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ABSTRACT 

This study introduces a deep learning-based method for indoor 3D object detection and localization in 
healthcare facilities. This method incorporates spatial and channel attention mechanisms into the YOLOv5 
architecture, ensuring a balance between accuracy and computational efficiency. The network achieves an 
AP50 of 67.6%, an mAP of 46.7%, and a real-time detection rate with an FPS of 67. Moreover, the study 
proposes a novel mechanism for estimating the 3D coordinates of detected objects and projecting them onto 
3D maps, with an average error of 0.24 m and 0.28 m in the x and y directions, respectively. After being 
tested and validated with real-world data from a university campus, the proposed method shows promise 
for improving disinfection efficiency in healthcare facilities by enabling real-time object detection and 
localization for robot navigation. 

1 INTRODUCTION 

In healthcare facilities, abundant evidence attests to the role of contaminated environmental surfaces and 
equipment in transmitting pathogens, giving rise to hospital-acquired infectious disease outbreaks. 
Consequently, the research focus has been directed towards the involvement of inanimate objects in the 
vicinity of patients in the transmission dynamics of such diseases. It is now broadly acknowledged that 
patient-proximate surfaces can function as reservoirs for nosocomial pathogens (Huslage et al. 2010). 
Healthcare workers often serve as vectors, indirectly or directly transferring infectious pathogens to nearby 
surfaces. The sanitation of high-touch objects in healthcare facilities, crucial for mitigating fomite 
transmission, primarily falls under the cleaning staff's purview. Nevertheless, factors such as fatigue may 
impede the effectiveness of manual cleaning (Carling et al. 2010). Additionally, being in contact with high-
touch objects in infectious environments exposes cleaning staff to a heightened risk of infection. Promising 
advancements have been observed in environmental surface decontamination through the deployment of 
disinfection robots across various settings. 

The considerable potential of robots in environmental surface disinfection has drawn significant 
research interest. For example, Roelofs et al. (2021) created a UAV-based disinfection system primarily 
targeting door handles. This specialized approach might overlook other high-touch surfaces, potential 
sources of pathogens. In previous work, we developed algorithms for object detection (Hu et al. 2023a), 
contaminated area segmentation (Hu et al. 2020), and material classification (Hu and Li 2022a), designed 
specifically for disinfection robots in healthcare facilities. However, existing disinfection robots encounter 
challenges in identifying high-touch objects and estimating their 3D coordinates for efficient disinfection. 
This is due to two primary issues: a dearth of datasets dedicated to high-touch object recognition in 
healthcare facilities, and the difficulty in translating RGB image-based object detection results to a 3D map 
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for robot navigation. Accurate high-touch object identification is essential for disinfection robots to target 
surfaces with a high transmission risk and administer suitable disinfectant dosages. 

To address these challenges, this paper introduces a comprehensive deep learning-based solution 
designed to detect, classify, and project objects found in healthcare facilities onto a 3D map, significantly 
enhancing the navigation capabilities of disinfection robots. This research's contributions are both 
innovative and multi-dimensional. First, we proposed an object recognition method by incorporating spatial 
and channel attention mechanisms into the highly efficient YOLOv5 architecture. This fusion not only 
maintains high accuracy but also optimizes computational efficiency, enabling real-time application. 
Second, we created a unique mapping framework that seamlessly integrates object detection, object 
coordinate estimation, and object clustering. This synergistic approach effectively projects detected objects 
onto a 3D map, creating an invaluable tool for robot navigation in complex environments. We substantiated 
the practical relevance and effectiveness of our proposed method by testing and validating it using real data 
collected from a university campus building. The results conclusively demonstrate the method's feasibility 
and its potential for broad application in various practical contexts, especially in the critical realm of 
healthcare facilities. 

