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ABSTRACT 

Owing to the increase in computing power, large-scale agent-based modeling (ABM) has been increasingly 
used in various fields. However, a complete and detailed individual population is challenging to obtain 
because of confidentiality concerns. Thus, modelers must adopt population synthesis to emulate the joint 
distribution of individual-level attributes of the actual population in the region of interest. Traditional 
population synthesis methods often exhibit issues regarding scalability and sampling zero. Therefore, this 
paper presents the use of a deep generative model called the denoising diffusion probabilistic model to 
generate new samples. Our proposed method uses the characteristics of deep generative model of generation 
from noise to generate a synthetic population, including sampling zero. In the experimental results, the 
standardized root mean squared error of our proposed model performed 2.130, which outperformed 2.381 
of the deep learning-based population synthesis method, VAE, and 7.620 of the traditional population 
synthesis method, MCMC. 

1 INTRODUCTION 

Policy analysis is a complex process that considers various factors such as social and environmental aspects. 
Agent-based modeling (ABM) has emerged as a powerful tool for assisting policymakers in making 
informed decisions by narrowing the possible rational decisions that may be impractical and costly to test 
in the real world. An ABM is a complex system comprising an aggregation of autonomous agents within a 
controlled environment that independently make decisions based on predefined rules governing their 
behaviors (Bonabeau 2002; Wurzer et al. 2015). The use of ABM can assist researchers and policymakers 
in understanding the social heterogeneity across individuals within a population in a geospatial structure 
regarding the impact of different policies in the short, medium, or long term (Macal and North 2009). ABM 
can highlight the consequences of a policy design, which helps modelers understand the implicit etiology 
of the imposed policy on individuals or prognosticate various possible prospective scenarios that may 
unfold (Hammond 2015). 

Additionally, the primary input of an ABM is artificial agents or synthetic populations that represent 
individuals and households in a specified region of interest for localized analyses. The increasing amount 
of literature recognizes the importance of population synthesis in ABM in different fields such as 
epidemiology (Jung et al. 2017), transportation (Aziz et al. 2018), urban development (Liu et al. 2021), 
energy (Tröndle and Choudhary 2017), social studies (Vidyattama et al. 2013), and disaster management 
(Saadi et al. 2018). Two types of data are used to generate population synthesis: census data (marginal 
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information in the contingency table format) and microdata samples (individual information with detailed 
attributes). However, individual- and household-level data for the entire population in a given region of 
interest are often impossible to obtain because of privacy and confidentiality concerns. Because of this 
issue, only a limited percentage of population data is permitted in most countries. Some countries such as 
Switzerland have made their entire census datasets public (Gulshan et al. 2016).  

Population synthesis has traditionally been approached using synthetic reconstruction (SR), 
combinatorial optimization (CO), simulations-, and sample-free methods (Ye et al. 2017). SR uses 
information from the census and microdata samples to compute the weights of the joint distribution of the 
population in a given zone. CO is often used to allocate synthetic individuals to the right combination of 
households that best fits the marginals. The simulation-based method considers only the microdata sample 
and derives the joint distribution of all the attributes by approximating the probability for each combination. 
In most countries where microdata samples are unavailable, the sample-free approach aggregates various 
census data as inputs to estimate the marginal distributions and/or conditional distributions of partial 
attributes (Ye et al. 2017). In recent years, deep generative models have emerged, such as the variational 
autoencoder (VAE) (Borysov et al. 2019) and generative adversarial network (GAN) (Kim and Bansal 
2023). 

The traditional methods cannot effectively generate a synthetic population with many attributes due to 
the “curse of dimensionality” that creates the existence of disjoint probability distributions in a latent space. 
Thus, this case is referred to as a scalability problem. Another widely known challenge in population 
synthesis studies is the sampling zero issues (Choupani and Mamdoohi 2016; Fournier et al. 2021). 
Sampling zero can be defined as individuals with feasible attributes who are nonexistent in the original 
sample but exist in the actual population. Consequently, a model capable of generating individuals with a 
viable and unique combination of attributes, as in the original sample rather than a direct replication, is 
required to mimic the actual joint probability distributions of the population in the region. This study 
attempts to address these challenges.  

