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ABSTRACT

Cities and large urban areas face a myriad of challenges ranging from city planning, developing sustainable
transportation, managing natural catastrophes, and mitigating communicable diseases. Addressing these
challenges requires effective analysis and planning which in turn necessitates the use of sufficiently
detailed models or “digital twins.” Such detailed models that embody multifaceted demographic and city
characteristics are challenging to generate. This paper presents our ongoing work to develop a novel model
generation method and software suite called CITYSCAPE, that fuses diverse real-world data sets to generate
a digital twin for a given city. Specifically, our method combines data from authoritative sources including
PUMS, PUMAs, and OpenStreet Map to generate the digital twin. We have used the city of Chicago (IL,
USA) as a case study to verify and validate (with ~85% confidence) our proposed method.

1 INTRODUCTION

Increasing urbanization and population growth pose a broad range of challenges ranging from city planning,
developing sustainable transportation, managing natural catastrophes, and mitigating communicable diseases.
For example, during the COVID-19 pandemic, several cities around the world faced challenges in designing
effective policies to contain the epidemic through strict quarantines while providing necessary food and
resources to people (Rao and Rao 2021; Wang et al. 2021). Another example of poor planning was
witnessed in the Gulf Coast of the United States during the 2005 hurricane Katrina – it was tragically
discovered the evacuation plans were not adequate to evacuate the impacted area (Daniels 2007). As
discussed by Daniels (2007), the root issue is that responses to particular catastrophes are usually based
on historical examples of similar events and not on current scenarios. Conventional statistical analyses
are not conducive for “what-if” type analyses that are required for policy assessments. Furthermore, they
do not yield sufficiently detailed and intuitive information about households and people living in a city.
Hence, it is imperative that effective methods and tools are developed so that we are prepared to face
the growing challenges posed by various factors, including climate change and emergent communicable
diseases. Otherwise, as Benjamin Franklin said – “By failing to prepare, you are preparing to fail.” Hence,
innovative approaches are needed to proactively address these growing challenges.

Effective analysis and planning require sufficiently detailed models. Modeling and simulation-based
methods are widely used for the study and analysis of complex dynamics of human populations. Since,
simulations rely on valid, comprehensive, and robust models, modeling plays a pivotal role (Schmidt
and Rao 2017; Giridharan and Rao 2016). Such models are also called “digital twins” as they provide
a more realistic characterization of the real world (Jones et al. 2020). As discussed by Schmidt et
al. (Schmidt and Rao 2017) et al., digital twins of population demographics need to embody several key
characteristics, namely, (a) Realism: The model must be realistic and mirror geographic, demographic, and
behavioral characteristics; (b) Reusability & accuracy: Investments into model development and validation
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are effectively amortized only when models can be reused or easily adapted for different types of analyses;
and (c) Computational costs: Time and resources required for model generation, validation, simulation, and
analysis need to be balanced with realism, accuracy, and effective use (Chen and Zhan 2008). However,
generating comprehensive models for human populations continues to remain a challenging task (Barrett
et al. 2009; Schmidt and Rao 2017). Very few detailed models are readily available for use by various
modeling and simulation communities (Schmidt and Rao 2017).

1.1 Overview and Key Contributions of This Work

This paper presents our ongoing work to develop a novel model generation method that fuses diverse
real-world data sets to generate a digital twin for a given city. Specifically, our method combines data
from authoritative sources including Public Use Microdata Sample (PUMS), Public Use Microdata Areas
(PUMAs), and detailed street maps to generate the digital twin for a given city. Our method has been
incorporated into a software suite called CITYSCAPE. The software system also includes tools for visualizing
the input data and the generated model. Section 3 presents the details of our methodology and CITYSCAPE.
Our methodology and software suite are the key contributions of this work. Section 2 compares and
contrasts our methods with other closely related investigations. In this study, we have used the city of
Chicago (IL, USA) as a case study to verify and validate our method and software suite. Relevant aspects
of our case study are discussed in Section 4. Section 5 provides concluding remarks along with our plans
for future work.

