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ABSTRACT

The Singular Value Decomposition (SVD) algorithm is ubiquitous in many fields of science and technology.
It may be used embedded into other advanced algorithms, solvers or data processing chains. In those scenarios
dealing with large data volumes expressed as a huge matrix, there is a need for parallel SVD versions to
process it efficiently. We present some ideas and results obtained within the PETSc framework, which
enable to design promising HPC scalable solvers. The focused SVD implementations have been taken
from the SLEPc library, which is seamless plugged into PETSc to extend its capabilities. Besides its
implementation, there is also a randomized-SVD and some wrappers to interface ScaLAPACK and others
packages intended to extract singular triplets. This work assesses the strong scaling behaviour attained
with these SVD implementations at extracting the leading singular values of a population of both sparse
and dense squared matrices. A comparison of performance is provided.

1 INTRODUCTION

The SVD algorithm has a long history with fundamental improvements over the last decades (Dongarra
et al. 2018), and has become a keystone in many fields demanding scientific computing: computational
chemistry, astronomy, neuroscience, finance, plasma physics or fluid mechanics among others. Typically,
preprocessed, recasted data into a matrix entity must be analyzed in terms of their spectral content, which
is efficiently done with the SVD. The target matrix may be rather different regarding its properties and
computing requirements: sparse or dense; tall-skinny or fat-shaped; and well-conditioned vs. very ill-
conditioned. This leads to a vast scenario of cases. Each of the mentioned types is commonly linked to a
specific science or technological discipline among those reported above.

One example of demanding computing resources and of interest to our research groups is the embedded
SVD solver in the Dynamic Mode Decomposition (DMD) tool (Taira et al. 2020), intended to isolate
the persistent coherent structures of complex fluid flows, so making easier the flow understanding. In
particular, that SVD version processes dense matrices that comprise ordered spatio-temporal data produced
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by either time-consuming numerical simulations or by Particle Image Velocimetry (PIV)-based experiments,
in which high-rate spatio-frequency sampling is done with optical sensors (Discetti and Coletti 2018). The
resulting data-driven entity is a rather large, dense, tall matrix obtained with state-of-the-art tomographic
PIV sensors, which may reach several terabytes of storage previous to its SVD processing. Thus, a need
for parallel computing is clear because of the intrinsic requirements to deal with such a volume of data.
Hence, efficient SVD algorithms should be applied (even because data must fit in the distributed memory
of the cluster).

Another promising scenario is to build new preconditioners based on the randomized SVD (Halko et al.
2009; Martinsson 2018) because of its computing economy, then to improve the convergence in iterative
solvers applied to large linear systems of equations. Besides accelerating the time-to-solution, other gains
may be a better scalability and resilience (Moríñigo et al. 2022). These metrics are key aspects in the
design of state-of-the-art solvers at present, as it is the case of communication-avoiding Krylov solvers.
Besides, it should be noted that these ideas are much relevant for solvers executed on large computing
facilities, more so now that petascale supercomputers are giving way to those of the exascale era.

This investigation explores the performance of the CPU-based SVD implementations available in the
Portable, Extensible Toolkit for Scientific Computation (PETSc) framework (Mills et al. 2021) extended
with the Scalable Library for Eigenvalue Problem Computations (SLEPc) library (Román et al. 2022),
which provides itself the SVD infrastructure. The strong scaling behaviour is analysed with a set of sparse
matrices taken from the sparse matrices repository Suite Sparse Matrix Collection (Davis and Hu 2011),
and with a set of dense matrices, synthetically generated with specific spectral properties. This population
of matrices comprises a wide variety of situations in terms of different mathematical properties.

This article is structured as follows. Next, the computing framework PETSc-SLEPc, which provides
the parallel SVD infrastructure, is shortly described. This section includes a schematic introduction to the
algorithmic variants of the SVD applied to the matrices. Section 3 presents the population of sparse and
dense matrices used in the tests, pointing at some relevant details about their selection and generation (the
latter in the case of the dense matrices). Performance metrics for the strong scaling tests, description of
the computing cluster at CIEMAT, as well as the main parameters settings are also provided. Section 4
summarizes the results and discussion arising around the set of strong scaling performance plots. Section
5 places this contribution in context within the related work. Finally, some conclusions are given.

