for the first cycle.  The first phase starts with the excitation of the proximal layer 
with the input vector to activate the columns. The second phase starts with the excitation of the distal layer 
in order to make predictions for the next cycle.  Between the first and second phases a score is calculated 
over the predictions that were made during the end of the second phase of the prior cycle. 

The goal of the network for each cycle is to predict which of the columns will become activated in the 
following cycle. Predictions are made at the end of the cycle by the distal segments, each monitoring a 

sparse sample of the cell-activation space in order determine when to place its owning cell into the 
“predictive state”. 

To provide input to the distal segments, each column activated in the first phase will activate any of its 
cells that were placed in the predictive state by the previous cycle and also declare them as “winners”.  If 
no such cell exists, the column was not predicted and so it “bursts” by activating all its cells. In such case 
it must select one of them as the “winner”. All winner cells will subsequently be made to learn by growing 

a new distal segment or by adjusting permanences on an existing one as will be described. 
During the second part of the cycle, all cell activations are forwarded to the distal segments and a sparse 

subset of these segments become active. Whenever a cell has at least one activated distal segment, it goes 
into the “predictive state” (becoming a “predictive cell”) meaning that it is predicting that its column will 
become active during the next input cycle. During the first phase of the subsequent cycle, an active column 
having one or more cells in the “predictive state” is correctly predicted.  Likewise, an inactive column 

having no cells in a predictive state is correctly predicted. An error-score is generated by counting the 
columns that are not correctly predicted. 

2.2 HTM Training 

The system learns in several ways as follows: 1) The proximal connections between the inputs and the 
columns learn by a Hebbian rule, but only when a column is active.  2) When a distal segment becomes 
activated, each of its permanences is strengthened when connected to an active cell and weakened 

otherwise; 3) When a distal segment “mis-predicts” by placing the owning cell into the predictive state and 
the corresponding column does not activate in the next cycle, the segment is “punished” by decaying all its 
permanences by some small factor;  4) When a winner cell is selected having the fewest distal segments, it 
grows a new segment that samples the currently active cells;  5) When a new set of winner cells is 
determined for the current cycle, a segment from each such cell is selected to grow new synapses from 
other active / winner cells.  
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Over time some columns can become chronically inactive and never learn.  A mechanism used to 
prevent this is called “boosting”.  The mechanism tracks the activity of columns over time and for those 
having significantly less activity than average will have their activation count boosted by some factor in 

order to increase the probability they will activate. 
The model has many meta-parameters, including: The learning rate or “permanence delta”, one value 

for augmentation and another for diminution; the thresholds, Tc and Ta; the fraction for diminution of 
permanences in punished segments; and the boost strength.  For the full parameter list, see Barlacchi (2015). 

3 SPHYRE-NET SIMULATOR AND ITS INNOVATIONS 

3.1 Simulation Mechanisms 

To evaluate its performance, SpHyRE-Net was implemented as a multi-threaded simulator in C++ and 
executed on a Linux operating system. The host was a Core™ i7-7700HQ based machine running at 2.8GHz 
with 4 multi-threaded cores and 32GB of memory.  In order to facilitate compatibility with eventual 
implementation in an FPGA and to account for the recurrent signal flow, the simulator was implemented 
as an activation-loop of perceptrons as shown in Figure 3. 

Figure 3: SpHyRE-Net simulator’s activation loop to support recurrent activations. 

The collective simulation state is composed of two vectors of “activation values”, the current state 
vector, and the next state vector.  The activations vectors are a concatenation of the input activations, 
“column” activations, activations of the “AC-units” and the “PC-units”.  These and the concept of 

“segments” as be described in the sequel. 
Operation is as follows: 1) Initialize the current-state with the activations of the input units as inputs to 

the column units, 2) Project the column units resulting activation values to the next-state vector, 3) After 
the second iteration of the loop, report changes in activations, 4) Replace the activations in the current-state 
vector with those of the next-state vector, and repeat—allowing for new values of the input activations at 
step 1).  The key performance gain entailed using multiple threads, each computing a dot-product rule using 

the logical ANDing of bits within bit-vectors representing the “on-off” state of the column units and the 
cells. 

