
Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

NEW FUNCTIONS AND STATEMENTS TO SUPPORT PREEMPTION
IN THE STROBOSCOPE SIMULATION SYSTEM

Photios G. Ioannou Veerasak Likhitruangsilp

Dept. of Civil and Environmental Engineering Dept. of Civil Engineering
University of Michigan Faculty of Engineering
2350 Hayward Street Chulalongkorn University

Ann Arbor, MI 48109-2125, USA Bangkok, THAILAND

ABSTRACT

The new preemption capabilities added to the STROBOSCOPE simulation system are described and
illustrated by two examples. The first example involves moving soil using two wheelbarrows and two
laborers. It investigates the conditions for preemption to improve production by allowing the return of an
empty wheelbarrow to interrupt loading and to start hauling a partially loaded wheelbarrow immediately.
In the second example, two cranes unload barges bringing fill material for undersea land reclamation. When
only one barge is available, it can unload using both cranes. When two or more barges become available,
each barge unloads using one crane. Unloading a barge can switch between using one and two cranes
multiple times, with the remaining unload time either cut in half or doubled each time. Modeling the
multiple reallocations of cranes and the required time adjustments illustrates the new STROBOSCOPE
preemption capabilities.

1 INTRODUCTION

1.1 Overview of the STROBOSCOPE Simulation System

STROBOSCOPE (an acronym for State and Resource Based Simulation of Construction Processes) is a
general-purpose discrete-event simulation system based on the activity-scanning paradigm that is
particularly suited for modeling complex construction operations. A STROBOSCOPE simulation model is
represented by a graphical network of nodes and links (similar to an activity cycle diagram) and is described
in detail by statements written in the STROBOSCOPE simulation programming language.

STROBOSCOPE is a Windows application written in C++ that consists of an Integrated Development
Environment (IDE) that includes an editor for entering the text-based statements for a simulation model
using the STROBOSCOPE language, and a simulation engine (a DLL) that parses and interprets the input,
performs the simulation, and sends the simulation output back to the IDE.

STROBOSCOPE also provides a Graphical User Interface (GUI) implemented in Microsoft Visio using
smart drag-and-drop graphics and a custom Visio add-on (a separate DLL written in C++) that provides tabbed
dialog-boxes for data input, extensive error-checking, and the ability to compile and communicate to
STROBOSCOPE all the information entered. The GUI makes it possible to develop and save complete
STROBOSCOPE simulation models, including all statements, entirely within Visio files. The networks for
the simulation models shown in this paper are live models developed with the STROBOSCOPE GUI.

Resources, such as material, labor, and equipment, can be modeled as generic, characterized, or
compound resources in STROBOSCOPE. Generic resources have distinct types. Characterized resources
have types and subtypes with static properties. Compound resources can contain other resources (generic,
characterized, or even other compound resources) to any level. Both characterized and compound resources
are distinct objects that can also have dynamic properties (SaveProps) and methods (VarProps).

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 2744

Ioannou and Likhitruangsilp

The STROBOSCOPE language is quite rich and provides many statement types, predefined object types,
built-in functions, predefined variables, events, actions, etc. These facilities provide access to dynamic
variables, the properties of resources, and the state of the simulation, and allow, for instance, modeling
stochastic resource production, utilization, and consumption, smart resource allocation, characterization of
resources created at runtime by combining other resources, and dynamic decisions regarding the flow of
resources and the sequence of activities.

The STROBOSCOPE program, its documentation, and several complete examples are available from
(Martinez and Ioannou 2023). More than 20 educational videos about learning and using STROBOSCOPE
are available on YouTube (https://www.youtube.com/@PhotiosIoannou).

1.2 Preemption in Simulation

Simulation models often need to interrupt or preempt an activity in progress while the simulation is running
and reallocate the preempted activity’s resources to another activity that is started at that time (Law 2014).
The concept of preemption is not new in the general area of simulation and is supported by several
commercial systems (often used in industries such as manufacturing and healthcare) such as AnyLogic,
Arena, eM Plant, Extend, FlexSim, GPSS, Quest, SimCAD, WorkBench, and others. The ease and
completeness by which commercial software have implemented preemption, however, varies widely with
scores ranging from 0 to 4 (out of a maximum of 5) as graded by a study that evaluated several commercial
discrete event simulation systems (Zapata et al. 2008).

In construction simulation there have been no attempts to implement preemption at the simulation
system level. The notable exception is an implementation of a form of preemption by Rekapalli (2008) for
the purpose of enabling concurrent visualization simulations through the Novoscope DLL. At the level of
a construction simulation model, it has been shown that it is possible to implement preemption without the
new preemption facilities added to STROBOSCOPE (Ioannou and Kamat 2005). However, such attempts
have also shown that implementing preemption correctly without direct system support is considerably
more challenging and can easily lead to modeling errors that are not easy to detect. As illustrated by the
models in this paper, the direct support of preemption in STROBOSCOPE, a widely used activity-based
construction simulation system, provides new capabilities to all users and allows the development of novel
simulation models for construction operations in a clear and straightforward manner.