2 SVD SOLVERS

2.1 PETSc–SLEPc Framework

PETSc consists of a suite of libraries written in C that are the building blocks for the implementation of
large-scale application codes in serial and parallel, which permits easy customization and the extension of
both algorithms and implementations. It has parallel linear and nonlinear solvers, and time integrators. As
well, it provides the functionality needed within parallel application codes, by means of advanced matrix
and vector assembly routines that store, distribute and operate specifically on sparse and dense entities to
speedup the computations. This is implemented within its framework in an efficient way by exploiting the
C-structures to contain both data and function pointers for operations on the data (similar to C++ classes).
PETSc uses the MPI standard for all message-passing communications for distributed computing and recent
versions start to include GPU-based functions (several algorithms have been already ported). Also, it is in
an underway effort to take advantage of modern architectures (Mills et al. 2021). Since PETSc is designed
to support mostly iterative solvers, its native SVD algorithm is constrained to serial (for direct solving of
moderate linear systems of equations), with no parallel counterpart included. Optimally, PETSc interfaces
a variety of numerical algebra libraries, among them it is SLEPc, which provides several SVD solvers.

SLEPc is a library for the solution of large sparse eigenproblems and other problems such as the
computation of partial singular value decomposition of rectangular sparse and dense matrices on parallel
computers. It also provides solvers for the computation of the action of a matrix function on a vector by a
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Krylov method. The implemented formulations and techniques put the emphasis on problems in which the
associated matrices are sparse, as those resulting from the discretization of partial differential equations.
But in addition, it provides wrappers and interfaces with other external software packages to carry out
parallel SVDs on large dense matrices to extract both singular values and vectors. This is the case of
ScaLAPACK (Blackford et al. 1997) and PRIMME (Wu et al. 2017) libraries. SLEPc is built on top of
PETSc and works as a seamless extension since it enforces the same programming paradigm following the
PETSc’s object-oriented style, then supporting the same level of abstraction and an equivalent low-level
design of C-structures (such as Mat and Vec for matrix and vector manipulation, respectively).

2.2 SVD Implementations

Next, the set of SVD solvers used in the strong scaling tests are succinctly introduced. Due to extension
limits, mathematical details are reduced to a minimum. Exhaustive information can be found in the user’s
manual of the respective libraries and the formulation is described in many texts, e.g. in (Trefethen and
Bau 1997). A separated and somehow more detailed subsection corresponding to the SVD version based
on the randomization techniques is given because of its prominent potential in recent applications.

The SVD of an m×n matrix A corresponds to A =UΣV ∗, where U = [u1,u2, ...um] is an m×m unitary
matrix (U∗U = I), whose columns are the left singular vectors; V = [v1,v2, ...vn] is an n×n unitary matrix
(V ∗V = I), whose columns are the right singular vectors; and Σ is an m×n diagonal matrix with real entries
called singular values of A, that is Σii = σi for i = 1,2, ...min(m,n) (illustrated in Figure 1a). If A is real,
then U and V result to be real and orthogonal (U∗ =UT ,V ∗ = V T ). In the general case of a non-square
matrix A with m ≫ n, the resulting factorization (sometimes called thin SVD) exploits the slenderness
of the matrix, then U collapses into an m× n matrix (depicted in Figure 1b), so the factorization reads
A =UnΣnV ∗

n . Here, the n singular triplets correspond to (σi,ui,vi) for i = 1,2, ...n.

2.2.1 Formulations for Sparse Matrices

The computation of the SVD of a matrix can be done with an equivalent eigenvalue problem setup in
SLEPc, recasting the matrix A conveniently to extract its singular triplets:

1. The cross product matrix method builds the matrix A∗A or AA∗.

2. The cyclic matrix method builds the matrix H(A) =
[

0 A
A∗ 0

]
.