2 RELATED WORKS

The focus of this paper is our method for the generation of a digital twin model of the human population in a
given city. The generation of realistic and comprehensive models of human populations is an active research
area in diverse fields, such as computational epidemiology, sustainable transportation, and socioeconomics.
In such models, humans are either modeled as a collection of interacting individuals or groups. Group
models represent a collection of collocated individuals modeled as an indivisible unit. Different types of
group models have been proposed by several investigators including (Balcan et al. 2010; Keeling 2005;
Rao et al. 2009). In their models, the groups are organized based on their geographic locations resulting in
a logical structure akin to a Voronoi tessellation. Interactions between groups are modeled implicitly based
on their adjacency or via explicit mobility networks. The benefit of using a group model is it reduces the
computational cost because the model consists of fewer entities which significantly reduces computations
performed at each time step. Furthermore, such models do not require detailed, voluminous data about the
population, which can be hard to obtain. The primary disadvantage of aggregate or group models is that
information about each individual is not preserved. The models do not preserve heterogeneity that may be
present within the group. However, such information may be vital for certain types of analyses and the
design of public policies.

Consequently, several researchers have proposed the use of individual-based models, where each individ-
ual is independently modeled. Such models essentially embody contact networks that define temporospatial
interactions that occur between individuals. Longini et al. (2005) discuss the generation and use of
synthetic, individual-based models for containing influenza epidemics. They use a variety of data sources
to generate individuals and their temporospatial activities. Bhatele et al. (2017) discuss enhancements
to modeling and simulation of the individual-based model generated as part of prior work by Barrett
et al. (2009). Several investigations of the COVID-19 pandemic have used individual-based models for
country-level analyses of the epidemic and the effectiveness of various interventions (Unwin et al. 2020;
Verity et al. 2020). The advantages of individual-based models are that they are less prescriptive and
provide a more realistic digital-twin model. However, the shortcomings are that they are harder to generate,
calibrate, verify, and validate. Moreover, individual-based models can be computationally demanding, often
requiring supercomputers to enable simulations within acceptable run times (Barrett et al. 2009).
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2.1 Similarities and Differences of Our Method from Prior Works

Prior investigations typically focus on either group-based or individual-based models. In contrast, our digital-
twin model generation method aims to preserve the advantages of both the group-based and individual-
based models with scope for further aggregation. Similar to the aforementioned group-based models, in
our proposed method (see Section 3.4), we generate "households" (or families) that represent a group of
people living together. In addition, we also include individual information with each “household” that is
generated. In other words, our method yields models that can be used either at a group level or at an
individual level based on the type of static or simulation-based analysis to be conducted. Moreover, our
method also preserves geographical annotations that can be used to further aggregate the model to analyze
or simulate larger groups. Similar to models by Barrett et al. (2009), modelers can also include any of
the >100 different household and people attributes from PUMA data into the model to facilitate different
analyses. However, unlike their models, our generated model also includes detailed roadways and building
information that is required for certain types of geospatial analyses. In contrast to some of the prior research,
our software suite called CITYSCAPE is multithreaded to enable rapid model generation and visualization of
our models. Our model generator produces visualization using XFig text format, which eases editing and
generating visualizations. This feature of generating visualization as part of model generation distinguishes
CITYSCAPE from several of the prior works discussed earlier. The aforementioned combination of features
collectively distinguish our work form prior closely-related investigations. The software and generated
models are publicly available for use by the scientific community at github.com/raodj/cityscape.

3 METHODOLOGY

An overview of the model generation methodology used by CITYSCAPE is shown in Figure 1. As illustrated
by the figure, our proposed method fuses diverse data from different sources to generate a comprehensive
digital-twin model for a given city. The model generation process proceeds in two key phases that are
discussed in detail in the following subsections.