2 NEW STROBOSCOPE FUNCTIONS AND EVENTS TO SUPPORT PREEMPTION

2.1 Preemption in STROBOSCOPE

In the STROBOSCOPE simulation system (Martinez and Ioannou 2023), preemption has been implemented
as the immediate termination of an activity instance that currently resides in the Future Event List (FEL)
and the start of a new instance of another activity that takes over all the resources of the preempted instance.
The new functions and statements that have been added to STROBOSCOPE to support preemption directly
make it significantly easier to develop simulation models that implement preemption correctly. These new
preemption capabilities are illustrated through their application to two examples. In the first, laborers move
soil using wheelbarrows, and in the second, cranes unload barges carrying fill material for undersea land
reclamation. These examples also serve as case-studies that provide insights as to how to improve
construction operations through the prudent use of preemption.

Due to space limitations, only the new statements and functions related to preemption are described in
detail. The notation used for the STROBOSCOPE statements in the examples that follow is to show
identifiers chosen by the modeler in italics, such as “Load” in “Load.TotInst.-1”, while regular text indicates
reserved STROBOSCOPE identifiers that must be entered as shown. It should also be noted that the
arguments of STROBOSCOPE functions (such as Preempt) are enclosed in square brackets and not in
parentheses. More information about the STROBOSCOPE language can be found in (Martinez 1996).

2745

https://www.youtube.com/@PhotiosIoannou

Ioannou and Likhitruangsilp

2.2 Interrupting an Activity Instance in Progress — The “Preempt” Function

Preemption has been implemented in STROBOSCOPE through the new function Preempt that can be called
at appropriate trigger events while a simulation model is running to interrupt an activity instance that is
currently in progress. The syntax of the function Preempt and the actions it takes are summarized below.

Syntax: Preempt[CurAct, InstNum, NewAct]
Example: Preempt[Load, Load.TotInst-1, StopLoad]
Returns: Either the value 1 (success) or the value 0 (failure)

When the function Preempt is called, it takes the following actions:

• It scans the Future Event List (FEL) to find the instance of activity CurAct (e.g., Load) whose

instance number (i.e., 0, 1, 2, …) is given by the number InstNum. For example, Load.TotInst-1 is
the number of the last instance of Load that has been created. It should be noted that the instances
of an activity are given consecutive integer numbers with the first instance having the number 0.
The global variable CurAct.TotInst returns the total number of instances of activity CurAct up to
now. Thus, the last instance of CurAct has the number CurAct.TotInst-1 and can be preempted by
 Preempt[CurAct, CurAct.TotInst-1, NewAct].

• If the instance of activity CurAct with number InstNum is not found in the FEL, then the function
Preempt stops and returns the value 0 (false) to indicate failure.

• If the instance of activity CurAct with number InstNum is found in the FEL, then the function
Preempt creates a new instance of activity NewAct (whose instance number is NewAct.TotInst-1)
that takes over all the resources of the preempted instance of activity CurAct.

• The duration of the new instance of activity NewAct is set equal to the remaining duration of the
preempted instance of CurAct.

• The statistics for activity CurAct are corrected by un-collecting the original duration of the
preempted instance and collecting its truncated duration.

• Instance number InstNum of activity CurAct is terminated and the function Preempt stops and
returns the value 1 (true) to indicate success.

Because the function Preempt is a logical function that returns either 1 (success) or 0 (failure), it can

be used in the logical expressions that control the actions of other statements. In the models that follow, for
example, the function Preempt is used in the logical preconditions that determine whether other actions will
indeed take place at certain events during simulation.

2.3 Resetting the Duration of an Existing Activity Instance — The “SetTmLeftInst” Function

By default, when the function Preempt creates a new instance of activity NewAct (with instance number
NewAct.TotInst-1) it sets its duration equal to the remaining duration of the preempted instance of CurAct
(with number InstNum). Often, however, this is not the appropriate duration required by the model.

The new function SetTmLeftInst can be called at appropriate events during simulation to reset the
remaining duration of any activity instance (that is currently in progress) to any desired value. The syntax
of the function SetTmLeftInst and the actions it takes are summarized below.

Syntax: SetTmLeftInst[Activity, InstNum, RemDur]
Example: SetTmLeftInst[StopLoad, StopLoad.TotInst-1, 0]
Returns: Either the value 1 (success) or the value 0 (failure)

2746

Ioannou and Likhitruangsilp

When the function SetTmLeftInst is called, it takes the following actions:

• It scans the Future Event List (FEL) to find the instance of Activity (e.g., StopLoad) whose instance

number is InstNum. For example, StopLoad.TotInst-1 will find the last instance of StopLoad.
• If an instance of Activity with number InstNum is not found in the FEL (because it was never created

or because it has already finished), then the function SetTmLeftInst stops and returns 0 (failure).
• If the instance of Activity with number InstNum is found in the FEL, then the function

SetTmLeftInst changes the instance’s duration to RemDur and corrects its end-event time in the
FEL so that the instance will now finish at SimTime + RemDur.

• The duration-related statistics for Activity are corrected by un-collecting the instance’s original
duration and collecting its new duration RemDur.