The default solver in SLEPc is the one using the cross product matrix (cross) as mentioned above.
It is noticed that the resulting matrix may be quite different when A is a rectangular matrix m× n with
m ≫ n. SLEPs selects the minimum size matrix from both options. This has several implications regarding
the number of singular values that can be computed because of the size of Σ. Besides, there is a loss of
accuracy in computing the smallest singular values by applying the cross method. On the other hand, the
eigendecomposition of H(A) of the cyclic matrix method outputs singular values that are not squared, then
the smallest computed values will be more accurate. The expense of this approach is an extra computing
cost compared to the cross method. Hence, though the cross product matrix method tends to be a fastest
and most memory-efficient approach for the standard SVD, it is only appropriate when the leading singular
values are searched for.

Besides the cross and cyclic SVD solvers, other specific, robust formulations available in SLEPc are
two Lanczos-type solvers: the so-called Lanczos and the thick-restart Lanczos, both for very large, sparse
matrices in parallel computers. Basically, the Lanczos method (lanczos) is a two-stage algorithm. Taking
the decomposition A = PBQ∗ (being P and Q unitary matrices, and B an m×n upper bidiagonal matrix),
the built tridiagonal matrix B∗B is unitarily similar to A∗A (notice that it is unnecessary to build B∗B
explicitly to extract the singular values as there are numerical methods to do this directly from B). Hence,
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Figure 1: SVD factorization of a rectangular matrix A: standard SVD (left); and thin SVD version (right),
typically done for m ≫ n.

expressing the SVD of B as XΣY ∗ immediately leads to state the factors U = PX and V = QY . The first
stage of this algorithm is iterative and corresponds to the bidiagonalization of A that, in general, can be
performed using Householder transformations or via Lanczos recurrences (the latter is better intended for
sparse matrices). The iteration sequence typically requires a number of Lanczos steps, say k-steps, to build
the bidiagonalization. And this implies a computing cost that can be rather high if many singular triplets
are requested. In addition, the convergence is highly dependent on the matrix properties, that is on the
distribution of singular values and presence of clustered singular values.

The thick-restart Lanczos (trlanczos) method is a variant of the above mentioned formulation. It
exploits the restarting mechanism, which is a fundamental idea of the projection-based eigensolvers (i.e.,
Arnoldi or Jacobi-Davidson ones), and conducts one-sided or two-sided reorthogonalization via iterated
Classical Gram-Schmidt orthogonalization as part of the process of bidiagonalization, since it demonstrates
an improved scalability. In particular, the thick-restart concept is an alternative way and easier to implement
than the pure explicit or implicit restarting mechanism used in the Lanczos-based SVD solver. In trlanczos,
a lower number of k-steps is carried out over the convergence sequence. Under this approach, a set of l ≤
k singular triplets can be extracted from the matrix A. The description of the parallel implementation of
both Lanczos variants can be found in Hernández et al. (2008) and Alvarruíz et al. (2022).

2.2.2 Formulations for Dense Matrices

Two SVD solvers are considered: function pdgesvd of ScaLAPACK; and function dprimme_svds of
PRIMME, applied to real matrices, both accessed through the SLEPc interface. ScaLAPACK is a mature,
widely used numerical algebra library in permanent development by the research community and has become
a referential software for computing itself and performance comparison with other algorithms. On the
contrary, PRIMME is a more recent library with a smaller community of users. It provides preconditioned
solvers for large-scale eigenproblems and SVD factorization of sparse and dense matrices. It is based on
Davidson-type methods and permits the computation of a small number of singular triplets (σi,ui,vi).

2.2.3 Randomized-SVD in SLEPc for Sparse and Dense Matrices

The randomized-SVD (in short, rsvd) is a solver that computes the singular triplets in an approximate
way by using a low-rank representation of A, built with randomized linear algebra techniques (Halko et al.
2009; Martinsson 2018). The rsvd implementation of SLEPc has a low-rank approximation that can be
controlled by setting the size of the vector basis ncv (the condition ncv ≥ 2 ·nsv must be fulfilled due to
accuracy concerns, being nsv the requested number of singular values). The version in SLEPc is iterative
and convergence is stated either when the prescribed tolerance condition is fulfilled or the maximum number
of iterations is reached. Both parameters should be selected with care to balance the computing cost and
attained accuracy of the singular triplets because within the iterative block some time consuming operations
(i.e., matrix-matrix and matrix-vector multiplications) are performed.
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3 BENCHMARKING SETUP AND METHODOLOGY

The library versions correspond to PETSc v3.18.3 and SLEPc v3.18.1. Other packages installed as external
modules of PETSc are MPIch v4.0.2 and ScaLAPACK v2.2.1. For SLEPc, PRIMME 3.2 has been included
at the configuration stage. The installation of SLEPc is straightforward once PETSc environment has been
set since its configure inherits the PETSc setup parameters (only the installation of PRIMME as external
module should be added to its default configuration command).