3.1 Phase 1: Roadways & Building Data from Open Street Map (OSM)

The first step of the process begins with the modeler downloading the freely available, community-maintained,
Open Street Map (OSM) data (OpenStreetMap contributors 2023) for a given city. Alternatively, data from
other sources such as Google Maps can be used, but the data is not freely available and hence we propose
to use OSM datasets. Typically, the data is downloaded using a bounding rectangle around the city of
interest. However, the city boundaries are seldom rectangular. Hence, the downloaded OSM data at this
phase include additional areas that may not be relevant to the city of interest. Consequently, in our method,
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Figure 1: Overview of model generation methodology used in CITYSCAPE.
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other data sources used in subsequent model generation phases can be used to further fine-tune the city
boundaries. This approach is a compromise between a modeler’s time to define the geographic boundaries
manually (i.e.,, rectangular regions are easier to specify than complex polygons for city bounds) versus a
slight increase in computational cost for processing additional data that may not be used for generating the
final model.

3.1.1 Phase 1.1: Generation of Existing & New Roadways from OSM Data

The OSM data is an XML file that includes detailed information about roadways in the region along with
metadata about the roadways, such as their kind (e.g., highways, secondary ways, etc.), their speed limits,
etc. A roadway (or a “way”) is represented as a set of interconnected nodes. Nodes are represented as
geographic points with specific latitudes and longitudes. Intersecting ways have a common node for the
intersections. At this step, a modeler also has the option to add new nodes and roadways to the generated
model. This feature enables modelers to analyze the impacts of new roadways or proposed extensions in
the city. Currently, the OSM data for certain roadways is incomplete with missing metadata for the speed
limit of roadways. In such scenarios, the speed limit is inferred based on its kind.

3.1.2 Phase 1.2: Generation and Verification of Existing & Synthetic Buildings

In addition to roadway data, the OSM data also provides metadata information about buildings along with
their shapes represented as a polygon. Each vertex in this polygon is denoted by its latitude and longitude.
The metadata for a building includes its type (i.e., house, church, school, office, etc.), the
number of levels in the building, and several tags that provide additional information. The metadata and
tags are used to classify buildings are residential or non-residential buildings. In addition, the shapes of
buildings and the number of levels are used to compute the area of buildings. This information is used to
assign households to residential buildings in subsequent steps. In certain areas, the OSM data for buildings,
particularly homes, is missing. Figure 2(a) illustrates an example of such an area in the city of Chicago,
IL, USA. Consequently, in these areas, synthetic buildings representing homes are automatically generated
by CITYSCAPE along residential roadways that do not have any buildings, as shown in Figure 2(b). The
generation of synthetic buildings is also applied to any new roadways the modeler may have added in the

(a) OpenStreet Map (b) Generated homes (c) Google Maps

Figure 2: Region in the city of Chicago (IL, USA) where synthetic homes were generated to compensate
for missing building data along with Google Map data used for V&V.
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previous step. The size of the homes and the spacing between them is specified by the modeler to reflect
typical homes in the area. The synthetic homes are generated on either side of a roadway as shown in
Figure 2(b). In our final model, all buildings are simplified to rectangular regions. In addition, in this step,
entryways for each building are computed based on the nearest roadway to the building.

Verification and Validation (V&V): We have manually verified and validated the proposed building
generation process using the city of Chicago as a case study. For verification, we have used Google Maps
(see Figure 2(c) for example), which has more complete data when compared to OpenStreet Map. For the
verification process, CITYSCAPE’s map generation feature was used to generate map fragments as shown
in Figure 2(b). The map fragments were then visually compared with the corresponding region in Google
Maps. Our synthetic building generation process yields good results except in certain cases where other
types of buildings such as offices are present in certain areas. However, a modeler can manually add such
buildings to the model as well. Additional V&V of our proposed methods are discussed in Section 4.

3.1.3 Phase 1.3: Specification of Accurate City Boundaries
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Figure 3: Example GIS
boundaries.