The main contributions of the paper are as follows: 
 
• We propose a new scalable and robust method for population synthesis based on the denoising 

diffusion probabilistic model (DDPM) (Ho et al. 2020) derived from deep generative modeling 
(DGM). To the best of our knowledge, the experimental work presented through the current study 
is the first to investigate how the DDPM generates a synthetic population.  

• Other DGM methods, such as the VAE, fail to provide consistent results, which will be thoroughly 
discussed in the latter section. We showed that the DDPM converged more consistently, exhibiting 
less variance when tested with three replicates.  

 
In Section 2, we present the relevant literature review. Section 3 describes the overall flow of population 

synthesis using a diffusion model. In Section 4, we present two experiments to prove the superiority of the 
diffusion-model-based synthetic population and the efficiency of covering the sampling zeros problem. 
Finally, Section 5 presents the conclusions and discusses directions for further research. 

2 RELATED WORKS 

2.1 Population Synthesis 

Traditionally, population synthesis has been approached using iterative proportional fitting (IPF) as 
introduced by Beckman et al. 1996. IPF involves two stages: fitting and allocation. In most cases, the 
availability of census data varies between population attributes based on spatial resolution or statistical area 
(SA) level. For instance, the joint distribution from the k-way cross-tabulation (CT) of k attributes of a 
given higher statistical area (SA) level may not be available; however, its marginal distributions can be 
obtained (seeds). In addition, other census data with lower SA  
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levels may contain the full CT, describing the population of a small group within the region mentioned 
above. Subsequently, in the fitting stage of the IPF, the CT of the higher SA level can be fine-tuned based 
on the information of multiple lower SAs levels using the IPF estimator and seed. Subsequently, the 
allocation stage generally involves the integration of cell weights into integers, and finally, allocating the 
individuals to a realistic household composition based on the population distribution (Ye et al. 2016). 
Although some studies have attempted to solve sampling zero problems using IPF by replacing the zero 
cell weights with an extremely small positive value (e.g., 0.001), this creates bias and generates synthetic 
individuals with infeasible combinations of attributes (structural zero) (Ye et al. 2017). Ideally, modelers 
desire a synthetic population that includes normal samples and sampling zeros, while keeping the structural 
zeros as few as possible (Kim and Bansal 2023) . 

Several studies have been conducted using the Markov-chain Monte Carlo (MCMC) simulation-based 
method to generate synthetic populations (Farooq et al. 2013; Casati et al. 2015; Gong et al. 2021). The 
fundamentals of MCMC are based on a stochastic probabilistic framework that draws samples from 
conditional distributions. The main advantage of MCMC is that it can handle sampling zeros and high-
dimensional data; however, it has an increased risk of being trapped in local minima during the initialization 
phase. In addition, MCMC can generate a synthetic population based on partial conditionals and can still 
outperform IPF. 

Another study used a probabilistic graphical model called the Bayesian network (BN) to generate a 
joint probability distribution function of a set of attributes selected through a scoring approach  (Sun and 
Erath 2015). They compared the performance of their BN method with that of other known methods, 
namely, IPF and MCMC. It was found that even when a small percentage of microdata samples were used, 
BN outperformed the other two methods. However, these two methods outperformed BN when the size of 
the microdata sample exceeded approximately 40% of the actual population, which was impossible to 
obtain. The authors extended their prior work by including household structures such as relationship status 
in a hierarchical manner (Sun et al. 2018). 

2.2 Deep Generative Model  

Recent trends in deep learning have led to an increasing number of DGM studies on population synthesis. 
Borysov et al. (2019) pioneered the use of a VAE to generate artificial agents, which have the potential to 
become a workhorse for large-scale ABM studies with detailed population characteristics. The VAE is built 
based on neural networks in the encoding and decoding layers and imposes a stochastic sampling procedure 
prior to the latent space. The primary purpose of imposing Gaussian noise prior to the latent space is to 
generate a smoother representation of the input data, rather than direct reconstruction. Therefore, the VAE 
can efficiently address sampling zero problems. The authors compared their proposed methodology with 
the other traditional generative models, such as MCMC and BN. To assess the superiority of VAE in dealing 
with the “curse of dimensionality” problem, they divided their experiment into three different cases of 
varying attribute sizes (4, 21, and 47) and discovered that the traditional generative models outperformed 
the VAE in a low-dimensional case. As the size of the attributes increased, VAE outperformed the others. 
One of the limitations of this study is that it does not consider the structural zero problems. Thus, individuals 
with nonrealistic combinations of attributes exist in the synthetic population. 