• The function SetTmLeftInst ends and returns the value 1 (success).

Like the function Preempt, the function SetTmLeftInst is a logical function that returns the value 1 or

the value 0 and can be used in logical expressions to control other statements in the model.

2.4 New Action Events Related to the “Preempt” Function

When an activity instance is preempted successfully, it is often necessary to take additional actions—for
example, to store new values in global SaveValues or to store new data in the private SaveProps of specific
characterized resources. The following two new action events occur only if the function Preempt is
successful. These events occur after the function Preempt has found the instance to preempt in the FEL,
and before the function Preempt finishes and returns the value 1 (success).

Syntax: BEFOREPREEMPTED CurAct [Action] ActionTarget TargetArgs;
Timing: Occurs after the function Preempt has corrected the duration-related statistics of CurAct and

before the current instance count of CurAct is reduced by one.

Syntax: AFTERPREEMPTING NewAct [Action] ActionTarget TargetArgs;
Timing: Occurs after the preemption of CurAct is complete and after the new instance of NewAct has

been created and has taken over the preempted resources and the remaining duration of CurAct.

The action events BEFOREPREEMPTED or AFTERPREEMPTING can be triggered by the action event

for another activity that calls the function Preempt (such as, BEFOREEND TriggerAct). In this case, both
the instance of TriggerAct and the instance of CurAct (or NewAct) are in context. This is important because
in this situation the attributes and resources of both the instance of TriggerAct and the instance of CurAct
(or NewAct) are accessible, such as through the new activity instance variable Activity.StartTm described
next.

2.5 Accessing the Start Time of an Activity Instance — “Activity.StartTm” Instance Variable

It is often necessary to access the start time of a particular instance of an activity that is currently in context
in order to calculate, for example, the duration of that instance up to the current simulation time, or to use
this start time to set the attributes (such as the duration) of another activity instance later.

The new instance variable Activity.StartTm provides the start time of any activity instance (such as
CurAct or NewAct) that is currently in context. The requirement for an activity instance to be in context is
important because it allows the system to determine unambiguously which of the several instances of
Activity that may be in progress is being referenced.

The global variable Activity.LastStart, though similar, has a different purpose. It can be used at any time
to return the start time of the last instance of Activity that was ever created, even if that last instance is not

2747

Ioannou and Likhitruangsilp

in context or has already finished. In contrast, the instance variable Activity.StartTm can return the start
time for any instance of Activity that is in progress and in context (and not necessarily just the last one).

Appropriate uses of the instance variable Activity.StartTm, as well as applications of the new
preemption functions, Preempt and SetTmLeftInst, and the new action events BEFOREPREEMPTED and
AFTERPREEMPTING are illustrated by the following two example models.

3 SIMULATION OF MOVING SOIL BY WHEELBARROW

In this apparently simple example, two laborers use two 6-cf wheelbarrows to move soil. The Load activity
uses the first laborer (the Loader) to load one of the wheelbarrows with soil. The Haul activity uses the
other laborer (the Hauler) to push a loaded wheelbarrow, dump the soil, and return the empty wheelbarrow
to load again. The durations of the Load and Haul activities L and H (in minutes) are balanced and follow
normal distributions with the same mean value of 2 min. However, they have different standard deviations
SD[L] and SD[H]. This example investigates whether the deliberate preemption of the Load activity by the
Haul activity can improve long-term production (in cf/min) by comparing the following two policies A and
B while varying the standard deviations SD[L] and SD[H].
Policy A: A wheelbarrow can be hauled only when fully loaded with 6 cf of soil. When activity Haul
finishes first, it waits for activity Load to finish before both can start again.
Policy B: If a wheelbarrow is still being loaded when activity Haul finishes, then the loading of that
wheelbarrow stops, and Load starts again with the empty wheelbarrow that has just arrived. At the same
time, the Haul activity starts again with the partially loaded wheelbarrow whose load is 6 cf times its
truncated load time over the total time that would have given a complete load of 6 cf.

3.1 Wheelbarrow Cycle Analysis

It is interesting to note that under both policies A and B, the activities Load and Haul start at the same time
in each cycle but have different durations L and H (in min.). The two policies also have different cycle
times. The cycle time for policy A is max(L, H) whereas the cycle time for policy B is H.

For each policy, the production in each cycle r(A) and r(B) (in cf/min) depends on whether L H< or
L H> .

(A) 6 / when

Policy A: (A) 6 / when
(A) 6 / max(,) in any cycle

r H L H
r L L H
r L H

= <
 = >
 =

(B) 6 / when
Policy B: (B) 6(/) / when (the load 6(/) is incomplete and less than 6 cf)

(B) 6 / max(,) in any cycle

r H L H
r H L H L H H L
r L H

= <
 = >
 =

This analysis shows that the productions in each cycle r(A) and r(B) (in cf/min) for the two policies are

identical and equal to 6/max(L, H) = min(6/L, 6/H). The difference is that under policy B some cycles carry
less than 6 cf of soil, but also take less time. Based on this, the two policies would appear to be equivalent.