As discussed earlier in this subsection, the OSM data for a city is approxi-
mately downloaded using a rectangular bounding box around the city limits.
This reduces the manual overheads for a modeler. The approximate rect-
angular region can be fine-tuned by a modeler by providing accurate city
boundaries in the form of Geographic Information Systems (GIS) shape files.
An example of such a shape file for the city of Chicago, IL, USA is shown
in Figure 3. It must be noted that the figure is generated by CITYSCAPE using
the supplied GIS shape files. The GIS shape files are available for public
use from the city, state, and country-level government organizations (The
City of Chicago 2023b). The shape file data is intersected with the OSM
data and only roadways and buildings within the bounds of all the shapes
are included in the final model generated by CITYSCAPE. In addition, the
boundary shapes are also used to determine population distributions from
other data sources as discussed in Section 3.2

3.2 Phase 2: Household and Population Generation

The second phase of the digital-twin model generation focuses on creating and assigning households to the
residential buildings in the model. Currently, CITYSCAPE provides two different approaches for generating
populations, namely (a) an approximate household generation approach based on gridded population data,
and (b) a more precise household generation approach using census micro-samples. These two approaches

Figure 4: Example grid-
ded population data.

are further discussed in the following two subsections.

3.3 Household Generation Using Gridded Population Data

Gridded population data are widely available and used for modeling. Com-
mon sources of gridded population data include data sets from NASA’s
Socioeconomic Data and Applications Center (SEDAC) (CIESIN 2016) and
LandScan™ data set from the Oak Ridge National Laboratory (ORNL) (Oak
Ridge National Laboratory (ORNL) 2012). Gridded population data are
typically made available as raster Geographic Information Systems (GIS)
files. Each grid is of fixed size and provides information about the estimate
of the population in the given grid. The grids of interest are determined
by intersecting them with a given city’s shape boundaries as discussed
in Section 3.1.3. An example, of gridded population data for the city of
Chicago, is shown in Figure 4. The population in each grid is used to
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divide the population based on the number of buildings and the size of buildings. This approach does not
require any additional data. However, the compromise is that the generated population distribution is very
approximate. Such a model may be sufficient for certain types of analyses but insufficient for detailed
analyses based on households and the distribution of households. Consequently, CITYSCAPE also enables
population generation using a more involved process as discussed in Subsection 3.4.

3.4 Household Generation Using Public Use Microdata Sample (PUMS)

CITYSCAPE also provides a comprehensive method for generating and assigning households to buildings
using the Public Use Microdata Sample (PUMS) available from the US Census Bureau (United States
Census Bureau 2023b). PUMS data is widely used for different types of socioeconomic analyses. The
PUMS data provides a statistical summary of the population based on census responses to the American
Community Survey (ACS).

3.4.1 Sources of Errors in the PUMS Data When Compared to Full Census Data

Although PUMS aims to provide an accurate summary of the demographics, there are a few sources of
errors to be aware of, namely:

1. It must be noted that the PUMS data is a summary and certain appropriate changes are also made
to anonymize the data and preserve confidentiality (United States Census Bureau 2023b).

2. The PUMS microdata is a sample of the full ACS microdata and includes only about two-thirds of
the records that are used to produce ACS estimates.

3. PUMS data is available either as a 1-year or 5-year estimate. The 1-year estimate is more recent
but is based on ~1% of the population. On the other hand, the 5-year data is based on ~5% of the
population but lags behind in current estimates. These two data sets provide a tradeoff between
recentness and accuracy.

Consequently, the summary statistics (such as average household size) characteristics of the model generated
using PUMS data are expected to slightly deviate from the corresponding summary statistics in the full
US Census data. In the case of Chicago, the number of households in the generated model is fewer by
~4% (i.e., 1.06 million instead of 1.11 million) and the average household size is lower by ~6% (i.e., 2.27
persons per household instead of 2.41). A modeler has the option to suitably scale the PUMS data to obtain
a closer match to the summary statistics from the complete census data.