To control loop synchronization, we utilized the C++11 synchronization library. Multiple threads 
handled the computation of the activation levels to be propagated to the next-state vector. An atomic counter 
was used for tracking how many of the threads had completed the task, so that steps 3) and 4) would be 
started (using a single update thread) only after all threads were finished.  An atomic flag was used to 

indicate the completion of 4) in the update thread so that the activation threads could begin the next loop.  

2969



Mumme and Burova 

Finally, since the algorithm requires non-determinism for various operations, such as for selecting 
“winners”, a concurrent random number generator, rand_r (GCC linux) was utilized for thread-safety. 

3.2 SpHyRE-Net Innovations for Realizing Simulator in Hardware 

To diminish latency, enhance performance and make the simulated architecture suitable to hardware 
implementation, the innovations were included in the design: 

• No segment punishment: In contrast to the original HTM, segments in SpHyRE-Net that mis-
predict their corresponding column do not have their weights reduced.

• Soft winner-take-all (SWTA): SWTA is performed over the columns and the distal segments in

order to stabilize the response of the network.
• Dot-product activation: Instead of binary activation values, a linear activation is used to produce a

continuous valued output activation value.
• Bounded segment growth: The growth of new segments and of new connections for each segment

are both limited to relatively small numbers (5 or 10).
• Split modality for excited cells:  The cells within a column are each split into two units, a

“predictive cell” (PC) and an “activation cell” (AC).
• Statistical analysis of prediction outputs: The statistical likelihood in the number of false positives

and false negatives per cycle is evaluated over time to get an anomaly score.

Importantly, an architectural modification of the “cell units” was made in order to facilitate potential 
realization in FPGA hardware.  This required implementing all neuronal components into “perceptron-

canonical form,” so that the functionality could be obtained using simple perceptron-based neuronal units.  
For this, each of the cells within a column was split into two “units”, namely an “activation cell” (AC unit) 
and a “predictive cell” (PC unit) with the AC units being activated during the first phase of a cycle and the 
PC units being activated during the second (Figure 4).  The activation of the AC units represents ordinary 
cell activation fed to the distal segments and PC-unit activation represents the cell’s “predictive state.” 

Figure 4: Realization of cell-units as activation cells and predictive cells. 

Note that each column owns its cells with each cell composed of an AC and a PC unit and owning one 

or more segments, S.  These entities, including the segments can be considered as being part of the cell’s 
column. Particularly, the distal segments can be grouped according to the columns they serve, each segment 
providing a signal as to whether it predicts that its column will become active in the next cycle. 

The signal flow for the network is shown in Figure 5. The encoded input data vector, D feeds into each 
of the columns, C, over via proximal segments, one segment per column.  A column influences each of its 
cells ACjk via its activation state and the “winner signal”.  The AC units provide their activation values to 

the distal segments, S, with each segment providing input to a single PC unit that is part of the segment’s 
owning cell.  Every PC has at least one such segment, and can grow new ones as the system learns. 
Whenever at least one of the PCs segments becomes active, the PC activates to indicate that the cell is in 
the predictive state.  The dashed line on the bottom left of the figure indicates that the predictive signal is 
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computed during the second phase of the previous cycle, and is provided to all AC units in the same column 

during the first phase of the current cycle. 

Figure 5: Activation and prediction signal flows. 

Figure 6 illustrates computation of the error score for a given input vector.  For the current input cycle, 
at time-step, t, a vector of activation values for all columns can be aligned with a similar vector of prediction 

values, generated at the end of the previous input cycle (time-step t-1).  The number of false positives (FP) 
and false negatives (FN) are computed by element-wise comparison and number of errors. To obtain a 
“raw-anomaly score” (RAS) the number of errors is divided by the number of active columns. The statistical 
behavior of the raw anomaly score over time is used to determine whether the model will flag an anomaly. 