However, the long-term productions for the two policies, R(A) and R(B) (in cf/min), that are given by
the ratio of the total volume of soil moved in n cycles over the total time of n cycles are quite different.

Policy A:
1

(A) 6 max(,)
n

i i
i

R n H L
=

= ∑

Policy B:
1 1

(B) 6 min(1, /)
n n

i i i
i i

R H L H
= =

= ∑ ∑

2748

Ioannou and Likhitruangsilp

Clearly, the long-term productions R(A) and R(B) over n cycles are random variables given by different
functions of the random variables L and H and cannot be compared analytically. A meaningful comparison
of R(A) and R(B) can be made by simulation that uses both preemption and the common random numbers
variance reduction technique (Ioannou and Martinez 1996).

3.2 STROBOSCOPE Simulation Model for Policies A and B

The STROBOSCOPE network for the simulation model for moving soil by wheelbarrows is shown in
Figure 1. This network consists of nodes and links. Queues are shown as circles resembling the letter “Q”
and each holds idle resources of a certain type such as WheelBarrow. Combi (conditional) activities are
shown as clipped rectangles that require resources in order to start and are preceded by queues. Normal
(bound) activities are shown as rectangles and can start whenever a direct predecessor activity finishes.
Links connect the nodes and indicate the flow of the various types of resources in the model.

Described below are the new STROBOSCOPE statements that are needed to implement the preemption
of activity Load by activity Haul. (The complete models are available from the first author.)

Load WB
Loaded HaulWB2 WB3

Soil
In

Place
SL2WB

Empty WB1

WB4

StopLoad

WB5

LoaderQ

LO1 LO2

HaulerQ

HL1 HL2

LO3

Normal[2,SDL] Normal[2,SDH]

Figure 1: STROBOSCOPE model for earthmoving by wheelbarrow.

The model begins by defining the SaveValue HaulPreemptsLoad that determines which policy, A or
B, will be simulated by the model.

SAVEVALUE HaulPreemptsLoad 1; / Changes policy: 0→A (No Preemption), 1→B (Preemption)

Three types of resources are defined. Laborer and Soil are modeled as generic resources. WheelBarrow
is modeled as a compound resource. Its SaveProp AmountLoaded is used to store the amount of soil
currently loaded in the WheelBarrow.

GENTYPE Laborer; GENTYPE Soil;
COMPTYPE WheelBarrow; SAVEPROP WheelBarrow AmountLoaded;

Each time an instance of activity Load starts, it stores 6 cf of soil in the SaveProp AmountLoaded of
the WheelBarrow resource that is currently inside that Load instance. If this Load instance is later
preempted, then the AmountLoaded in the WheelBarrow will be adjusted to less than 6 cf at the time of
preemption.

ONSTART Load ASSIGN Load.WheelBarrow.AmountLoaded 6;

Right before an instance of activity Haul ends, it attempts to call the function SetTmLeftInst. This call
takes place only if its two logical preconditions (PRECOND) are satisfied. The first precondition is that
HaulPreemptsLoad equals 1. The second is that the function Preempt can successfully preempt the last
instance of activity Load and create a new instance of activity StopLoad to take over the resources (a
WheelBarrow and a Laborer) and the remaining duration of the preempted instance of Load. If both
preconditions return the value 1 (true), then the function SetTmLeftInst is called and resets the duration of
the new instance of activity StopLoad to zero. This returns the resources Laborer and WheelBarrow to
queues LoaderQ and WBLoaded and allows both activities Load and Haul to start again immediately.

2749

Ioannou and Likhitruangsilp

BEFOREEND Haul CALL
 PRECOND 'HaulPreemptsLoad & Preempt[Load, Load.TotInst-1, StopLoad]'
 'SetTmLeftInst[StopLoad, StopLoad.TotInst-1, 0]';

The following statement shows an example of the new event BEFOREPREEMPTED which occurs only
if the instance of activity Load is indeed preempted. In that case, the WheelBarrow is loaded with less than
6 cf and the action taken is to adjust the SaveProp AmountLoaded in the WheelBarrow accordingly.

BEFOREPREEMPTED Load ASSIGN Load.WheelBarrow.AmountLoaded
 '6 * (SimTime - Load.StartTm) / Load.Duration';

In the above statement, the new instance variable Load.StartTm returns the start time of the instance of
Load being preempted (and which is currently in context). Subtracting it from the current simulation time
SimTime gives the instance’s truncated duration. The instance variable Load.Duration returns the original
duration of the preempted instance of Load that would have resulted in 6 cf being loaded into the
wheelbarrow. Thus, 6 cf times the ratio of the truncated duration of the preempted instance of Load divided
by its original duration gives the current amount of soil in the partially loaded wheelbarrow.

3.3 STROBOSCOPE Simulation Results

To obtain meaningful results, the complete STROBOSCOPE model uses the common random numbers
variance reduction technique to compare the two policies A and B under identical streams of the durations
L and H of activities Load and Haul (Ioannou and Martinez 1996). The model output includes the long-
term productions R(A) and R(B) as well as their difference R(B)-R(A) in cf/min as shown in Figure 2.