Compilation has been done with the GNU compilers v4.8.5 using the -O2 flag for optimization.
Initial tests with aggressive compilation (flag -O3) were conducted for comparison purposes, but finally
discarded because the obtained speedup figures were rather similar and this benchmarking is intended to
be continued with the development of solvers under -O2 optimization to avoid possible conflicts. All
libraries and modules have been compiled with 32-bit (default) arithmetic (the largest sparse matrices taken
from the sparse matrix repository (Davis and Hu 2011) can be adequately managed with it, hence used
in the tests). But for dense matrices, the 32-bit arithmetic is more restrictive because the largest set of
matrix elements to index implies a maximum square matrix size of about n ≈ 46,000. This constraint has
settled the criterion for dense matrices generation in the present approach. The scaling tests have been
executed in cluster ACME located at CIEMAT (Rodríguez-Pascual et al. 2019) and managed under Slurm.
An homogeneous partition of 10 nodes, each comprising 2 Intel Gold 6138 processors (20 cores/CPU)
@2.0 GHz, with 192 GB RDIMM memory has been used. Dedicated access to the queue is enforced
with the exclusive command of Slurm, to ensure no interference with other users occur during the
benchmarking campaign. Hence, the largest MPI-based parallelization carried out in ACME corresponds
to 400 MPI ranks (each one allocated in a dedicated core; multithreading is disabled). Jobs submission in
batch mode and postprocessing have been automatized as much as possible.

3.1 Sparse Matrices

In total 17 square, real, sparse matrices have been selected from the Suite Sparse Matrix Collection
repository, see Table 1. Mostly, they derive from modelling (PDEs discretizations) real world applications
and exhibit a variety of size and sparsity, bringing a comprehensive subset of cases.

3.2 Dense Matrices with Prescribed Properties

In total 16 square, dense matrices of Gaussian numbers have been generated synthetically with prescribed
condition number and singular values distribution for each A size: n = 6,400, 12,800, 25,600 and 46,080
(all them multiple of 2p with p = 1,2, ...). For each size, two condition numbers (κ(A) = 102 and 104)
and two singular values distributions (arithmetic and geometric decreasing laws) have been prescribed.
The combination of n, κ(A) and decreasing laws provides the mentioned population of matrices. Matrix
acronym follows the rule [Law][Size][κ(A) exponent], where [Law] = ari, geo; [Size] = 6,400, 12,800,...;
and [exponent] = 2, 4 (e.g., n = 12,800, geometric law, and κ(A) = 104 is geo12800k4).

3.3 Execution Parameters

Input of Matrix files to PETSc has been accomplished in two steps: a human-readable standard MatrixMarket
format file is generated; then, it is converted to PETSc binary format to be read by the SVD-solver. Relative
tolerance is set to 10−7 and the leading ten singular values are requested (no singular vectors) in the setup.
These are stored as part of the code output for performance comparison.

Computing time corresponds, in strict sense, to the SVD solver object execution, thus not considering
the time invested in other support data structures and SVD objects setups. Each execution has been repeated
three times and then the mean calculated. Distribution of MPI processes over the cluster CPUs has been
enforced with the cyclic flag of Slurm, set in the batch script. In addition, each SVD solver is controlled
via specific command line parameters included in the batch file.
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Table 1: Set of sparse matrices used in the strong scaling tests. Number of non-zeroes nnz and sparsity
percentage are indicated . Matrices are classified according to the number of rows n (the largest at the end).