3.4.2 PUMS Data Set Details

The PUMS data for a city are distributed as Comma Separated Values (CSV) text files and include two
types of files: (a) one CSV file for “person” records, and (b) one for “housing” unit records. Each record
in the person file represents a single person with over 100 attributes for each person, such as age, income,
weight, health parameters, etc. Each person is also associated with a housing unit record to enable the
generation of households. Currently, CITYSCAPE only uses household records in PUMS. It does not use
group quarters (GQ) records that represent people in prisons, nursing homes, or college dormitories. Since
GQ records are not used, this also causes some of the differences discussed in the previous paragraph. We
plan to include GQ records as well in the near future.

3.4.3 Combining PUMS data with Public Use Microdata Areas

The PUMS data provides a summary of people and households within a given geographic region called Public
Use Microdata Area (PUMA) (United States Census Bureau 2023a). PUMAs are non-overlapping, statistical
geographic areas that partition each state or equivalent entity into geographic areas containing no fewer than
100,000 people. The US Census Bureau defines PUMAs for the tabulation and dissemination of decennial
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Figure 5: PUMA regions
(in red) for Chicago.

census and PUMS data. Each PUMS record is associated with a PUMA
region. The PUMA regions are provided in the form of GIS vector shape
files. However, the PUMA regions do not follow the same geographic
boundaries as city limits as illustrated in Figure 5. Hence, additional
processing is necessary to detect overlap between city boundaries (see Sec-
tion 3.1.3) and PUMA regions. CITYSCAPE includes custom computational
geometry algorithms to detect intersections between polygons and compute
percentage overlaps. The percentage overlap is used to appropriately scale
the number of PUMS households generated in overlapping areas.

3.5 Phase 3: Assigning Households to Buildings

The final phase of model generation assigns households generated in Phase
2 to residential buildings generated in Phase 1 (see Section 3.1) for each
PUMA region. First, the households are sorted based on the type of
building they are associated with in the PUMS record. The buildings are
sorted based on their square footage and the assignment process uses these two sorted lists. For example,
single-family households associated with independent houses are assigned first. Next, households that live
in apartments and condominiums are assigned. From our experiments, we find this approach provides a
sufficiently realistic mapping between households and the type of building they live in. As discussed in
Section 4, we have manually verified several randomly selected households to verify and validate the final
model generated at the end of this phase.

3.6 Technical Details on Implementation of CITYSCAPE

Our model generation process involves three distinct phases that interact with each other. Each phase
operates on different types of data, including CSV files, GIS files, and other custom text files for fine-tuning
the model. CITYSCAPE uses gdal library for reading GIS shape files. The shape files are then converted to
polygons or rings for further processing using custom computational geometry algorithms. Custom readers
are used for loading CSV and other text files. The data processed in each phase are stored in memory
using custom data structures to streamline model generation. Consequently, model generation uses a lot
of memory – for example, generating the model of Chicago requires ~6.6 GB of RAM. Hence, careful
control over memory usage is critical. Moreover, the computational geometry algorithms take time to run
on large data sets with many complex polygons. Accordingly, to have better control over memory usage and
ensure good performance, we have implemented CITYSCAPE in C++17. We have used the object-oriented
features of the language to encapsulate data and provide convenient and quick access to related information.
The outputs from the model generation phase is stored in a simple text file format. The objective is to
ease reading and processing of models using different tools and programming languages. CITYSCAPE also
includes tools to generate different figures in XFig file format that can then be converted to other formats
such as PNG, JPEG, or PDF. The figures in this paper have been produced by CITYSCAPE.

3.6.1 Parallelizing Model Generation

To further accelerate model generation, we have also multithreaded computationally demanding parts of
the process using OpenMP. Specifically, we have multithreaded the following parts of model generation:

• processing OSM XML to extract nodes, ways, and buildings,
• creation of synthetic homes (see Section 3.1.2),
• loading and detection of intersecting GIS polygons which is part of the computational geometry

routines in CITYSCAPE, and
• creation and distribution of households using PUMS and PUMA data.
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Our multithreaded approach substantially reduces model generation and visualization times.