 Garrido et al. (2020) employed an extended version of the GAN, which is another DGM method, 
namely Wasserstein GAN (WGAN). The intuition behind GAN as a generative model is that the two neural 
networks (generator and discriminator) compete. The generator attempts to trick the discriminator by 
synthesizing false data based on the stochastic sampling process or Gaussian noise, and the discriminator 
attempts to distinguish between genuine and counterfeit data generated by the generator. Thus, the model 
can be trained to generate a synthetic population close to the actual joint population distributions. The 
authors compared the WGAN with the VAE and found that the VAE had more structural zeros than the 
WGAN in both low- and high-dimensional cases by 5% and 44%, respectively.  

Another variation of the VAE, Conditional-VAE (CVAE), was employed by Aemmer and MacKenzie 
(2022) to extend prior work by generating synthetic populations with both individual and household 
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attributes. Another study attempted to minimize the structural zero problem but maximized the sampling 
zeros. The authors adopted two metrics to measure the performance of the models in handling sampling 
and structural zero problems: the feasibility and diversity of the synthetic population (Kim and Bansal 
2023). 

2.3 Diffusion Model  

The diffusion model has received attention as a promising DGM since the release of the Stable Diffusion 
in 2022, which was developed through research on high-resolution image synthesis. The diffusion model 
involves two stages of processes: forward and reverse. In the forward process, data are transformed into 
noise, which gradually converts the complex probability distribution of the data into a simpler distribution 
that can be analyzed. In the reverse process, noise generates synthetic data and a deep-learning model trains 
the inverse transformation function to convert the simple probability distribution back into a complex one. 
As the inverse transformation function is used, the latent vector that extracts information maintains the 
same size as the dimensions of the data, enabling the storage of relatively more information in the data 
(Dong and Gao 2021). This enables the high-quality generation of unseen data that could not previously 
observed.  

Diffusion models can be classified into three main types: DDPMs, core-based generative models 
(SGMs), and stochastic differential equations (Score SDEs). DDPMs use Markov chains to propagate noise 
and have variational lower-bound objective functions. These properties provide the advantage of combining 
the characteristics of VAE and MCMC for the efficient optimization of DDPMs. SGMs focus on data 
sampling using data density scores instead of the log-likelihood of the data distribution during the process 
of transforming probability distributions. This facilitates accurate predictions, even in regions with sparse 
data in the data space, while considering the size of the data distribution. Finally, Score-SDEs are an 
extension of SGMs that use a score function over time instead of computing stepwise scores, enabling an 
infinite extension of the noise stages and the generation of continuous explicit functions over time. This 
facilitates the simulation of both data-generation methods in the DDPMs and SGMs. In this study, we 
performed population synthesis by applying DDPMs, which is the most basic model among the diffusion 
models. 

3 DIFFUSION MODEL-BASED POPULATION SYNTHESIS  

The process of population synthesis using the diffusion model is as follows. First, one-dimensional sample 
data of an individual are preprocessed and transformed into a two-dimensional square matrix, which is 
required for DDPMs. The diffusion model is then trained using a preprocessed square matrix for the forward 
and reverse processes. Once the training is complete, the reverse process of the trained model is used to 
generate the desired number of samples from the noise. After postprocessing, the samples are transformed 
back into the synthetic population.   

3.1 Data Preprocessing 

The sample data of individuals, typically used for population synthesis, are one-dimensional vectors, unlike 
the two-dimensional or three-dimensional image data matrices. Therefore, to perform training using DDPM, 
the individual format sample data must be converted to the matrix, because the generation part of the 
diffusion model relies on an image-based U-Net (Dong and Gao 2021). There are two methods of 
converting the one-dimensional population data vector to an image data format. The first method uses Mel-
frequency spectrogram or short-term Fourier transform for high dimensions (more than 40k dimension) or 
several repetitive signals data. The second method involves aligning individual sample data into a square 
matrix by adding padding. In this study, we aligned the sample data into a square matrix as the population 
data vector does not have high dimensions to draw a spectrogram and does not exhibit repetitive signals. 
The process of data preprocessing is illustrated in Figure 1. To transform each instance of the real population 
into a vector, the calculation of the square matrix size 𝑠𝑠 is necessary to accommodate all values of the 𝑓𝑓 
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features. 𝑠𝑠 × 𝑠𝑠  sized square matrix of is filled all feature values of a instance in order, and the rest with 0. 
We used zero padding to convert the sample data vector into a square matrix 𝑀𝑀𝑛𝑛 (𝑛𝑛 = 1, … ,𝑁𝑁) because it  