2 LITERATURE REVIEW 

This section reviews algorithms and datasets for the task of object recognition and localization. Several 
datasets have been created for object detection, such as Microsoft COCO, Open Images, and PASCAL 
VOC2007. These datasets, comprising both indoor and outdoor environments, have been widely employed 
as benchmarks to evaluate the performance of deep learning networks. However, very few datasets have 
been specifically developed for object recognition in healthcare facilities. In this context, Bashiri et al. 
(2018) proposed an object classification dataset named MCIndoor20000, which uses images collected from 
the Marshfield Clinic. This dataset contains a total of 2,055 images with three object categories: doors, 
stairs, and hospital signs. More recently, Ismail et al. (2020) created an image classification dataset 
(MYNursingHome) using a total of 37,500 images collected in several nursing homes. This dataset 
comprises 25 indoor object categories such as basket bins, benches, cabinets, chairs, and wheelchairs. The 
main drawback of the MCIndoor20000 and MYNursingHome datasets is that surrounding backgrounds and 
objects were removed for each object category. Consequently, every image contains only one object 
category, rendering the datasets unsuitable for object detection in cluttered indoor environments. 

As computational power has advanced, deep learning methods have become widely used in computer 
vision tasks, proving effective in various fields including building damage detection (Hu et al. 2023b) and 
radargram inversion (Hu et al. 2022b). In the realm of object detection in healthcare facilities, significant 
strides have been made. Vasquez et al. (2017) incorporated a fast region proposal method into a Fast R-
CNN network, thereby boosting object detection efficiency and speed. The network showed promise in 
identifying patients with mobility aids, such as wheelchairs. The object detection results were subsequently 
refined using a probabilistic estimator for position, velocity, and class, generated through a hidden Markov 
model. Furthermore, Kinasih et al. (2020) employed a 'you only look once' (YOLO) based object detector, 
specifically to identify hospital beds. To tackle low-confidence detection, a centroid tracking approach was 
proposed, involving displacement calculation relative to the object size.  

Several studies have integrated Simultaneous Localization and Mapping (SLAM) and object detection 
to estimate the 3D coordinates of recognized objects. For instance, Liu et al. (2022) proposed a method that 
integrates ORB-SLAM2 with object detection to estimate an object's position in a 3D map. However, this 
method necessitates the use of ArUco markers for camera calibration, object size estimation, and pose 
estimation, thereby limiting its applicability in new indoor environments. Similarly, Rosinol et al. (2021) 
classified objects by aligning the reconstructed 3D object mesh with known object shapes, which also 
enabled them to estimate the 3D pose of objects. However, this technique requires a well-reconstructed 3D 
map with accurate 3D reconstructed object shapes, a condition difficult to meet in real-world applications. 
The present study aims to address this knowledge gap. 
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3 METHODOLOGY 

In this paper, we introduce a comprehensive four-step methodology for generating a semantic 3D map, as 
illustrated in Figure 1. Our first step involves developing a deep learning-based network designed to detect 
and classify objects within RGB images. The second step employs SLAM (Simultaneous Localization and 
Mapping) to estimate camera pose and generate a corresponding 3D map. The third phase combines camera 
poses, generated point clouds, and identified objects to estimate the objects' 3D coordinates. Lastly, we 
utilize a density-based algorithm to cluster objects detected from various camera perspectives, using each 
cluster's centroid to represent the object's position. The projected objects then construct a semantic 3D map. 
This 3D semantic map offers potential for improving robot navigation and enhancing information 
registration. 

 
Figure 1: Methodology overview. 

3.1 Object Detection Network 

This study aims to improve the rapid inference capability of object detection networks by utilizing the 
YOLOv5s architecture. The YOLOv5s architecture consists of three main components: the backbone 
network, the detection neck, and three detection heads. The initial stage of the architecture involves image 
preprocessing using the mosaic method, which is a data augmentation technique designed to improve the 
network's performance on small objects. The backbone network plays a crucial role in extracting features 
at various levels from the input images. It is constructed based on the Cross Stage Partial Network (CSPNet) 
(Wang et al. 2019), which incorporates gradient changes into the feature map from its inception to its 
conclusion. By doing so, the CSPNet architecture reduces computational costs while preserving the 
network's inference power. Each CSPNet network comprises of three cascaded convolutional layers with 
diverse bottlenecks. Furthermore, the backbone layer incorporates the coordinate attention mechanism 
(Hou et al. 2021), which allows the YOLOv5s network to focus on critical regions with minimal 
computational expense. The Spatial Pyramid Pooling - Fast (SPPF), which is the final layer of the backbone, 
concurrently pools on multiple kernel sizes (5, 9, 13) to extract both fine and coarse information. The 
detection neck, which is based on the Path Aggregation Network (PANet) (Liu et al. 2018), is responsible 
for enhancing information flow at different levels. The PANet is an improvement over the Feature Pyramid 
Network (FPN), with the addition of an extra bottom-up pathway. The detection neck obtains feature 
pyramids that are utilized to identify objects of varying sizes and scales. Comprising four CSPNet blocks, 
the detection neck generates three feature maps with distinct scales to predict targets of various dimensions. 
These feature maps are then partitioned into grids, and each grid is assigned three anchors to predict the 
bounding box for the object. Figure 2 offers a detailed depiction of the adopted network architecture. We 
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have introduced two enhancements to this model: the addition of an attention mechanism and the 
replacement of the bounding box regression loss. 
 

