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ABSTRACT 

Quantum computing is a contemporary engineering discipline that innovatively overcomes computational 
burdens. This study applies quantum computing techniques to data analyses with input data issues. When 
a dataset has insufficient attributes and uncertainties, quantum embedding techniques contribute to the 
dimensional expansion of input vectors and the quantification of uncertainties. The converted qubits are 
linked to subsequent deep learning modules, and this architecture is used for accurate data analysis. This 
study proposes a quantum embedding technique and a corresponding quantum neural network (QNN) to 
better understand these processes. In this QNN architecture, input data are converted into corresponding 
qubits, which are transformed with quantum phase-operating modules. The quantum features pass through 
subsequent deep learning layers for more accurate data analyses. To demonstrate the effectiveness of the 
proposed model, a process model and relevant analyses are presented and compared with existing deep 
learning methods.    

1 INTRODUCTION 

Advancements in machine learning approaches, including deep learning techniques, have contributed to the 
seamless execution of manufacturing processes and the prevention of possible abnormal conditions. In 
general, datasets comprising inputs and outputs are understood using corresponding deep learning 
architectures. While several effective applications have employed deep learning, critical issues include 
input data issues, such as insufficient data attributes and shortages from missing values, which result in the 
failure of well-trained deep learning machines and inaccurate decisions.   

This study addresses the issue of an input dataset with comparatively fewer attributes for analysis. A 
quantum computing approach is introduced and applied to address this issue. Although the initial dataset 
had limited data attributes and uncertainties, each data point was quantified to the corresponding qubit using 
a quantum embedding technique. The proposed quantum embedding method contributed to the dimensional 
expansion of input vectors. These qubits were then transformed dynamically using relevant quantum 
computing dynamics. In this study, quantum phase operations were applied to various quantum computing 
operations. The transformed quantum features were input into subsequent deep neural network (DNN) 
layers. The proposed quantum embedding technique enables the expansion of features, thereby leading to 
a more accurate data analysis. This architecture is called a quantum neural network (QNN). To demonstrate 
the effectiveness of the proposed QNN, an engine dynamometer manufacturing process was modeled and 
simulated. The use of general DNN is not suitable as the dataset contained insufficient data attributes. The 
proposed QNN was applied to overcome this problem.  
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The following section provides relevant background information and a literature review. The quantum 
embedding technique and subsequent quantum operation modules are described in Section 3. Section 4 
compares the manufacturing data model and analyses.  

2 BACKGROUND AND LITERATURE REVIEWS 

Process data analyses and predictions of key performance indices are crucial for increasing process 
productivity. Amongst the newer methods that have been proposed, deep learning-based machine learning 
methods have attracted much attention and have been used extensively in various applications. However, 
their successful deployment and continuous use must be guaranteed with supported data. For small datasets 
and the commonly encountered difficulties in identifying sufficient data attributes, the efficiencies of deep 
learning-based data analyses are reduced. Table 1 summarizes instances of several data imbalance issues in 
deep learning-based analyses.  

 
Table 1: Data imbalance issues in deep learning data analyses. 

Existing research 
studies 

Applications Data imbalance issues Solutions 

Zhang and Ling 
(2018) 

Image processing in 
material science 

Small datasets Degree-of-Freedom based 
boosting 

Hamad et al. (2020) Smart home controls Lack of human activity 
data 

Temporal time windows 
technique 

Hang et al. (2023) Synthetic data 
analysis  

Imbalance in 
classification label data 

Under-bagging nearest 
neighbors (K-nn) 

Sarafianos et al. 
(2018) 

Image classification Imbalanced attributes in 
classification data 

Visual attention 
aggregation 

Oh and Lee (2020) Air pressure system Data with a number of 
missing values 

Gaussian Progress 
Regression-based GAN 

Zhu et al. (2020) Syntactic data analysis  Class imbalance Interpolation-based 
oversampling 

Li et al. (2018) Syntactic data analysis Small datasets Fuzzy based data 
processing 

 
As shown in Table 1, most previous studies used oversampling methods to compensate for small datasets 
and class imbalanced datasets. However, few studies have investigated small attributes in input datasets. 
For example, Lee et al. (2020) used a generative adversarial network (GAN) to secure sufficient data to 
diagnose train safety. 