Figure 1: Illustration of real population data preprocessing. 

allows the values in certain parts of 𝑀𝑀𝑛𝑛  to be maintained at zero, which can reduce unnecessary 
computations during the training process. 
 

3.2 Diffusion Model Training 

Denoising Diffusion Probabilistic Model (DDPM) uses the propagation of noise through a Markov chain 
as a method of training, which not only shows a similar effect to models that use VAE multiple times but 
also has the advantage of being relatively robust in generating results with no loss of information due to the 
latent vector during the training process, unlike VAE (Yang et al. 2022). Despite the advantage of VAE-
based population synthesis models in discovering sampling zero data well, they cannot consistently 
discover sampling zero due to the inconsistency of VAE. To address this issue, this paper proposes a 
population synthesis model based on DDPM. To explain the population synthesis model of DDPM, the 
process can be divided into forward process which involves from the initial data state [𝑀𝑀𝑛𝑛]0 to gaussian 
noise [𝑀𝑀𝑛𝑛]𝑇𝑇 after 𝑇𝑇 steps and reverse process. DDPM processes are as the following Figure 2. 

Figure 2: Forward process and reverse process of DDPM using sample data.  
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In the forward process, the conditional distribution 𝑞𝑞([𝑀𝑀𝑛𝑛]𝑡𝑡|[𝑀𝑀𝑛𝑛]𝑡𝑡−1) is defined and used as the 
process of transforming Matrix-formed 𝑛𝑛𝑡𝑡ℎ individual data at initial state ([𝑀𝑀𝑛𝑛]0) into Matrix-formed 𝑛𝑛𝑡𝑡ℎ 
noise at 𝑇𝑇𝑡𝑡ℎ state ([𝑀𝑀𝑛𝑛]𝑇𝑇). The conditional distribution 𝑞𝑞 is as follows. 

 
      𝑞𝑞([𝑀𝑀𝑛𝑛]𝑡𝑡|[𝑀𝑀𝑛𝑛]𝑡𝑡−1) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁([𝑀𝑀𝑛𝑛]𝑡𝑡;�1 − 𝛽𝛽𝑡𝑡[𝑀𝑀𝑛𝑛]𝑡𝑡−1,𝛽𝛽𝑡𝑡𝐈𝐈)  
 
𝛽𝛽𝑡𝑡 is a hyperparameter that determines how much the state changes from the 𝑡𝑡𝑡𝑡ℎ state. 𝛽𝛽1 is a value that 

starts to cause noise in ([𝑀𝑀𝑛𝑛]0, so it starts small, and as the 𝑡𝑡 value increases, larger values are used to 
increase the possibility of gaussian noise. Using the defined conditional distribution 𝑞𝑞, the forward process 
that progresses 𝑇𝑇 steps can be expressed as follows. 

 
     ∏ 𝑞𝑞([𝑀𝑀𝑛𝑛]𝑡𝑡|[𝑀𝑀𝑛𝑛]𝑡𝑡−1)𝑞𝑞([𝑀𝑀𝑛𝑛]0)𝑇𝑇

𝑡𝑡 = 1 = 𝑞𝑞([𝑀𝑀𝑛𝑛]1, … , [𝑀𝑀𝑛𝑛]𝑇𝑇|[𝑀𝑀𝑛𝑛]0) 
 
     𝑞𝑞([𝑀𝑀𝑛𝑛]𝑡𝑡|[𝑀𝑀𝑛𝑛]0) = 𝒩𝒩([𝑀𝑀𝑛𝑛]𝑡𝑡;�𝛼𝛼𝑡𝑡���[𝑀𝑀𝑛𝑛]0,𝛼𝛼𝑡𝑡(𝟏𝟏 − 𝛼𝛼𝑡𝑡���)𝐈𝐈) 

 
         [𝑀𝑀𝑛𝑛]𝑡𝑡 =  �𝛼𝛼𝑡𝑡���[𝑀𝑀𝑛𝑛]0 + �𝟏𝟏 − 𝛼𝛼𝑡𝑡���𝜖𝜖           

 
where 𝛼𝛼𝑡𝑡 = 1 − 𝛽𝛽𝑡𝑡  𝑁𝑁𝑛𝑛𝑎𝑎 𝛼𝛼𝑡𝑡��� =  ∏ 𝛼𝛼𝑠𝑠𝑡𝑡

𝑠𝑠=1 . 
 