Figure 2: Difference in production R(B)-R(A) (in cf/min) vs SD[L] and SD[] (in min).

Figure 2 shows that the difference in the long-terms productions R(B)-R(A) is positive towards the left,
negative towards the right, and close to zero along the front-to-back diagonal. Thus, the deliberate
preemption of activity Load by activity Haul does improve long-term production, R(B) > R(A), when
SD[H] < SD[L], i.e., when the duration of activity Haul has less variability than the duration of activity
Load. This interesting result suggests that when two balanced activities interact (such as Load and Haul),
it may be beneficial to keep the activity with the less variable duration working continuously (such as Haul
when SD[H] < SD[L]) by interrupting if needed (and if possible) the other activity (e.g., Load) that has a
more variable duration. Clearly, this is not always feasible as activity Load, for example, cannot interrupt
activity Haul. This is an interesting observation that merits further investigation.

4 UNLOADING FILL MATERIAL FROM BARGES USING TWO CRANES

In this example, barges carrying construction fill material for undersea land reclamation arrive at the
unloading facilities of a harbor. The interarrival times between barges are independent and exponentially
distributed random variables with a mean of 1.25 days. The harbor has a dock with two berths and two
cranes for unloading the fill material from the barges. When both berths are occupied, arriving barges join

0.1
0.2

0.3
0.4

0.5-0.04
-0.02

0
0.02
0.04

0.1
0.2

0.3
0.4

0.5

SD[L], min

R(
B)

-R
(A

)

SD[H], min

0.02-0.04

0-0.02

-0.02-0

-0.04--0.02

2750

Ioannou and Likhitruangsilp

a first-in-first-out (FIFO) queue where they wait to be unloaded. The time for one crane to unload a barge
is uniformly distributed between 0.5 and 1.5 days. When there are two barges available to unload at the
berths, then each barge is unloaded by a single crane. When only one barge is available to unload, then both
cranes can work together on the same barge and its remaining unload time is cut in half. If in the meantime
another barge arrives at the empty berth, then it takes away one of the cranes and unloading switches back
to each barge using one crane. In this case, the remaining unload time for the first barge is doubled. The
unloading of a barge can switch several times between using one or two cranes, with corresponding
adjustments to its remaining unload time. This makes the unloading operation significantly more difficult
to model without the new preemption facilities added to STROBOSCOPE.

4.1 Simulation Model—Unloading may be Preempted Multiple Times

The network for the STROBOSCOPE simulation model is shown in Figure 3. The STROBOSCOPE
statements needed to implement preemption are described below.

CraneQ

Unload RestartUnload

CR1 CR2

Arrival BG1 BargeQ BG2 BG3

BerthQ

BE1 BE2

BG4

Depart

BE3

CR3

Figure 3: STROBOSCOPE model for unloading fill material from barges using two cranes.

Three types of resources are defined. Berth and Crane are generic resources. Barge is a compound
resource with five SaveProps. RemUnloadDur stores the remaining unload duration if the work is done by
a single Crane. TimesPreempted stores the number of times that the Barge was preempted. CraneSeq stores
a number made up of the digits 1 and 2 that reflects the sequence of Cranes (1 or 2) that unloaded the Barge.
UnloadInst is the number of the current instance of activity Unload for this Barge. Docked is a binary 0/1
value that when equal to 1 indicates that the Barge is currently unloading at the Berths.

GENTYPE Berth; GENTYPE Crane; COMPTYPE Barge;
SAVEPROPS Barge RemUnloadDur TimesPreempted CraneSeq UnloadInst Docked;

The duration of activity Arrival is exponentially distributed. Its Semaphore ensures that activity Arrival
can only have one instance currently going on during simulation.

DURATION Arrival 'Exponential[1.25]';
SEMAPHORE Arrival '!Arrival.CurInst'; /One Arrival at a time

Each arriving resource of type Barge is created dynamically right before each instance of activity
Arrival ends. The time needed to unload the Barge by a single Crane working alone is sampled from a
uniform distribution and is stored in its SaveProp RemUnloadDur when the Barge flows though link BG1.

BEFOREEND Arrival GENERATE 1 Barge;
ONRELEASE BG1 ASSIGN RemUnloadDur 'Uniform[0.5, 1.5]';

A new instance of activity Unload draws a Barge from BargeQ and then Cranes from CraneQ. The
number of Cranes drawn (1 or 2) through link CR1 depends on the current contents of queue BargeQ. If
there are still Barges in queue BargeQ waiting to unload, then link CR1 draws only 1 Crane. Otherwise,
link CR1 draws all available Cranes (1 or 2) and passes them to the starting instance of activity Unload.

2751

Ioannou and Likhitruangsilp

DRAWAMT CR1 'BargeQ.CurCount? 1 : CraneQ.CurCount';

After a new instance of activity Unload draws resources, it determines its duration by dividing the
SaveProp RemUnloadDur of its Barge by the number of Cranes (1 or 2) that it has drawn, and which will
work together to unload the Barge.

DURATION Unload 'Unload.Barge.RemUnloadDur / Unload.Crane.Count';

Each time a new instance of activity Unload starts, it stores its instance number in the SaveProp
UnloadInst of its Barge so that this Unload instance may be identified later and preempted if needed.