This study applies a quantum embedding method to increase the input data dimensions. Quantum 
embedding (Knizia and Chan. 2013; Gianai et al. 2022) is a quantum computing technique that represents 
a vector using the corresponding quantum state. When a vector is converted into a quantum state, the 
representation power of these quantum bits increases. In addition, several quantum operations can be 
applied to the converted qubits. The detailed method is described in Section 3.1.  
The converted quantum states were integrated with subsequent deep learning layers as a hybrid deep 
learning model (Lee et al. 2020), which is a QNN architecture. QNN-based machine learning is a fully 
mature analytical method. However, several studies have proposed using the characteristics and advantages 
of quantum computing. Table 2 provides several existing quantum deep learning studies. Although several 
studies have proposed QNN-based data analysis applications, relatively few authors have investigated 
studies on input data issues. An effective quantum embedding method and subsequent QNN architecture 
are proposed here to investigate issues related to input data.  
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Table 2: Several research studies using quantum deep learning. 
Research studies Application Characteristics of quantum machine learning 

Javier et al. (2022) Computer vision for steel 
quality control 

DNN layers with rotation operations of qubits 

Huang et al. (2021) MNIST dataset 
classification 

Quantum embedding and kernel projection 

Batra et al. (2021) Drug discovery  Quantum computing for molecular descriptors 
Meyer et al. (2023) Tic-tac-toe simulation/ 

vehicle classification 
Variational quantum machine learning and 

symmetry techniques 
 

3 QUANTUM EMBEDDING AND QUANTUM DEEP LEARNING FRAMEWORK FOR 
INDUSTRIAL DATA 

3.1 Quantum Embedding Framework for Industrial Data 

This section proposes a new and effective quantum embedding method for handling industrial datasets. As 
introduced in Section 2, quantum embedding converts a normal number (x!" ∈ 𝑁) into the corresponding 
quantum state ( |𝜓⟩ ). x!"  denotes the ith value of the jth attribute. While several quantum embedding 
techniques exist, the data range, variance and dependencies are not adequately captured during the 
conversion process. This study proposes a quantum embedding technique that retains the variance in the 
original dataset after measuring the converted quantum states. In the first stage, a value (x!") is transitioned 
and scaled down to (x!"′) using (1).  
 

x!"# =
(%!"&'!("(%!"))

*+%",%!"-&*./",%!"-
	                                                              (1) 

 
In (1), min

" 0(𝑥.0)  and max
0 0(𝑥.0)  indicate the minimum and maximum values of the jth attribute, 

respectively. Accordingly, 𝑥.0′ is located between 0 and 1. In the proposed embedding technique, 0 and 1 
are used as quantum bases: |0⟩  and |1⟩ . In order to maintain the variance of the original data after 
measurement,  𝑥′.0 is converted to the corresponding quantum bit |𝜓.03denoted by (2).  
 

|𝜓.03 = 41 − 𝑥′.0⋅ |0⟩ + 4𝑥.0# ⋅ |1⟩                                                    (2) 

 
Using Born’s rule (McMahon 2020), qubit |𝜓.03 has an 𝑥.0#  probability of detecting 1. This indicates that 
the mean of |𝜓.03 after the measurement is the same as that of the normalized original data 𝑥′.0, and the 
variance of the overall data is retained.  
 The advantages of the proposed embedding method are the expanded representational ability of the 
data and the use of subsequent quantum operators such as Pauli matrices (Hidary 2019) and quantum phase 
operators (Steeb and Hardy 2012). For instance, a quantum embedding vector changes its state (|𝜓.03) to 
|𝜙.03 using a rotation operator R(α, β, γ) with respect to the Bloch basis, shown in (3).  
 

R(α, β, γ):	|𝜓.03 → |𝜙.03                                                     (3) 
 
In terms of the Bloch sphere-based rotation, (3) is interpreted using (4).  
 

|𝜙.03 = R(α, β, γ) ⋅ |𝜓.03 
 = R1(𝛾) ⋅ 𝑅2(𝛽) ⋅ 𝑅%(𝛼) ⋅ |𝜓.03                                      (4) 
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From (4), each rotation operator R3(𝜃) is interpreted with e(&.⋅5⋅6/8), where k is one of the axes in the 
Bloch sphere. Thus, a data value is converted into a corresponding qubit, and the qubit is dynamically 
changed into its state. Figure 1 shows a conceptual example of quantum embedding and unitary operation-
based dynamic changes from the original data value. The detailed procedures are provided in Section 3.2. 

Figure 1: Quantum embedding and rotation processes from a data value. 
 
Using this approach, one input value is expanded into a vector with two dimensions. When n sets of data 
are used for the input, 2 ⋅ n dimensions are generated using these qubits.  
 The following section introduces a quantum deep learning architecture using quantum embedding. 