In the reverse process, the conditional distribution 𝑝𝑝𝜃𝜃([𝑀𝑀𝑛𝑛]𝑡𝑡−1|[𝑀𝑀𝑛𝑛]𝑡𝑡) that will be discovered through 

the deep learning model training process is defined through the trainable model 𝜃𝜃. 
 

 𝑝𝑝𝜃𝜃([𝑀𝑀𝑛𝑛]𝑡𝑡−1|[𝑀𝑀𝑛𝑛]𝑡𝑡) = 𝒩𝒩(�𝑀𝑀𝑛𝑛]𝑡𝑡−1;𝜇𝜇𝜃𝜃([𝑀𝑀𝑛𝑛]𝑡𝑡 , 𝑡𝑡)), Σ𝜃𝜃([𝑀𝑀𝑛𝑛]𝑡𝑡, 𝑡𝑡))� 
 

where 𝑝𝑝([𝑀𝑀𝑛𝑛]𝑇𝑇) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁([𝑀𝑀𝑛𝑛]𝑇𝑇; 0, 𝐈𝐈). 
 
Therefore, DDPM is trained through the following variational lower bound objective functions in the 

forward and reverse processes. 
 

𝐿𝐿 = 𝐿𝐿𝑇𝑇 + 𝐿𝐿1:𝑡𝑡 + 𝐿𝐿0 
 

where 𝐿𝐿𝑇𝑇 = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞([𝑀𝑀𝑛𝑛]𝑇𝑇|[𝑀𝑀𝑛𝑛]0||𝑝𝑝𝜃𝜃([𝑀𝑀𝑛𝑛]𝑇𝑇), 𝐿𝐿0 = − 𝑁𝑁𝑁𝑁𝑙𝑙𝑝𝑝𝜃𝜃([𝑀𝑀𝑛𝑛]0|[𝑀𝑀𝑛𝑛]1)), and 
𝐿𝐿1:𝑡𝑡 = ∑ 𝐷𝐷𝐾𝐾𝐾𝐾𝑇𝑇−1

𝑡𝑡=1 (𝑞𝑞([𝑀𝑀𝑛𝑛]𝑡𝑡−1|[𝑀𝑀𝑛𝑛]𝑡𝑡, [𝑀𝑀𝑛𝑛]0||𝑝𝑝𝜃𝜃(�𝑀𝑀𝑛𝑛]𝑡𝑡−1|[𝑀𝑀𝑛𝑛]𝑡𝑡)� which are the loss functions of each 
step from 0 to 𝑇𝑇. 

3.3 Post-processing using Census Data 

The data generated by the reverse process of DDPM include sampling zeros as well as structural zeros. 
Structural zeros refer to infeasible sample data where values appear in combinations of features that cannot 
exist in real world but cannot be classified as an outlier, such as the data wherein children under 10 years 
of age have children or where the number of family members is negative. A structural zero arises when the 
probability of generating a sample by the generative model becomes greater than zero and the DDPM itself 
does not have the means to discard it (Yang et al. 2022). Therefore, this study proposes a rule-based 
postprocessing method that utilizes constraints generated from the census (or statistical data) of real data to 
remove structural zeros from the generated results. 