Figure 6: Computation of raw anomaly score. 

To determine whether an anomaly has occurred in the time-series data we compute mean, µ, and 
standard-deviation, σ, of the RAS over the past (say 100) time-steps. Given a threshold number, T, set the 
“anomaly flag” to true if the score, s, is more than T standard-deviations above the mean. Thus, we have 

Anomaly-flag = s ≥ µ + T * σ, 

where the value of T was set to 2.5 for all experiments. 
Whereas the various network segments have permanences for plasticity, the AC and PC units are “hard 

wired” as shown by the weight-values on the links shown in Figure 5. This is done in order to realize the 

intended functionality as a network of interconnected perceptrons. The intended behavior of the AC and 
PC units is summarized as follows: 

• Cells of an inactive column do not come on.
• When a column is activated, it activates all of its cells that are already in a predictive state.
• When no such cell exists for the column, all cells are activated (column bursts).

• An active distal segment will trigger its owning cell to go into a predictive state.

An activated column that has been predicted by at least one PC will activate only the corresponding 

AC unit(s).  So we give the link from the column to each of its AC units the value of M, and the AC itself 

is given a threshold of M where M is the number of cells per column.  The AC will weigh the corresponding 
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PC unit with a weight of M – 1.  It will weigh all other PCs for the column with a weight of -1.  This is 

indicated at the lower left of Figure 5. The connecting weight from PCj into ACi of the same column is 

wji = (M - 1)𝛿ji - (1 – 𝛿ji), 

where 𝛿ij is the Kronecker-delta.  This expression evaluates to M – 1 for i = j and -1 otherwise. 
This means that a PC strongly excites its corresponding AC unit and inhibits the others.  When the 

column activates, all its ACs will activate if no PC is active (the column was unpredicted and so “bursts”). 
If instead, at least one PC is on, AC’s not having an active PC will be inhibited enough not to reach their 
activation threshold, and so only the ACs with active PCs will become activated. The weights as stated 
therefore accomplish the intended behavior. 

For the case that the column bursts, a winner is declared which labels its PC unit as a candidate for 
training. If instead an active column is not bursting, the winner flag is attached to all the column’s predictive 
PCs and they are subsequently trained. 

3.3 Simulation Efficiency 

The simulations were performed on an Intel core-I7, 7th generation PC with 4 hyper-threaded processors, 
or 8 “logical processors”. Due to the large number of connections within the simulated neural network, 

various data-structures and update strategies were used to eliminate potentially redundant computation.  A 
major gain against latency can be realized by placing an activated unit (column or segment) on a list of 
active units so that subsequent permanence updates are only performed over the lists.  For this, the columns 
are divided amongst the threads and each thread updates its own list.  A synchronization barrier is used to 
determine when all threads have completed and then a single thread merges the lists and selects winner 
units.  The lists are then subdivided over multiple threads which then update the permanence values of the 

column units. 
Similarly, the fact that only active segments have their permanences adjusted allows multiple threads 

to collect segments as they activate so that a single thread can combine the results and redistribute the 
activated segments to threads that update the permanences.  A synchronization barrier then allows a single 
thread to collect the prediction statistics and indicate an anomaly score. 

A key parameter for making this work is the activation “sparseness” that is imposed on the columns 

and segments.  The sparseness is controlled by the activation thresholds which allow a small number of 
units at each of the column and segment layers in order to reduce the lists to a manageable size, but must 
also allow enough units to come on so that when they are sparsely sampled by connections into the next 
layer, there will be sufficient activity to activate units in the succeeding layer.  Experience confirms that a 
activation of a few dozen units (40 to 50) per layer is sufficient. 