   
Figure 2: Architecture of the proposed network. 

3.2 3D Object Localization 

After recognizing objects in 2D RGB images, it is necessary to project the labels to a 3D grid map for robot 
navigation and disinfection. The classical pinhole camera model (Bradski and Kaehler 2000) is used to 
calculate the point cloud of the environment using the depth images. The 3D object mapping consists of 
three steps, namely object coordinate calculation, SLAM, and object clustering.   

3.2.1 Object Coordinate Calculation 

In order to compute the coordinates of an object detected in an image, the corresponding 3D point cloud 
must first be identified. For commonly used RGB-D cameras, such as Kinect and RealSense, the depth 
image is aligned with the RGB image. The object is represented as a bounding box within the image, and 
the 2D pixel coordinates encompassed by the bounding box are projected onto a 3D point cloud. The object 
label is converted to cluster point indices under the assumption that 0 represents the background. 
Consequently, a set of point indices is generated, with each point index signifying an object label. This 
approach enables the accurate computation of object coordinates based on their respective point cloud 
representations. 

The decomposition operator generates a subset of point clouds with an object label assigned to each 
detected object. Given that the object is delineated as a bounding box in images, it is inevitable that some 
points not pertaining to the object might be included in the point cloud subset. These noisy points may 
originate from the ground surface or other background elements, adversely affecting the accuracy of 
coordinate estimation. Figure 3 illustrates an example of a clustered point cloud for a human, which includes 
noisy points. As depicted, the point cloud contains extraneous points from both the ground plane and the 
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barrier situated behind the individual. It is essential to eliminate these noisy points to ensure precise object 
position estimation. In this study, two point cloud filters are implemented to remove noisy points, 
consequently mitigating their impact on coordinate estimation. Initially, the PassThrough filter is applied 
to directly eliminate points that fail to meet the designated threshold. 

 
Figure 3: Example point cloud corresponding to the detected person. (a) human detected by the network; 
and (b) point cloud. 

The ground surface points are filtered out using a range threshold in the z-direction dimension. Next, a 
statistical outlier removal approach is used to remove points that are further away from their neighbors 
compared to the average for the point cloud. The method can be divided into the following steps.  

• Set k, an integer, representing the number of closest points around point P𝑖, 
• Set a standard deviation multiplier 𝛼, 
• For every point 𝑃𝑖 in the 3D point cloud 

o Find the location of k nearest neighbors to point 𝑃𝑖, 
o Compute the average distance di from point 𝑃𝑖 to its k nearest neighbors, 

• Compute the mean 𝜇𝑑 of the distance di, 
• Compute the standard deviation σd of the distance di, 
• Compute the threshold T = 𝜇𝑑 + 𝛼⋅𝜎𝑑, 
• Eliminate points in the cloud for which the average distance to its 𝑘 neighbors is at a distance 𝑑 > 

𝑇. 
 Figure 4 shows the filtered point cloud using range threshold and statistical outlier removal. Specifically, 
the range threshold is set from 0.1 to 5 m. The value of k is set to 100, and 𝛼 is set to 0.5. The ground surface 
points can be eliminated with the range threshold. The points that come from the background are 
successfully eliminated, resulting in a clean point cloud for the human. The filtered point cloud is then used 
to estimate the 3D coordinate of the object.  