The features that primarily cause structural zeros are numerical values recorded as continuous or 
discrete. This is because it is impossible to use the upper and lower bounds of the numerical values in the 
DDPM. Information on the upper and lower bounds of the numerical values can be easily found in the 
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census data. Therefore, bins for numerical features that collect only nonstructural zero data were created 
from the census data. The bins for 𝑁𝑁𝑡𝑡ℎ numerical feature (𝐵𝐵𝐵𝐵𝑛𝑛(𝑓𝑓𝑚𝑚)) are expressed as follows. 
 𝐵𝐵𝐵𝐵𝑛𝑛(𝑓𝑓𝑚𝑚) = {(𝑁𝑁𝑓𝑓𝑚𝑚,𝑘𝑘 ,𝑢𝑢𝑓𝑓𝑚𝑚,𝑘𝑘)|∀𝑘𝑘, 𝑁𝑁𝑓𝑓𝑚𝑚,𝑘𝑘 = max(𝑓𝑓𝑚𝑚)−min(𝑓𝑓𝑚𝑚)

𝐾𝐾
∗ (𝑘𝑘 − 1),𝑢𝑢𝑓𝑓𝑚𝑚,𝑘𝑘 = max(𝑓𝑓𝑚𝑚)−min(𝑓𝑓𝑚𝑚)

𝐾𝐾
∗ 𝑘𝑘}  

 
where 𝑘𝑘 is the hyperparameter for the number of bin components, and max(𝑓𝑓𝑚𝑚) and min(𝑓𝑓𝑚𝑚) are obtained 
from the census data rather than the sample data. 

The algorithm of the DDPM-based population synthesis model that performs post processing from the 
data pre-processing process to the bins generated by the census data is as follows. 

 
Algorithm 1 DDPM-based Synthetic Population Method 
Input :  

Real Population 𝑃𝑃𝑅𝑅 
Output : 

Synthetic Population 𝑃𝑃𝑆𝑆 
Option : 

Total number of synthetic population SP 
Matrix form data of 𝑛𝑛𝑡𝑡ℎ instance 𝑀𝑀𝑛𝑛 
Total Number of Features in Real Data 𝐹𝐹 

1. # Data preprocessing 
2. For 𝐵𝐵 in range(len(𝑃𝑃𝑅𝑅)): 
3.    s = 0 
4.    While (𝑠𝑠2 < 𝐹𝐹): 
5.        s = s + 1 
6.    𝐼𝐼𝑛𝑛 =  𝐼𝐼𝑛𝑛 + 𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁𝑠𝑠(𝑠𝑠2 − 𝐹𝐹) 
7.    𝑀𝑀𝑛𝑛 = 𝐼𝐼𝑛𝑛. 𝑁𝑁𝑧𝑧𝑠𝑠ℎ𝑁𝑁𝑝𝑝𝑧𝑧(𝑠𝑠, 𝑠𝑠) 
8. End For 
9. # DDPM Model training 
10. For 𝑀𝑀𝑛𝑛 in range(len(𝐼𝐼𝑛𝑛)): 
11.    [𝑀𝑀𝑛𝑛]0~𝑞𝑞([𝑀𝑀𝑛𝑛∈𝑁𝑁]0) 
12.    𝑡𝑡~𝑈𝑈𝑛𝑛𝐵𝐵𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁({1, … ,𝑇𝑇}) 
13.    𝜖𝜖~𝒩𝒩(0, 𝐼𝐼) 
14.    Optimize on Loss 𝛁𝛁𝜽𝜽||𝝐𝝐 − 𝝐𝝐𝜽𝜽(�𝜶𝜶𝒕𝒕����𝑴𝑴𝒏𝒏]𝟎𝟎 + �𝟏𝟏 − 𝜶𝜶𝒕𝒕���𝝐𝝐, 𝒕𝒕�||𝟐𝟐   
15. End For  
16. # Sample Generation  
17. [𝑀𝑀𝑛𝑛]𝑇𝑇~𝒩𝒩(0, 𝐼𝐼) 
18. For n in range(SP):  
19.    For 𝑡𝑡 in [T,…,1]: 
20.       𝑧𝑧~𝒩𝒩(0, 𝐼𝐼) 
21.       Generate [𝑀𝑀𝑛𝑛]𝑡𝑡−1 = 1

�𝛼𝛼𝑡𝑡
([𝑀𝑀𝑛𝑛]𝑡𝑡−1 −  1−𝛼𝛼𝑡𝑡

�1−𝜶𝜶𝒕𝒕���
𝑧𝑧𝜃𝜃([𝑀𝑀𝑛𝑛]𝑡𝑡 , 𝑡𝑡) + 𝜎𝜎𝑡𝑡𝑧𝑧 

22.    End For 
23.    # Post Processing 
23.    If [𝑀𝑀𝑛𝑛]0 not in 𝐵𝐵𝐵𝐵𝑛𝑛(𝑓𝑓𝑚𝑚) for all 𝑁𝑁 
24.       GOTO LINE 19 
25.    𝑂𝑂𝑛𝑛 = [𝑀𝑀𝑛𝑛]0 
26. End For 
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4 EXPERIMENTS AND PERFORMANCE EVALUATION 