Name n nnz Sparsity(%) Application kind
ex35 19,716 227,872 0.059 Computational Fluid Dynamics (CFD)

Ill_Stokes 20,896 191,368 0.044 CFD Problem
ABACUS_shell_ud 23,412 218,484 0.040 Model Reduction Problem

af23560 23,560 460,598 0.083 CFD Problem
viscoplastic2 32,769 381,326 0.036 Materials Problem

Onetone1 36,057 335,552 0.026 Frequency Domain Circuit Simulation
Ga10As10H30 113,081 6,115,633 0.048 Quantum Chemistry

PR02R 161,070 8,185,136 0.032 CFD Problem
RM07R 381,689 37,464,962 0.026 CFD Problem

pre2 656,033 5,834,044 0.0013 Frequency Domain Circuit Simulation
boneS10 914,898 40,878,708 0.0049 Model Reduction Problem
HV15R 2,017,169 283,073,458 0.0069 CFD Problem

Bump_2911 2,911,419 127,729,899 0.0015 2D/3D Problem
Queen_4147 4,147,110 316,548,962 0.0018 2D/3D Problem

nlpkkt160 8,345,600 225,422,112 0.00032 Optimization Problem
nlpkkt200 16,240,000 440,225,632 0.00017 Optimization Problem
nlpkkt240 27,993,600 760,648,352 0.000097 Optimization Problem

4 RESULTS AND DISCUSSION

Experiments with sparse matrices reveal that the speedup quickly deteriorates for small to moderate size n.
This is explained by the low CPU occupation per core in parallelizations, that is the few degrees-of-freedom
assigned per MPI rank (do f s/rank) in the solving process. One example of this is shown in Figure 2 for
matrix pre2 with sparsity = 0.0013%. Interestingly, it is observed that with about 10 MPI ranks all the
speedup curves experience a visible slope bend, which may be attributed to memory contention issues (it
is stressed that benchmarking has been addressed with 10 nodes of the cluster ACME and enforced MPI
ranks distribution over the cluster. Hence, when the MPI ranks of the parallelization > number of nodes,
various processes are allocated in the same CPU and typically request access to identical RAM addresses,
causing contention). In addition to the small speedup observed in small size sparse matrices, this behaviour
seems to be common and the location of a curve bend is clearly visible in most cases.

Performance plots of three additional sparse matrices are included in Figure 2 corresponding to much
larger ones (notice that matrix nlpkkt240 is the largest matrix analyzed in the present investigation). It is
seen that they improve the speedup notably, in agreement with what is desirable when higher CPU load
per core occurs in the computation. Parallelization over 64 MPI ranks (even up to 400 MPI ranks for the
matrix nlpkkt240) seems to be optimal for these sizes. It should be said that the speedup curve computed
with every SVD version approaches the ideal one as nnz increases (which means that a larger do f s/rank
has been accommodated). This effect is also visible in the respective parallel efficiency plots, which exhibit
better efficiency values over a wider range of MPI ranks. Furthermore, the performance variation among
the tested SVD solvers is smaller (the speedup curves corresponding to Bump_2911 and nlpkkt240 are quite
similar). In the entire set of tested SVDs, the cyclic version provides the higher speedup and better efficiency
over a wider range of MPI ranks. This is achieved for all matrices, independently of the matrix size. The
randomized-SVD (rsvd) of SLEPc provides a competitive performance with the largest sparse matrices of
the population according to the plots, but in general it underperforms the cyclic version. Besides, it is noted
that the rsvd execution time is worse with small matrices and low parallelizations, albeit it gets closer to
the cyclic computing cost within the higher range of parallelization. This suggests an advantageous usage
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zone in the performance plots related to higher do f s/rank, which deserves more attention in a further work
dealing with larger matrices. Since it is seen that all the speedup curves tend, somehow, to coalesce with
the largest matrices, it seems clear that the criterion of having a smaller execution time is fundamental for
taking decisions about the suitability of a specific SVD algorithm.

Figure 3 compares the maximum speedup attained with 17 sparse matrices and two SVD solvers: cyclic
and rsvd, to remark the differences. The trend is similar as the maximum speedup increases with nnz for
most of the largest matrices. And this behaviour occurs at the highest MPI ranks (256 to 400).

Results for dense matrices differ qualitatively from sparse matrices. First, maximum speedup is now
significantly smaller (see Figure 5). Only the SVD implementation of ScaLAPACK (dedicated to dense
algebra) provides speedup peaks in the order of the best values attained in the sparse population. And
interestingly, it occurs in a non-systematic way: some matrices exhibit this behaviour, but it does not depend
on the matrix size n, κ(A) or singular values distribution law. Necessarily a better understanding of this
pattern would require a much larger population of dense matrices to test.