4 DATA PREPARATION AND ENCODING 

4.1 The Dataset 

The experiments utilized a publicly available dataset produced by the Telecom Italia Mobile corporation 
and used by the Big-data Challenge competition Barlacchi (2015). The dataset is the result of a computation 
over the Call Detail Records (CDRs) generated by the Telecom Italia cellular network over the city of 
Milano, Italy. The CDRs log the user activity for billing purposes and network management. 
The dataset is a collection of cellular activity records collected by dividing the city into a rectangular grid, 

and traffic-rates in each cell of the grid was recorded. The cells were numbered from 1, 2, ... onward. For 
the initial experiments, we used data from the first 3 cells to study anomaly detection performance. 

The data utilized was a post-processed version proposed by Subutai (2017) that consists of cellular 

activity records from 11/01/2013 through 12/30/2013 for the morning, afternoon and evening activity and 

divided into 18 temporal intervals per each portion of the day. 
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Each record field details the statistics for a particular communications cell as shown here: 

• Timestamp: the calendar date
• Time slot: temporal interval during which the data was collected
• SMSin: the number of received SMS messages
• SMSout: the number of sent SMS messages
• Callin: the number of inbound calls

• Callout: the number of outbound calls
• Internet: the amount of internet access generated

Derived datasets having one or more of the above features were constructed to train both single feature 
and multi-feature data. 

4.2 Low-pass Filtering 

To enhance simulator performance, we applied a low-pass filter (LPF) to the data-stream before encoding.  
The LPF was implemented in terms of a sequential state, st , at time t: 

s0  = input(t=0); 

st = α ·input(t) + (1-α) · st-1 ,  t ≥ 1, 

where α is a fixed parameter between 0 and 1. Initial work varied the value of α over the values 0.1, 0.05 

and 0.033. The value α = 0.05 was determined to be suitably performant for all subsequent experiments in 

that it reduced noise significantly without sacrificing overall signal detail. 
Figure 7 shows the effects of low-pass filtering (LPF) on the cell-3 internet traffic. The original 

dataset consists of 3262 exemplars and is shown in the first trace. The time axis is shown as “INDEX” 
representing the time-value, t, and the vertical axis represents the number of existing network connections 
for a particular 10-minute interval in Milan.  The trace has numerous very tall peaks that don’t reflect the 
general nature of the data.  The second trace shows the data after it was filtered with α = 0.05. 

Figure 7: Internet traffic data before and after the use of a low-pass filter. 
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4.3 Encoding 

We based our encoding approach on the random distributed scalar encoder (RDSE) Zhu (2013) which uses 
a fixed total number of 1-bits distributed randomly over the N-dimensional input vector.  The encoder 

determines an encoding for a baseline data-value, and then changes the bit-pattern slightly as the data-value 
is gradually changed.  The result is an encoding that preserves the semantics of distance in that similar data-
values result in similar bit vectors as measured by hamming distance. 

The data values are discretized into buckets and adjacent buckets have encodings that overlap strongly. 
We found that SpHyRE-Net performs best when not more than about 135 buckets are generated. This 
determined the granularity of discretization which is computed as the range of the feature values divided 

by this number. 
Encoding API within the SpHyRE-Net simulation allowed us to stack encodings for multiple feature 

values in order to construct a uniform SDR that gets fed into the SpHyRE-Net algorithm. Each channel can 
be turned on/off and two types of encoding can be chosen for numerical values, RDSE and simple scalar 
encodings. There were 6 features total encoded in our experiments – time-slot, smsin, smsout, 
callin, callout, and internet. All features were encoded with RDSE except for time-slot. 

For that we used simple scalar encoding which assigns bits to the vector-embedding according to a sliding 
window having its position determined by the value encoded. The window positions for successive values 
of the field have high bit-wise similarity to preserve distance semantics. 