In this paper, we conducted experiments by increasing the number of samples in the training data to 
demonstrate the superiority of the Diffusion model-based population synthesis method. The code used in 
this paper is available at https://github.com/Ninekrad/PopulationSynthesis. Due to the higher training cost 
during the sampling process in the Diffusion model compared to other models, we did not perform optimal 
hyperparameter tuning as mentioned by Cao et al. (2022). Instead, we used the default hyperparameters 
provided in the Diffusion model example from Keras (https://keras.io/examples/generative/ddpm/) for 
training. To increase the probability of transforming data into simple gaussian noise, the 𝛽𝛽𝑡𝑡  parameter, 
which adds noise to the data during the Forward Process, was gradually increased from 1e-4 to 0.02. The 
total step of the process was set to 1000. Among the hyperparameters required for deep learning training, 
the epoch was set to 300, the learning rate to 0.003, and the optimization algorithm for the loss function 
was set to AdamW. Diffusion model training was performed on Google Colab, using the A100 GPU. 

4.1 Data Description  

In this study, experiments were conducted based on the 2% microdata sample (A-type data consisting of a 
2% detailed sample of the total population of Korea) from the Korea Statistics (KOSTAT) Department. The 
2% microdata sample contained data on 927,843 individuals and comprised the features listed in Table 1. 
 

Table 1: Summary of population features of the 2% microdata samples. 
# Name Type Number of values Description 

1 PlCode Categorical 17 Code for Province 

2 PsCode Categorical Varies according 
to PlCode. 

Code for city in Province 

3 Sex Categorical 2 (1) Male; (2) Female 

4 Age Numerical 
(integer) 

86 (0-84) Individual’s age; (85) Age 85+ 

5 P1 Categorical 3 Type of commuting: (0) does not commute; (1) 
commute within the residential area; (2) commute 
outside the residential area 

6 P2 Categorical 18 Commuting place: (0) same as the residential area; 
the rest of the values are the same as PlCode. 

7-16 T1-T10 Indicator 2 for each Type of transportation for commuting: subway, 
car, and shuttle bus 

17 TH Numerical 
(continuous) 

- Commuting time (hours) 

18 TM Numerical 
(continuous) 

- Commuting time (minutes) 

 

4.2 Experimental Results 

To compare the performance of the population synthesis model using DDPM with other representative 
population synthesis methods, such as MCMC and VAE. MCMC is a representative generative method 
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used in large-scale population synthesis models (Farooq et al. 2013; Casati et al. 2015; Gong et al. 2021), 
and VAE is the first deep learning model-based population generation method (Borysov et al. 2019).  

Therefore, they serve as suitable benchmarks to demonstrate the superiority of our proposed model. To 
assess the similarity between the synthesized populations and the actual populations, we compared them 
using the standardized root mean square error (SRMSE) measure. Additionally, we measured the shortest 
distance between the synthesized populations and the actual populations to demonstrate the feasibility of 
the synthesized results. SRMSE is evaluated the difference between the predicted and actual values based 
on the joint probability distribution handled in each study (Borysov et al. 2019; Kim et al. 2022; Kim and 
Bansal 2023). A lower SRMSE indicates a higher level of similarity. 

 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅(𝜋𝜋,  𝜋𝜋�) = 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅(𝜋𝜋, 𝜋𝜋�)
𝜋𝜋�

=
�∑ �𝜋𝜋(𝑘𝑘,𝑘𝑘`)−𝜋𝜋�(𝑘𝑘,𝑘𝑘`)�

2/𝑁𝑁𝑏𝑏(𝑘𝑘,𝑘𝑘`)

∑ 𝜋𝜋(𝑘𝑘,𝑘𝑘`)(𝑘𝑘,𝑘𝑘`) / 𝑁𝑁𝑏𝑏
   

where 𝜋𝜋 and 𝜋𝜋� are the categorical distributions of real population and the synthesized data respectively. 𝑁𝑁𝑏𝑏 
is the total number of category combinations, which is calculated The number of cases for all combinations 
of different features 𝑘𝑘,𝑘𝑘. 