3.2 Quantum Deep Learning Framework using Quantum Embedding Technique 

As mentioned in the previous section, a data value is converted into a qubit with two bases: |0⟩ and |1⟩. 
Then, it changes to another state using rotation-based unitary operations. As a result, n input dimensions 
are expanded to 2 ⋅ n, and a more in-depth mapping can be achieved. As a subsequent relation mapping 
technique, this study applied deep learning to predict future values. Thus, the framework is a type of QNNs 
that incorporates a quantum embedding method. In general, a DNN has an architecture denoted by (5), 
where x! is an input vector in the ith layer and Y is the target output.  
 

Y = ϕ9(∑ (𝑤:* ⋅ (𝜙*⋯(∑ 𝑤0. ⋅ 𝑥..∈< )))*∈= )                                        (5) 
 
w"! is the weight from the ith to jth layers, and ϕ9 is the lth activation function. Although a general DNN has 
a better performance than several traditional machine learning methods, it requires modifications to handle 
quantum embedded vectors. Thus, (5) can be expanded to (6). 

 
Y = ϕ9(∑ (𝑤:* ⋅ (𝜙*⋯(∑ 𝑤0. ⋅ |𝜙.⟩.∈< )))*∈= )                                        (6) 

 
Using equation (2), the input value 𝑥. is changed to |𝜙.⟩, as shown in equation (6). Accordingly, equation 
(4) is represented by (2), with the embedding vector |𝜓.⟩ from the original data.  
 

Y = ϕ9(∑ (𝑤:* ⋅ (𝜙*⋯(∑ 𝑤0. ⋅ R1(𝛾) ⋅ 𝑅2(𝛽) ⋅ 𝑅%(𝛼) ⋅ |𝜓.03.∈< )))*∈= )                       (7) 
 
Figure 2 shows the overall QNN architecture with the proposed embedding method.  
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Figure 2: QNN architecture with quantum embedding modules. 
 
As shown in Figure 2, the proposed QNN comprises of five parts: the input layer, quantum embedding 
layer, quantum operation layers, DNN layers, and the output layer. The learnable parameters are classified 
into two types: rotation parameters (α, β, and γ) and weights. In order to update these parameters, the energy 
function that was used is the same as that of the DNN, denoted by equation (8). Y9 is the lth output value in 
the training data, and  𝑌:N  is the output from the QNN machine.  
 

E = >
8
⋅ ∑P𝑌: − 𝑌:NQ

8                                                               (8) 
                                                               

 
Because the provided QNN has modules that are shared with a DNN, the updating policy of weight w"! 
follows (9). 
 

w′"! = 𝑤0. − 𝜂 ⋅
?@
?A#

⋅ ?A#
?A$

⋯ ?A"
?B"!

                                                    (9) 

w′"! is a newly updated value 𝑤0. with a learning rate η. Each v! is the sum (∑ 𝑤0. ⋅ 𝑥.!∈C ) of the input vectors 
to the ith layer and their corresponding weights. While the other parameters need updates for the 
minimization of (8), ∂E/ ∂γ in (10) needs an additional gradient with the accumulated backward errors.  

	γ# = 𝛾 − 𝜂 ⋅ ?@
?D
	                                                               (10) 

Accordingly, ∂E/ ∂γ is denoted by (11). 
 

?@
?D
= ?@

?A#
⋅ ?A#
?A$

⋯ ?A"
?D

                                                    (11) 
 
As v" = 𝜙.(𝑤0. ⋅ 𝑒&.⋅D⋅6 ⋅ 𝐼.) where I! is the input to the R1(γ) layer and tanh	(⋅) is its activation function, 
the final term in (11) is derived to (12). 
 

?A"
?D

= −𝑖 ⋅ P1 + 𝑣0Q ⋅ P1 − 𝑣0Q ⋅ 𝑤0. ⋅ 𝐼. ⋅ 𝑒&.⋅D⋅6                                             (12) 
 

In this manner, the quantum phase parameters are updated, and the overall learnable parameters are learned 
in the QNN model. The provided framework supports a quantum embedding technique from a data to a 
qubit-embedding data, and explains how the uncertainties are quantified using the subsequent deep learning 
model. The following section presents numerical analyses and comparisons to demonstrate the effectiveness 
of the proposed model.  
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4 NUMERICAL ANALYSIS AND COMPARISON STUDIES FOR QUANTUM DEEP 
LEARNING WITH QUANTUM EMBEDDING MODULE 

 
For the analysis process, the module production in an engine dynamometer was considered. As shown in 
Figure 3, the module gain (Y) affects the successful operation of the dynamometer. In order to predict Y 
during the production process, eight sensors (s!,!∈[>,G]) were installed. The sensing values are simulated 
using dynamometer dynamics.  