Experiments utilized networks having of N = 256, 512, and 2048 where N is both the input dimension 
and the number of network columns. Initial experiments tested encodings having from 5% to 15% active 
bits.  Networks of size 512 and larger could remain performant as the number of active bits is decreased for 

greater sparseness.  For the larger networks, the value 5% provided the best overall results considering that 
the computational burden is greatly reduced as sparseness increases. When encoding multiple features, the 
embedding was partitioned by feature, and we provided each feature with the same or similar size bit-field. 
For the time slot feature, we always provided 21 total bits for all sizes of encoded SDR. 

5 RESULTS 

In our experiments, the SpHyRE-Net simulator was run over datasets of 3262 exemplars each. Single-

feature datasets were each constructed from one of: smsin,  smsout,  callin,  callout and 
internet. Multi-feature datasets were generally constructed from two selected features, although most 
multi-feature testing was done using a dataset incorporating all these features encoded into each exemplar. 
We also experimented using time-slot combined with another feature such as internet to determine 
whether SpHyRE-Net’s performance would benefit from temporal information. 

For all feature types, the data generally follows a weekly pattern of peaks and troughs giving a quasi-

periodic waveform with a period of one day.  The shape of the waveform and height of the peaks tend to 
follow one pattern for weekdays and another for the weekends making it easy for a human to judge both 
the time-of-week and the time-of-day over the course of the data stream.  This makes it ideal for testing 
whether SpHyRE-Net can learn the overall pattern and flag novel trends as they occur.  Our experiments 
have shown that during the first 500 or so exemplars, SpHyRE-Net emits high anomaly scores and then 
gradually diminishes them as it learns the pattern.  At that point it becomes more selective when flagging 

an anomaly. 

5.1 Anomaly Detection 

Figure 8 shows results for running SpHyRE-Net over filtered data representing internet traffic on Milan-
cell 3. The bottom waveform is the filtered input data, the upper waveform represents the raw error-scores 
provided by SpHyRE-Net, and the vertical bars over the LPF data indicate the presence of an anomaly 
according to the statistical scores. 

We see peaks in the raw scores and the corresponding vertical bars at the same locations.  The most 
notable anomaly is the tall peak in the filtered data at exemplars numbered between about 500-550 
indicating a sudden burst in traffic.  The next two anomalies correspond to unlikely maxima in the 
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waveform, and finally, between exemplars 2900 and 3000 two anomalies indicate an irregularity in the 
overall pattern in which the traffic follows a descending trend over the following week, beginning with 
abnormally high traffic for Wednesday of the last whole week. 

Figure 8: Filtered Data, raw scores, and anomaly flags over a set of 3262-point time-series. 

Another example is shown in Figure 9.  The upper trace shows filtered callin traffic for cell 4.  The 
second chart represents the raw error scores, and the bottom chart shows the anomaly indicator bars. In this 
trace the weekday traffic is more voluminous than that of the weekends. 

Figure 9: SpHyRE-Net analysis of filtered cell 4 callin data. 

The most notable response of SpHyRE-Net begins approximately at exemplar 2050 and extends to the 

right.  For this portion of the data, the weekday traffic is larger than for previous weeks.  This is indicated 
by the high ‘plateau’ in the raw error scores starting at about the same location.  The condition continues 
for 2 weeks, although SpHyRE-Net responds less to the anomalies of the second week, likely due to the 
fact that learning is turned on throughout the time-series. This means that SpHyRE-Net has begun learning 
the trend for the first of these two weeks is normative.  Since the 2nd week is similar to the first, SpHyRE-
Net is less likely to indicate the presence of anomalies. 
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For the “final week” in the data series, the first two days have abnormally high traffic and then the 
week’s traffic reduces markedly.  The waveform for this week is very different from the previous weeks.  
SpHyRE-Net flags this anomaly at the beginning of the week but does not respond to the rest of the week.  

We believe that this is due to the fact that the occurrence of a large anomaly tends to remove the 
‘context’ within SpHyRE-Net’s inner state.  This will be reset if the dataset returns to its former statistical 
form in succeeding weeks.  Otherwise, SpHyRE-Net will learn the new statistical pattern as being 
normative. This represents adaptation to non-stationary data. 