Figure 5 depicts the maximum speedup attained with four SVD versions: cyclic, ScaLAPACK, PRIMME
and rsvd. It shows that they all underperform, to a great extent, the performance of ScaLAPACK.
Interestingly, PRIMME version gives a much lower time-to-solution performance, which besides turns to
be quite independent of the matrix properties, but its speedup is worse (see Figure 4). Driven by paper
extension constraints, only four representative dense matrices of increasing n (from smallest to largest size)
taken from the entire population have been included in Figure 4. The sequence indicates that the speedup
experiences a more accentuated drop after the maximum speedup location. But now the smallest matrices
exhibit an acceptable strong scaling behaviour. This follows from the dense scenario having much more
CPU load in contrast to the sparse scenario for equal size n (and do f s/rank). Also an acceptable parallel
efficiency is linked to the smallest sizes. It should be said that users and code developers are interested
in minimizing time-to-solution, so any parallel efficiency is acceptable meanwhile the number of MPI
ranks involved provide a significant increase of the speedup, hence an execution drop. But from a cluster’s
administration standpoint, a too small efficiency implies an inefficient assignment of the available HPC
resources, then an implicit penalty to other queued jobs pending of execution, which could potentially use
more effectively the cluster. An accepted criterion of how to set a parallel efficiency threshold depends on
the organization, but being over a 50% may be a reasonable objective in parallel executions to avoid to
waste too much computing time.

5 RELATED WORK

Strong and weak scaling studies on algorithms and solvers are fundamental to understand their bottlenecks,
then to clarify how they may impact on the scalability of those HPC applications that implement them.
Bibliography on strong and weak scaling benchmarking on supercomputers is extensive, but the one related
to the SVD algorithm is rather scarce and driven by the renewed interest over the last years to achieve better
scaling implementations. Indeed, it is an active field of research since until today it has been difficult to
overcome the SVD memory contention and communication constraints of its parallel computing versions.

The review paper (Dongarra et al. 2018) provides an introduction to the state-of-the-art SVD implemen-
tations for dense matrices computations with CPUs and accelerators such as GPUs, followed by a discussion
of the results obtained with various historic and current SVD versions. Systematic tests on a multicore
machine (that is, in-node performance) and a distributed computing platform have been carried out. Among
the compared numerical algebra libraries, they present results for the SVD of ScaLAPACK (Blackford
et al. 1997) in a distributed-memory computer. Their comparison stresses the impact of the successive
algorithmic changes of the SVD formulations over the last forty years. Hence, clear improvements arise
in terms of time-to-solution and speedup, which has increased by several orders of magnitude. Also they
quantify the attained relative speedup with a reference SVD in distributed computing for increasing matrix
size. But they do not analyze the absolute speedup provided by these SVD versions, neither they discuss
techniques for solving SVD problems with sparse linear systems. Interestingly, besides the benchmarking
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Figure 2: Speedup, parallel efficiency and execution time attained with different SVD algorithms for sparse
matrices. Plots correspond to four matrices of increasing nnz, indicated by the matrix acronym.

with square matrices of increasing size, they analyze the performance at computing SVDs of tall and
very-tall dense matrices, showing that a clear improvement in speedup occurs with the tallest matrices.

The scaling behaviour of the SVD has been analyzed in the Parallel Numerical Linear Algebra for
Future Extreme Scale Systems (NLAFET) project (Blanchard et al. 2019), funded by the European Union’s
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Figure 3: Maximum speedup with sparse matrices for SVD solvers cyclic and rsvd. Corresponding MPI-
rank at max-speedup is on top of the bars (matrix size increases from left to right).

Horizon 2020 research and innovation program, where formulations using the full computing capabilities of
novel architectures are investigated. A developed implementation of the polar decomposition is explored to
compute the matrix factorization of the SVD. Then, its performance is compared with other well established
numerical linear algebra libraries as PLASMA (Dongarra et al. 2019), ScaLAPACK and others on pure
CPU distributed-memory computers and hybrid CPU-GPU platforms. The research stresses the scaling
gain thanks to the novel one-stage SVD versions compared to the two-stage SVD ones.