Figure 3: Installed sensors and a quality index for an engine dynamometer module. 
 
Figure 4 shows the correlations among sensor signals and Y. 

Figure 4: Correlation coefficient among each variable. 
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Each sensing value was used to detect an abnormal status of the module. As shown in Figure 4, several 
variables (sI,sJ and sG) have strong correlations with Y, whereas s8 has a comparatively weak correlation 
with the output. However, these datasets have a comparatively small number of input attributes. Thus, the 
effectiveness of the proposed framework is demonstrated, as it has the advantage of expanding the input 
dimensions using the quantum embedding technique. Figure 5 shows the proposed framework using the 
quantum embedding method. 

Figure 5: Quantum neural net incorporating quantum embedding. 
 

As shown in Figure 5, the QNN consists of five parts: the input layer, quantum embedding layer, 
quantum phase operating layers, DNN layers and output layer. Table 3 provides the detailed network 
configuration. 

 
Table 3: Configuration of the proposed QNN. 

Part No. Name Configuration Learnable parameters 
1 Input � Input layer: (8x1) - 
2 Quantum embedding  � Quantum embedding layer: (16x1) - 
3 Quantum Phase 

operation 
� Three layers: Rot-X, Rot-Y, and 

Rot-Z 
α,β and γ (phase rotation 
angle angles) 

4 DNN layers � 4 layers: each layer is a combination 
of a fully connected layer and an 
activation function (tanh) 

Each weight and bias 

5 Output � One fully connected layer 
� One Output layer (1x1) 

Weights / bias 

 
To demonstrate the effectiveness of the proposed QNN, these data are compared with results obtained 

from three existing DNN machines. Figure 6 presents a comparison of the three DNN-based methods.  
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(a) 

(b) 

(c) 
Figure 6: Comparison methods. 

 
The first comparison model is a general DNN model (Figure 6(a)) with eight sensory data inputs. 

Although the proposed QNN used 16 expanded features for subsequent quantum phase operations and DNN 
layers, the comparison model used only eight signals. The second model (Figure 6(b)) used only highly 
correlated inputs (sI,sJ and sG) as shown in Figure 4. The final comparison model was an LSTM-DNN 
model with eight signal inputs, as shown in Figure 6(c). Using the training set from the data, each 
configuration was determined to be an experimentally superior model. Among 100 datasets, 80% of the 

2963



Lee and Banerjee 
 

 

data were extracted randomly as a training set and the remainder was used as a test set. Figure 7(a) shows 
the training errors of the four methods, including that of the proposed framework. 

  

 
(a)                                                                           (b) 
Figure 7: Training errors and test accuracies.  

 
As shown in Figure 7(a), the proposed QNN has the lowest root mean square error (RMSE) among all 

four methods. This implies that the expanded signals obtained using the quantum embedding method are 
effective for feature extraction. The DNN model with only three signals and the LSTM-DNN models 
performed worse than the general DNN with eight signals. As shown in Figure 7(b), the proposed QNN 
correctly classified 17 of the 20 test data and outperformed the other comparison models. The proposed 
QNN expands the dimensions of the input data and uses subsequent quantum operators, therefore it is 
helpful in data analyses to overcome input data issues.  

5 CONCLUSION AND FURTHER STUDY 

Quantum computing is a contemporary engineering discipline that has attracted much attention in 
recent years. Because it has several advantages with respect to representing information, the ability to 
expand dimensions and quantum operations is considered a representative characteristic. This study applies 
these characteristics to data analysis with input data issues. When the number of input data attributes is 
comparatively small, it is difficult to analyze the dataset. In real applications, this is limited to securing 
sufficient input attributes and data for various reasons. The proposed framework is useful in this context. 
Limited input data are expanded using the quantum embedding, and are used to extract more meaningful 
features with subsequent quantum operations. This study integrates a quantum technique with a DNN 
machine. In the QNN model, the quantum layers are located between the input layer and subsequent DNN 
layers. The quantum embedding layer and quantum phase operation layers perform dimensional expansion 
and dynamic conversion. Then, additional learnable parameters are updated using quantum operations and 
backpropagation. The effectiveness of the proposed framework was experimentally studied by comparing 
it with several existing DNN machines.  

This study considers a limited degree of quantum embedding and operations. Although there are 
numerous quantum dynamics and characteristics, more effective computations and analyses are required. 
In particular, in further studies, there is a need to consider entangled treatments among the correlated input 
attributes.  
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