5.2 Simulator Performance 

We found that learning and accuracy are affected by various factors including: 

• Learning 'picks-up on' cycles within the data without the use of the timestamps, allowing anomaly
detection over segments within quasi-periodic data.

• Low-pass filtering of data before encoding greatly enhances performance on noisy datasets.
• Statistical analysis of the raw error-scores makes anomaly detection more precise.

As described in the innovations section we made major alterations to the baseline HTM algorithm, 
primarily for performance enhancement.  First, the baseline HTM performs punishment of distal segments 
that predict a column that does not subsequently activate. However, we obtained acceptable performance 
without segment punishment and enhance the number of predictions made for each cycle. This in turn 
increased prediction accuracy. It also led to nearly a 50% speedup in processing each exemplar since the 
algorithm did not have to update all connections of all mis-predicting segments for each cycle. 

Whereas the standard HTM employs soft winner-take-all (SWTA) to regulate the number of columns 
that come on for each cycle, we found that SWTA was also useful for similarly regulating the distal 
segments.  This stabilized the number of predictions made at each cycle.  It also allowed bringing the 
number of predictions up nearer to the number of columns that activate during the cycle. 

We eliminated the threshold at the output of all segment units and utilized the permanences as 
connection weights for a dot-product activation rule to get continuous values at the segment output. This 

significantly enhanced anomaly detection. 
Finally, we had to limit distal segment growth, both in total number of segments allowed to grow per 

cell, and the total number of new connections that can be added to a segment.  Without bounds, a huge 
penalty is encountered both in time and in space.  This is why most experiments used an input dimension 
of N = 512, with the same number of columns and M = 16 or 32 cells per column.  Our experiments showed 
that changes in the number of cells per column little or no difference in performance.  Likewise, as long as 

the operational suggestions of Barlacchi (2015) were followed, few meta-parameters had much impact on 
performance. Our method of calculating the statistical likelihood over the time-averaged error-score is that 
of Hiralawa (2021). 

The following is a summary of our observations of SpHyRE-Net anomaly detection performance: 

• Networks having at least 256 columns performed similarly.  Larger networks allowed for more

sparseness as long as downstream segments sampled enough of the activation space.
• Larger networks with a corresponding larger input space had a better capacity for encoding multiple

features into the sparse vector embeddings thereby improving performance over multi-feature data.
• As stated earlier, segment punishment did not enhance performance but cost a lot of computation.
• The ordinary HTM utilizes SWTA over the columns to force the same number to come on each

cycle.  We found that applying SWTA to the distal segments as well forced more cells to be placed

into the predictive state and enhanced performance.
• For our experiments, encoding a timestamp into the embeddings hurt anomaly detection

performance, so they were not included in our final runs.
• The algorithm is somewhat tolerant to changes in the number of cells per column and changes in

meta-parameter values.
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5.3 Conclusions and Future Research 

In addition to providing a means for learning to detect anomalies in time-series data, this effort 
demonstrated a means for realizing the SpHyRE-Net simulator in terms of interconnected perceptron units 

in order to facilitate realization as an FPGA. 
For detection of anomalies within the cellular datasets, datasets for each traffic type appeared to 

establish a pattern over the first few weeks, and then deviate from it toward the end.  This seemed apparent 
to the human eye and was generally flagged by SpHyRE-Net.  However, it is not currently known how 
SpHyRE-Net “models the data” and so further tests over other dataset-types conducted in order to determine 
the degree to which SpHyRE-Net can serve in critical systems applications. 

Finally, for larger input dimensions of 1000 or larger, the algorithm imposes massive memory 
requirements, especially if segment growth is not sharply limited.  Future investigations can be made to 
determine how these considerations can inform effective FPGA and ASIC designs. 
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