ONSTART Unload ASSIGN Unload.Barge.UnloadInst Unload.Instance;

There are two cases when an instance of activity Unload needs to be preempted, and in both cases only
one Barge would be currently unloading. These two cases are described below. In both cases, the multiple
previous preemptions that activity Unload can have make it difficult to predict the correct instance number
of Unload that should be preempted. Adding to this difficulty is the fact that Barges and Unload instances
do not finish in sequential order because the total times needed for Barges to unload are random variables.

A straightforward way to determine the correct number for the instance of activity Unload that should
be preempted is to define a filter that returns only one Barge— the Barge that is currently inside the instance
of activity Unload to be preempted. This is accomplished by the following filter Unloading that creates a
subset of all the Barges currently in the harbor whose SaveProp Docked equals 1.

FILTER Unloading Barge Docked;

The following statements ensure that only one Barge (the one that is currently unloading and should be
preempted) has a SaveProp Docked equal to 1. The global variable Unloading.UnloadInst.Value applies
the filter Unloading to the entire population of Barges, finds the one Barge that needs to be preempted, and
returns the value of its SaveProp UnloadInst that stores its current Unload instance number. This gives the
correct number of the Unload instance to preempt (which is needed for the Preempt function).

The following statement uses the global variable Unloading.UnloadInst.Value as an argument to the
function Preempt to preempt the correct ongoing instance of activity Unload (that it is currently using both
Cranes) when a new Barge is released through link BG1 to the queue BargeQ and would need a free Crane
to start unloading.

ONRELEASE BG1 CALL PRECOND 'CraneQ.CurCount < BerthQ.CurCount'
 'Preempt[Unload, Unloading.UnloadInst.Value, RestartUnload]';

The precondition for the above statement ensures that the call to the function Preempt takes place only
when the number of idle Cranes in CraneQ is less than the number of idle Berths in BerthQ. I.e., when the
current instance of activity Unload is using both Cranes and should be preempted. This preemption allows
the preempted Barge to start a new instance of activity Unload that uses one Crane, while the other Crane
starts a second new instance of activity Unload that starts unloading the new Barge that has just docked.

The SaveProp Docked for a Barge that starts unloading is changed from 0 to 1 when the Barge is drawn
through link BG2 by a new instance of activity Unload.

ONDRAW BG2 ASSIGN Docked 1;

When a Barge finishes unloading and is released through link BG5 to a new instance of activity Depart,
its SaveProp Docked is changed from 1 back to 0, so that it will no longer pass the filter Unloading.

ONRELEASE BG3 ASSIGN Docked 0;

Activity Depart is a dummy activity with zero duration that occurs when a Barge finishes unloading
and leaves the Berths. When an instance of Depart starts, it attempts to call the function Preempt if both
logical preconditions for the call action return the value 1 (true).

ONSTART Depart CALL PRECOND 'Unload.CurInst & !BargeQ.CurCount'
 'Preempt[Unload, Unloading.UnloadInst.Value, RestartUnload]';

The first precondition ensures that activity Unload does have a current instance. The second
precondition ensures that BargeQ is empty, i.e., that the Barge still unloading is the only one left in the
harbor. If both preconditions return 1 (true), then the function Preempt is called exactly as before to preempt

2752

Ioannou and Likhitruangsilp

the ongoing instance of activity Unload and start a new instance of RestartUnload. Preempting the ongoing
remaining instance of activity Unload (when the unloading Barge is the only one left in the harbor) allows
this Barge to create a new instance of activity Unload that will use both Cranes, i.e., the preempted Crane
(that will become available immediately) and the Crane that just finished unloading the departing Barge.

Whenever an instance of activity Unload is preempted, it is also necessary to adjust the time needed
for a single Crane to finish unloading the Barge. This remaining time (which is stored in the SaveProp
RemUnloadDur) is reduced by the elapsed duration of the preempted instance of activity Unload, times the
number of Cranes (1 or 2) that were unloading the Barge.

BEFOREPREEMPTED Unload ASSIGN Unload.Barge.RemUnloadDur
 'Unload.Barge.RemUnloadDur - (SimTime - Unload.StartTm) * Unload.Crane.Count';

Similarly, whenever an instance of activity Unload is preempted, the total number of times that the
Barge has been preempted (which is stored in the SaveProp TimesPreempted) is increased by 1.

BEFOREPREEMPTED Unload ASSIGN Unload.Barge.TimesPreempted
 'Unload.Barge.TimesPreempted + 1';

The sequence of the number of Cranes (1 or 2) that worked alone or together to unload a Barge thus
far is stored in the SaveProp CraneSeq as a number that consists only of the digits 1 and 2. For example,
the CraneSeq final value 1212 indicates that the Barge started unloading with one Crane, continued with
two Cranes, switched back to one Crane, and finished unloading with two Cranes. The number stored in
CraneSeq is updated whenever an instance of activity Unload is preempted and when it ends normally.