After filtering, the centroid of point cloud Pc can be estimated using Eq. (1), where N is the total number 
of points in the filtered point cloud, and (xi, yi, zi) are point coordinates. 
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$%& 0                                                (1) 
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The 3D bounding box of the point cloud can also be estimated from the filtered point cloud. Note that 
the z axis of a 3D bounding box is perpendicular to the ground plane. The direction of x and y for the 3D 
bounding box is estimated using Principal Component Analysis (PCA). 

 
Figure 4: Filtered point cloud. 

For PCA estimation, the 3D point cloud is projected onto the ground plane. The covariance matrix is 
first calculated in Eq. (2), where M (xp, yp) are coordinates of projected points on the plane.   

 

𝐴 = 2
𝑐𝑜𝑣(𝐱', 𝐱') 𝑐𝑜𝑣(𝐱', 𝐲')
𝑐𝑜𝑣(𝐱', 𝐲') 𝑐𝑜𝑣(𝐲', 𝐲')

:                                               (2) 

 
Given an eigenvalue of λ, an eigenvector V associated with λ for the covariance matrix, A should satisfy 

Eq. (3). The eigenvector V for A can then be calculated. V1 and V2 are directions of the first and second 
principal components, i.e., directions of x and y, respectively. 

 
𝐴𝑉 = 𝜆𝑉                                                                (3) 

 
Next, the point cloud M is projected onto principal components using Eq. (4) 
 

𝑇 = 𝑉𝑀                                                                 (4) 

3.2.2 Localization and Mapping 

In this study, the RTAB-Map SLAM method (Labbé and Michaud 2019), a graph-based SLAM technique, 
is employed for robot localization and environmental occupancy map generation to facilitate navigation. 
The map's structure comprises nodes and links. Odometry nodes disseminate odometry data for the 
estimation of robotic poses. Visual odometry, derived from ORB-SLAM2 (Mur-Artal and Tardós 2017), 
serves as the odometry input due to its rapidity and precision. The Short-term Memory (STM) module 
constructs nodes to store odometry and RGB-D images, in addition to computing other information such as 
visual features and local occupancy grids. A weighting mechanism is implemented to determine the transfer 
of nodes from Working Memory (WM) to Long-term Memory (LTM), thereby constraining the WM size 
and reducing graph update time. When loop closure is detected, nodes in the LTM can be reintegrated into 
the WM. Links store transformation information between two nodes, with neighbor and loop closure links 
functioning as constraints for graph optimization and odometry drift reduction. The Bag of Words approach 

Original Statistical outlier 
removal

Range threshold
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(Kejriwal et al. 2016) is utilized for loop closure detection. Visual features extracted from local feature 
descriptors, such as ORB (Rublee et al. 2011), are quantized into a vocabulary for expedited comparison. 
RTAB-Map outputs, including camera pose and 2D occupancy grid, are employed for semantic mapping 
and robot navigation. The rtabmap-ros package is accessible in ROS, facilitating seamless integration with 
autonomous robots for this application. 

3.2.3 Object Clustering 

As the camera is in continuous motion, objects may be detected from varying perspectives, necessitating 
the clustering of object detection results across multiple viewpoints. Initially, 3D coordinates for detected 
objects are estimated across different camera views. Given its ability to identify clusters of diverse shapes 
and sizes without predefining the number of clusters, its efficient handling of outliers, and reduced 
computational demands, the DBSCAN algorithm is favored over other clustering methods like K-means 
(Fuchs and Höpken 2022). DBSCAN requires two parameters: the maximum distance epsilon (ε) and the 
minimum number of points (minPts) constituting a cluster. The algorithm commences by selecting an 
arbitrary point within the point cloud and retrieving points located within the ε distance. If the number of 
points exceeds minPts, a cluster is established; otherwise, the point is considered noise. When a point is 
designated as part of a cluster, its neighboring points within the ε distance are also incorporated into the 
cluster. The cluster persists in adding new points until no further points are found within the ε distance. 
Subsequently, a new unvisited point is chosen, and the same procedure is executed to identify clusters or 
noise. The DBSCAN process is delineated in pseudocode in Figure 5. 