The experimental results are summarized in Table 2. As shown in Table 2, the distribution of the data 
generated by our proposed model is closer to the distribution of the real population sample data than the 
data generated by the MCMC. In the experimental results of each model, the best results were indicated in 
bold font depending on the number of samples. This demonstrates that our proposed model performs 
equally well in population synthesis as it does as an image generation model. Additionally, in numerous 
cases, the average marginal RMSE and bivariate RMSE of our proposed model were comparable to or 
superior to the marginal RMSE and bivariate RMSE of VAE. Average and standard deviation between the 
nearest real population instance and the synthetic population were evaluated slightly higher than MCMC 
for both our proposed model and the VAE model, because DGM models generate the case of sampling 
zero. This indicates that although the diversity of the distribution of data generated by our proposed model 
is relatively lower than VAE, our proposed model is relatively feasible because it can generate real 
population-like results. 

 
 Table 2: Evaluation results of synthesized data with models and the number of samples. 

Model # Samples Marg. 
SRMSE 

Bivar. 
SRMSE 𝝁𝝁𝑹𝑹−𝑺𝑺 𝝈𝝈𝑹𝑹−𝑺𝑺 

Traditional 
Model MCMC 

10000 7.536 16.524 0.1215 0.1057 
100000 7.594 16.538 0.1286 0.1083 
500000 7.683 17.253 0.1247 0.1073 

1000000 7.666 17.685 0.1263 0.1075 
Average 7.620 17.000 0.1253 0.1072 

Deep 
Learning-

Based 
Model 

VAE 

10000 2.066 4.553 0.2256 0.1258 
100000 2.213 4.952 0.2172 0.1158 
500000 2.992 5.912 0.2022 0.1178 

1000000 2.252 5.121 0.2219 0.1485 
Average 2.381 5.135 0.2167 0.1270 

Our 
Approach 

10000 2.249 4.826 0.1816 0.1077 
100000 1.904 4.235 0.1770 0.1051 
500000 2.214 4.752 0.2215 0.1261 

1000000 2.154 4.532 0.1810 0.0918 
Average 2.130 4.586 0.1903 0.1076 
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The superior DDPM was also evaluated for the presence of sampling zero in the generated data through 
postprocessing. In this experiment, only age was used as a constraint, and the ratio of synthetic population 
data generated by the DDPM to the actual population sample data was compared and can be visualized in 
Figure 3. Under the category of age (upper left of Figure 3), it was confirmed that data were generated even 
from the data distribution that was not used for training (right panel). Although the SRMSE with unused 
population sample data was not significantly measured, considering that generating data was impossible 
with methods other than the existing DGM method, the results were considered sufficiently significant. 

 
Figure 3: Comparison of the ratio between Real data (blue) and Synthesized data using Diffusion 

Model (green). 

5 CONCLUSION AND FUTURE WORKS 

In this study, we implemented the diffusion model, known as the most advanced deep learning method in 
the field of imaging, for population synthesis. We confirmed that by utilizing the excellent unobserved data 
generation capability of the diffusion model, we can partially address the sampling zero problem, and that 
the exceptional feature generation capability of deep learning can also address the scalability issue. 
Furthermore, this study demonstrated that deep learning models that perform well in specific fields can 
provide meaningful results in other generative tasks. Although, this study has some limitations. First, to 
solve the sampling zero problem, bins were used to eliminate structural zeros; however, a large amount of 
prior information related to the population is required to create the bins. In this study, only significant 
information related to age was obtained from the census, which resulted in a limited number of possible 
bins. Second, only individual-level population synthesis was attempted; household-level population 
synthesis was not performed. Using household features with various values in the feature engineering 
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process for deep generative models increases the computational complexity, inhibiting the accuracy of the 
learning process of the model. Therefore, future research will focus on developing data preprocessing 
techniques that use household features to create a complete population synthesis model. Additionally, 
because the performance of the DDPM is comparable to that of the VAE, we plan to train a population 
synthesis model using score-SGD, which can be used irrespective of the feature type, to develop a 
generalized population synthesis model. 
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