BEFOREPREEMPTED Unload ASSIGN Unload.Barge.CraneSeq
 'Unload.Barge.CraneSeq*10 + Unload.Crane.Count';
BEFOREEND Unload ASSIGN Unload.Barge.CraneSeq
 'Unload.Barge.CraneSeq*10 + Unload.Crane.Count;

When an instance of activity Unload is preempted, it creates a new instance of activity RestartUnload
whose duration is reset to zero by the following statement that calls the function SetTmLeftInst. This allows
the preempted Cranes (1 or 2) and the partially unloaded Barge to be released back to their queues CraneQ
and BargeQ immediately so that new instances of activity Unload can start again.

AFTERPREEMPTING RestartUnload
 CALL 'SetTmLeftInst[RestartUnload, RestartUnload.TotInst-1, 0]';

4.2 STROBOSCOPE Simulation Results

Table 1 shows simulation results for the first nine Barges that unloaded at the harbor. The first column
shows that Barges do not finish unloading in sequential order and the column “Unload Last Inst” shows
that the last Unload instances for successive Barges also skip numbers due to multiple preemptions.

Table 1: Partial results from a simulation run (all times shown in days).

 W2Dock Unload Times Crane
Barge# Arrived Delay Started Duration Ended Last Inst. Preempted Sequence

1 0.088 0.000 0.088 0.398 0.486 2 1 [21]
3 0.551 0.000 0.551 0.994 1.545 4 0 [1]
2 0.385 0.000 0.385 1.275 1.660 6 3 [1212]
4 4.922 0.000 4.922 0.491 5.413 9 1 [21]
5 5.319 0.000 5.319 0.930 6.249 8 0 [1]
6 5.358 0.055 5.413 1.032 6.445 10 0 [1]
8 6.332 0.113 6.445 0.711 7.156 12 0 [1]
7 5.583 0.666 6.249 1.260 7.509 15 2 [121]
9 7.234 0.000 7.234 0.601 7.835 16 1 [12]

2753

Ioannou and Likhitruangsilp

The histogram in Figure 4 shows the percentage of barges that were unloaded by each possible sequence
of cranes working alone or together. The first two columns show that the unloading of 56% of the barges
was not preempted, with 37% of the barges using two cranes from start to finish while 19% used one crane.
The rest of the columns show that the remaining 44% of the barges were preempted up to three times. For
example, about 18% started unloading with one crane, were preempted, and finished unloading with two
cranes (1→2). About 4% of barges started unloading with one crane, were preempted and continued with
two cranes, and were preempted again and finished with one crane (1→2→1). And about 1% of the barges
were preempted three times and followed the sequence (2→1→2→1) or the sequence (1→2→1→2).

Figure 4: Percent of barges for each possible sequence of the number of cranes unloading the same barge.

As this example shows, modeling all possible sequences of cranes that may unload a barge while
keeping track of its remaining unload time can be quite challenging. The new STROBOSCOPE functions
and statements that support preemption directly make it much easier to model these possibilities correctly.

5 ALTERNATIVE MODELS NOT USING THE NEW FUNCTION PREEMPT

To compare and verify the results, the two examples described in this paper have also been modeled without
using the new STROBOSCOPE preemption functions and statements described above. For both examples,
the final simulation models with and without the new preemption facilities ran equally fast and the
simulation results were identical.

However, the development of correct simulation models without the new STROBOSCOPE preemption
facilities was significantly more difficult. The availability of the correct simulation results (obtained from
the models that use the new preemption functions and statements) was particularly helpful to identify the
existence of modeling errors that would not have been evident without the correct output. Even when
knowing that errors existed, however, finding the causes of these errors and the required corrections was
not easy and required significant effort. This was especially true for the second model where the prediction
of the future time when a barge would finish unloading so that it may preempt the unloading of another
barge (and not be preempted itself in the meantime) proved to be quite challenging to forecast ahead of
time. To this end, the correct prediction of when a barge would finish unloading required the modification
of the simulation network so that arriving barges first enter the new queue WaitToDock (where they wait
until a Berth becomes free) and then move on to the queue BargeQ that now only holds at most two Barges,
both of which are currently unloading. Moreover, the discipline of the queue BargeQ is now changed so
that the Barge with the minimum RemUnloadDur is placed at the front of the queue. This way, when two
instances of Unload start at the same time (which occurs quite often because of preemption), the first
Unload instance draws the Barge which is predicted to finish unloading first and which may preempt the
second instance of Unload that is started next at the same simulation time. This is but one example of the

0%
5%

10%
15%
20%
25%
30%
35%
40%

2 cranes 1 crane 1→2 2→1 1→2→1 2→1→2 2→1→2→1 1→2→1→2

Pe
rc

en
t o

f B
ar

ge
s

Sequence of the number of cranes unloading the same barge

2754

Ioannou and Likhitruangsilp

required changes. Several other modifications were also necessary before a correct model that does not use
the new STROBOSCOPE preemption facilities could be produced.

The difficulties involved in producing correct alternative models for the above examples made it clear
that the new STROBOSCOPE preemption functions and statements are a useful tool for the easy and reliable
development of correct simulation models that involve the preemption of activities. This is true for
simulation modelers at any level of experience but especially so for novice users (such as students) who are
not yet simulation experts.