 
Figure 5: Pseudocode of DBSCAN algorithm (adapted from Schubert et al. (2017)). 

4 EXPERIMENT AND RESULTS 

4.1 Results on Object Detection 

The network is trained on a workstation running Ubuntu 16.04 with dual Intel Xeon Gold 4114 CPU, 128 
GB RAM, and NVIDIA RTX A6000. The Stochastic Gradient Descent (SGD) optimizer is used to train 
the network. The network is trained for a total of 300 epochs. The Hospital Indoor Object Detection (HIOD) 

DBSCAN(DB, distFunc, eps, minPts) { 
    C := 0                                                   
    for each point P in database DB { 
        if label(P) ≠ undefined then continue              
        Neighbors N := RangeQuery(DB, distFunc, P, eps)    
        if |N| < minPts then {                              
            label(P) := Noise                               
            continue 
        } 
        C := C + 1                                          
        label(P) := C                                       
        SeedSet S := N \ {P}                                
        for each point Q in S {                             
            if label(Q) = Noise then label(Q) := C          
            if label(Q) ≠ undefined then continue            
            label(Q) := C                                    
            Neighbors N := RangeQuery(DB, distFunc, Q, eps) 
            if |N| ≥ minPts then {                           
                S := S ∪ N                                  
            } 
        } 
    } 
} 
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dataset (Hu et al. 2023a) is selected for network evaluation. The dataset is randomly split into a training set 
(80%), and a validation set (20%). The images are resized to 640 × 640. The early stopping technique is 
used to avoid the overfitting problem. Specifically, the network stops training when the loss value does not 
decrease for 20 epochs. The model with the highest performance on the validation set is saved for 
performance analysis. 

The results demonstrate that the proposed method achieves significant performance metrics, with an 
AP50 of 67.6% and a mAP of 46.7% on the validation set of the HIOD dataset. The effectiveness of the 
alpha-IoU and coordinate attention mechanisms is evaluated by systematically incorporating each 
component into the baseline model and examining its impact on the model's performance. Table 1 displays 
the results for the validation set of the HIOD dataset, with the mAP serving as the primary performance 
evaluation metric for the network. The findings indicate that the baseline network exhibits a performance 
improvement of 0.6% when augmented by the alpha-IoU mechanism, signifying its positive contribution 
to the model. Likewise, the coordinate attention module demonstrates its efficacy by enhancing the baseline 
performance by an equivalent margin of 0.6%. A synergistic integration of both the alpha-IoU and 
coordinate attention mechanisms achieves the most optimal performance, resulting in a cumulative 
improvement of 1.7%. This considerable enhancement emphasizes the effectiveness of the proposed 
method in detecting and classifying building damage, underscoring its potential for practical applications 
in assessing structural integrity and informing subsequent interventions. Figure 6 illustrates example results 
of object detection in the validation set of the HIOD dataset. The results indicate that the proposed method 
can accurately detect and classify objects in healthcare facilities.  

Table 1: Ablation study. 

Model alpha-IoU Coordinate attention mAP (%) 
YOLOv5s - - 45.0 
 ✓ - 45.6 
 - ✓ 45.6 
Proposed ✓ ✓ 46.7 

 
Figure 6: Examples of model prediction results. 
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4.2 Results on Object Localization 

To assess the accuracy of object mapping, a robot simulation platform was developed to emulate indoor 
environment reconstruction. The platform operates on a laptop running Ubuntu 18.04, with the Robot 
Operating System (ROS) distribution being Melodic and the Gazebo version being 9. Within the simulation 
platform, the robot is equipped with an LMS1xx 2D laser and a RealSense RGB-D camera. Figure 7(a) 
illustrates the experimental setup, in which six individuals are randomly situated within the indoor 
environment. The human object is selected for evaluation purposes, as the deep learning network, trained 
using real images, may experience compromised performance in a simulated environment. The human 
features in the virtual environment closely resemble those in the real world, facilitating consistent detection. 
The estimated positions of the six individuals, as determined by the proposed method, are compared to their 
ground-truth positions. Figure 7(b) displays the reconstructed 3D map with object information. As 
demonstrated, the indoor environment is accurately reconstructed, with all six individuals correctly detected 
and clustered using the proposed method.  