In survey (Schmidt 2020) three SVD solvers corresponding to the normal-equations, QR-based and
randomized-SVD formulations are analyzed and executed on the Summit supercomputer (USA). These
implementations use MPI communications and are tested with a group of tall/skinny matrices. The attained
execution speed is compared with its counterpart corresponding to versions coded for GPU, as well as with
the standard SVD included in ScaLAPACK. Precisely, it is such mature stage of ScaLAPACK and its SVD
implementation the reason of being so widely used across the scaling literature, as referred above.

In Hernández et al. (2008) the authors conduct some strong scaling tests using the PETSc-SLEPc
framework on a reduced set of sparse matrices, hence to test the scaling properties of the SVD solver based
on the restart Lanczos bidiagonalization. It should be mentioned that the same authors have given various
presentations about the strong and weak scaling attained with some SVD versions available in SLEPc, but
far from being comprehensive. Another fundamental aspect has to do with the matrix generation and input
to the solvers. Benchmarking of SVD libraries requires sparse and dense matrices of increasing size as input
to the algorithm. There exist sparse matrices repositories of ample usage, as it is the Suite Sparse Matrix
Collection (formerly maintained by the Florida State University) (Davis and Hu 2011). When large dense
matrices of prescribed singular values or condition number are needed, an efficient way to generate them
is described in Fasi and Higham (2021). Basically, a SVD-based algorithm builds the three factors, then
leading to the final matrix of prescribed properties. Their approach is capable to deal with extreme-scale
matrices, thus suitable for scaling tests in petascale computers and beyond.

The present investigation provides a systematic benchmarking of the most practical parallel SVD solvers
coded in the PETSc-SLEPc framework, which leads to a better knowledge of their suitability standalone
or as a building block into a more complex solver that needs a SVD factorization.

6 CONCLUSIONS

The strong scaling behaviour of seven SVD versions has been analyzed with a representative population
of sparse and dense matrices (33 matrices in total). Five SVD versions come from the SLEPc own
implementations. And two SVDs (of ScaLAPACK and PRIMME) derive from libraries interfaced with
PETSc-SLEPc. As expected, strong scaling rapidly deteriorates with the smallest sparse matrices (too
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Figure 4: Speedup, parallel efficiency and execution time attained with different SVDs for dense matrices.
Rows correspond to increasing n (smallest: ari6400k2, upper row; largest: geo46080k4, bottom row).
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Figure 5: Maximum speedup with dense matrices for SVD solvers cyclic, ScaLAPACK, PRIMME, rsvd.
Corresponding MPI-rank at max-speedup is on top of the bars (matrix size increases from left to right).

low do f s/rank), opposite to the largest sparse matrices, which are the most appropriate to carry out large
MPI-based executions of SVDs. The cyclic version provides the best scaling in the sparse scenario.

On the contrary, the attained SVDs performance with dense matrices results to be more homogeneous
across the entire matrix population. The few do f s/rank allocated for all the analyzed dense matrices
drive the rather modest attained scalability. Thus, it is concluded that much larger dense matrices must
be generated to adequately test the SVD scalability. A major observation in the dense scenario is that
ScaLAPACK clearly outperforms the other tested SVDs. This is explained because of its fine optimization
for this kind of matrices.

The randomized-SVD of SLEPc has been benchmarked with sparse and dense matrices. At present, no
conclusive results can be firmly stated about it, but its performance looks promising at least for extracting
the leading singular values of large sparse matrices. However, its application to the dense scenario requires
optimization to be competitive with the other approaches. Finally, it is stressed that the largest matrices
analyzed in the present investigation are on the edge of what is allowed with the 32-bit arithmetic. Hence,
a next study on performance with much larger sparse and dense matrices requires to configure the PETSc-
SLEPc framework under 64-bit arithmetic. Several issues remain open: the sensibility of the results to
the cluster ACME architecture, thus the interest in repeating the tests with at least another supercomputer;
weak scaling results, not included here due to space restrictions; and also how the SVD performance with
tall-skinny matrices compares to the square matrices results. These aspects deserve further analysis to go
deeper into the SVDs scalability.
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