4 CASE STUDY: CITY OF CHICAGO

In this study, we have used the City of Chicago (IL, USA) as a case study and to verify and validate the
model generation methodology of CITYSCAPE. Chicago has been chosen as the city of interest for several
reasons:

1. It is the third largest city in the USA with a population of ~2.69 million and serves as a good test
case for CITYSCAPE.

2. The city boundary shapes, PUMS, and PUMA data are readily available.
3. The City of Chicago provides several data sets that are used for verification and validation of the

generated model (The City of Chicago 2023a).
4. Availability of additional data sets (such as accident data, taxi cab ride data, etc.) provide an

opportunity for developing novel applications using the generated model.

The different data to be used for model generation were obtained from the following data sources: (a)
Open Street Map XML data (910 MB) was obtained from BBBike.org, (b) the Chicago city boundaries in
the form of GIS shape files were obtained from The City of Chicago (2023a), and (c) the PUMA CSV
files and PUMS GIS shape files for Chicago were obtained from the US Census Bureau. The downloaded
data sets were supplied to CITYSCAPE to generate a model for the city of Chicago. The model generation
was conducted on an 8-core (i7-3770K CPU @ 3.50GHz, with 4 physical cores) machine with 16 GB
of RAM running a stock Fedora Linux. CITYSCAPE was compiled using the GNU Compiler Collection
(GCC) Version 8.3.1. Generating the model for Chicago took 130 seconds of runtime and required ~6.6
GB of RAM (average of 5 runs). On average 4.5 cores out of the possible 8 cores were utilized by
CITYSCAPE. The average number of cores used is fewer than 8 because not all aspects of model generation
are multithreaded. The corresponding single-threaded run took 395 seconds (average of 5 runs) suggesting
a performance gain of 3×. The resulting model is shown in Figure 6 and has been color-coded based on the
number of households assigned to a building. For example, in a large apartment complex in Chicago, 600
households were assigned to it. We have manually validated this assignment as discussed in Section 4.1.

Figure 6: Chicago model generated by CITYSCAPE.
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The model was generated using 1012 polygons from the different GIS shape files. From the OSM data, the
model contained 217,654 nodes constituting 69,503 road segments. The model included 850,455 buildings
of which 529,893 (~62.3%) were residential and 320,562 (~37.7%) non-residential buildings. Note that
the OSM data only had 796,625 buildings and the other 53,830 residential buildings are synthetic homes
generated by CITYSCAPE as discussed in Section 3.1. These residential buildings were generated on the
3,281 residential roads in OSM data set that did not have any houses on them. The PUMS data had a total
of 1,109,393 households and the model included the same number of households. In the case of Chicago,
the number of households in the generated model is fewer by ~4% (i.e., 1.1 million instead of 1.11 million)
and the average household size is lower by ~6% (i.e., 2.27 persons per household instead of 2.41). These
differences are due to the limitations of the PUMS data as discussed in Section 3.4.1.

4.1 Verification and Validation of the Chicago Model

The generated model contains two key characteristics that need to be verified and validated. The first
feature is the layout of buildings and connecting roadways. The second characteristic is the assignment of
households to buildings. Verification and validation of these characteristics in a large model is a complex
task and exhaustive verification is impractical. Correspondingly, we have adopted different approaches.
First, we verified and validated household assignments to buildings via statistical sampling. We randomly
selected 50 households in the model and manually verified if the building assigned to them was meaningful
using Google Maps. Building addresses were obtained using the OSM-IDs in the generated model. We
have also manually verified assignments of households to large apartment complexes by sorting building
populations and verifying the top 50 buildings. With this sample size, we achieve a statistical confidence
level of 85% that the generated model contains a meaningful assignment of households to buildings.