 
Figure 7: (a) Overview of the robot simulation platform; (b) Reconstructed map with object information. 

Table 2 presents the performance metrics of the object coordinate estimation. The results suggest that 
the estimated positions align well with the ground truth. Specifically, the error in the x-direction ranges 
from 0.03 m to 0.47 m, with an average of 0.24 m. The error in the y-direction spans from 0.01 m to 0.37 
m, with an average of 0.28 m. These promising results highlight the potential of the proposed method for 
object detection and mapping in indoor environments, demonstrating its accuracy and practical 
applicability. 

Table 2: Comparison of estimated and ground-truth object positions. 

Object id Estimation Ground truth x error (m) y error (m) 
1 (5.45, 4.02) (5.5, 4) 0.05 0.02 
2 (6.08, -2.72) (6, -3) 0.08 0.28 
3 (-0.03, -4.73) (0, -5) 0.03 0.27 
4 (-4.33, -5.63) (-4.5, -6) 0.17 0.37 
5 (-5.60, 0.66) (-6, 0.5) 0.4 0.16 
6 (-3.53, 4.49) (-4, 4.5) 0.47 0.01 

3
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5

4
6

Robot
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The performance of the proposed method is further evaluated using real video data collected in a lounge 
room on the UTK campus. The room is densely populated with over 20 chairs, multiple desks, and assorted 
furniture, posing a considerable challenge for the proposed method. Figure 8 displays the reconstructed 3D 
map incorporating object information. The results suggest that the majority of chairs are successfully 
detected with precise positioning. The small door handle on the right side is accurately identified and 
localized. It is important to note that, on the left side, some chairs are erroneously detected as sofas due to 
their similarities, leading to inconsistent predictions from different camera perspectives. 

 

Figure 8: Reconstructed 3D map with object information in a building room. 

5 CONCLUSIONS 

This study presents a novel approach for indoor object detection and mapping, underpinned by two 
computational innovations and exhibiting high performance, as validated through real-world data and 
scenarios. The developed method outperforms existing solutions by accurately detecting and classifying 56 
categories of indoor objects in healthcare facilities in real time. This accomplishment was realized through 
the creation of an unparalleled dataset for robust performance and the incorporation of a new attention 
mechanism within the deep learning method for detection and classification. The proposed deep learning 
network achieved an AP50 of 67.6% and an mAP of 46.7% on the validation dataset. Furthermore, the 
proposed method is lightweight, attaining real-time detection with an FPS of 67. Consequently, the AI 
method can be implemented in an embedded system for real-time detection. A novel mechanism was 
devised to estimate the 3D coordinates of detected objects and project them onto 3D maps. A robot 
simulation platform was constructed to assess the performance of the 3D coordinate estimation, yielding an 
average error of 0.24 m and 0.28 m in the x and y directions, respectively. The methods and workflow were 
also validated in a real indoor environment on campus, demonstrating their applicability in real-world 
applications. 
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Despite the promising results obtained in this study, several limitations should be acknowledged and 
addressed in future research. First, the dataset used for training and validating the deep learning model was 
collected from a specific healthcare facility, potentially limiting the generalizability of the method to other 
settings with different object categories and environmental conditions; expanding the dataset to include 
diverse healthcare facilities would enhance the generalizability and robustness of the proposed method. 
Second, the performance of the 3D coordinate estimation mechanism may be influenced by factors such as 
sensor noise, calibration errors, and varying lighting conditions, which were not extensively explored in 
this research; future studies could investigate these factors to improve accuracy and reliability in real-world 
applications. Third, the study focused on static objects, not considering the impact of dynamic objects, such 
as moving personnel, on the detection and localization process; incorporating techniques for handling 
dynamic objects, such as real-time tracking and prediction, would enable the system to adapt to rapidly 
changing environments. Finally, integrating the proposed method into an end-to-end robotic system for 
disinfection and navigation would allow for a comprehensive evaluation of its effectiveness in real-world 
scenarios and facilitate the development of more efficient and robust disinfection robots for healthcare 
facilities. 
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