6 CONCLUSION

Construction simulation models often need to interrupt activities when triggering events occur, such as
when differing soil conditions are encountered, when inclement weather occurs, or when equipment arrives
or breaks down (Ioannou and Kamat 2005; Ioannou and Martinez 1996). To support these needs directly
and to model construction operations correctly, new preemption functions and statements have been added
to the STROBOSCOPE simulation system that are described and illustrated through their application to two
examples. In the first example, laborers move soil using wheelbarrows, and in the second example, cranes
unload barges carrying fill material for undersea land reclamation. These case-studies provide insights as
to how the prudent use of preemption can improve the design of construction operations and increase
production or reduce waiting and service times. Moreover, the models for these examples serve as templates
for the proper use of the new preemption capabilities added to STROBOSCOPE to tackle new situations
directly and to model preemption in general. The complete STROBOSCOPE models for the two examples
presented are available from the first author.

REFERENCES

Ioannou, P. G., and V. R. Kamat. 2005. “Intelligent Preemption in Construction of a Manmade Island for an Airport”. In
Proceedings of the 2005 Winter Simulation Conference, edited by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A.
Joines, 1515–1523. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Ioannou, P. G., and J. C. Martinez. 1996. “Comparison of Construction Alternatives Using Matched Simulation Experiments”.
Journal of Construction Engineering and Management, 122 (3): 231–241.

Law, A. M. 2014. Simulation Modeling and Analysis. 5th ed. New York: McGraw-Hill, Inc.
Martinez, J. C. 1996. STROBOSCOPE State and Resource Based Simulation of Construction Processes. Ph.D. thesis, Department

of Civil Engineering, University of Michigan, Ann Arbor, Michigan.
Martinez, J. C., and P. G. Ioannou. 2023. “STROBOSCOPE Simulation System Software”. University of Michigan. Ann Arbor,

Michigan. Retrieved from www.ioannou.org on March 15, 2023.
Rekapalli, P. V. 2008. Discrete-Event Simulation Based Virtual Reality Environments for Construction Operations. Ph.D. Thesis,

Dept. of Civil Engineering. West Lafayette, Indiana: Purdue University.
Zapata, J. C., P. Suresh, and G. V. Reklaitis. 2008. “Assessment of Discrete Event Simulation Software for Enterprise-wide

Stochastic Decision Problems”. https://www.researchgate.net/publication/241851771_Assessment_of_Discrete_Event_
Simulation_Software_for_Enterprise_wide_Stochastic_Decision_Problems.

AUTHOR BIOGRAPHIES

PHOTIOS G. IOANNOU is Professor in the Department of Civil and Environmental Engineering of the University of Michigan
and a Fellow of the ASCE. Together with his former doctoral student J.C. Martinez are the designers and developers of the
STROBOSCOPE Simulation System. He has also performed research in the development of other simulation systems, including
UM-Cyclone, COOPS, EZStrobe, ProbSched, CPMAddon, and ChaStrobe. His research is in construction engineering and
management in the areas of simulation, tunneling, competitive bidding models, project finance, innovative project delivery systems,
and project scheduling. His email address is photios@umich.edu and his homepage is https://www.ioannou.org

VEERASAK LIKHITRUANGSILP is Associate Professor in the Department of Civil Engineering of the Faculty of Engineering
at Chulalongkorn University in Bangkok, Thailand. His research interests are construction process modeling, optimization, and
simulation; Building Information Modeling (BIM); digital twins for construction engineering and management; construction
contract and claim management; and circular economy in construction. His email address is veerasak.l@chula.ac.th and his
homepage is https://www.research.chula.ac.th/researcher/veerasak-likhitruangsilp/

2755

mailto:photios@umich.edu
https://www.ioannou.org/
mailto:veerasak.l@chula.ac.th
https://www.research.chula.ac.th/researcher/veerasak-likhitruangsilp/

	ABSTRACT
	1 INTRODUCTION
	1.1 Overview of the STROBOSCOPE Simulation System
	1.2 Preemption in Simulation

	2 New STROBOSCOPE Functions and Events to Support Preemption
	2.1 Preemption in STROBOSCOPE
	2.2 Interrupting an Activity Instance in Progress — The “Preempt” Function
	2.3 Resetting the Duration of an Existing Activity Instance — The “SetTmLeftInst” Function
	2.4 New Action Events Related to the “Preempt” Function
	2.5 Accessing the Start Time of an Activity Instance — “Activity.StartTm” Instance Variable

	3 Simulation of Moving Soil by Wheelbarrow
	3.1 Wheelbarrow Cycle Analysis
	3.2 STROBOSCOPE Simulation Model for Policies A and B
	3.3 STROBOSCOPE Simulation Results

	4 Unloading Fill Material from Barges Using Two Cranes
	4.1 Simulation Model—Unloading may be Preempted Multiple Times
	4.2 STROBOSCOPE Simulation Results

	5 Alternative Models Not Using the New Function Preempt
	6 Conclusion
	REFERENCES
	AUTHOR BIOGRAPHIES