Next, we proceeded to verify connectivity between buildings using the roadways in the model. For
this verification, we have used a subset of Chicago Taxi Trips data from the The City of Chicago (2023a).
The taxi trip data provides information about approximate pick-up and drop-off locations at the centroid of
the 80 communities in Chicago shown in Figure 3. The times for the taxi rides are rounded to the nearest
15 minutes. For our verification, we randomly select two buildings in the start and destination areas and
compute the fastest route between the two buildings and verify that the trip time is consistent with those
recorded in the taxi trips. We have developed a custom A* pathfinding algorithm to compute the fastest taxi
routes. We then manually compare the taxi routes with those generated by OpenStreet Maps and Google
Maps to verify that the routes are consistent as summarized by the example in Figure 7. We have manually
verified 50 routes and their timings, giving us a margin of error of <15%. Collectively our verification and
validation provide us with 85% confidence that the generated model is a digital twin of Chicago, thereby
validating our method for model generation.

(a) Route in CITYSCAPE (b) Route in OpenStreet Maps (b) Route in Google Maps

Figure 7: Example of comparing route and timings to validate road network in our generated model.
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5 CONCLUSIONS AND FUTURE WORK

The need to analyze, design, and proactively implement sophisticated policies at city levels has rapidly grown
to effectively manage ongoing challenges due to increased urbanization, emergent infectious diseases, and city
planning. Simulation-based methods are gaining broad applicability in this area due to their advantages.
However, simulations require valid, realistic models that effectively characterize human demographics.
Several model generation methods have been proposed for generating either group-based (households or
city-blocks) or individual-based models as discussed in Section 2. Each of these types of models has its
respective advantages and disadvantages. In this work, we propose a novel, ab initio method for model
generation and we have incorporated it into a software suite called CITYSCAPE. Our model includes both
group-level characteristics in the form of households and individual characteristics. This permits simulation
and analysis at two different scales. These model attributes are extracted from Public Use Micro Sample
(PUMS) and Public Use Microsample Areas (PUMAs) data from the US Census Bureau. The modeler can
optionally include over 100 different attributes for households and individuals in the model. In addition, the
model includes detailed roadways and buildings. These model features make it amenable to hierarchical,
group-based, or individual-based analyses.

In this paper, we have used the city of Chicago (IL, USA) as a case study due to several reasons as
discussed in Section 4. Even though Chicago is a large city (population of ~2.69 million), CITYSCAPE
was able to process all of the data and generate a model in a relatively short time of 130 seconds on a
modest computer (an i7-3770K CPU @ 3.50GHz, with 4 physical cores) and used ~6.6 GB of RAM.
Although we have not conducted scalability analyses, a rough estimate suggests that these are acceptable
characteristics for processing larger cities such as Los Angeles (population ~3.77 million) or New York
(population ~7.88 million). Moreover, modern computers can have 40 cores and nearly 1 TB of RAM
which would provide more than ample resources for generating models of even larger cities such as Tokyo,
New Delhi, or Shanghai.

We have conducted several experiments to verify and validate the generated model and transitively
CITYSCAPE and our proposed model generation method. The model included all of the PUMS households
and hence it was statistically indistinguishable from the census data. We have manually verified household-
to-building assignments. In addition, we have used taxi trip data to validate the roadways generated in our
model. Based on statistical sampling, our experiments provide an 85% confidence that the generated model
of Chicago is a realistic digital twin. The model can be used for further analyses, including simulation-based
analyses of a broad range of applications. The potential sources of errors in the model mainly stem from the
approximate nature of PUMS data. This error may translate to errors in certain types of analyses conducted
using the model. However, the extent of the errors in simulations or analyses can only be quantified once
such analyses are pursued. We are in the process of developing a simulation framework that utilizes the
generated model for the analysis of traffic accidents and sustainable transportation. These applications will
provide a more concrete use case of the generated model and its effectiveness.

5.1 Future Work

This paper presented the current outcomes from our ongoing efforts to develop digital twins of cities. We
are continuing to extend our method to include additional features. For example, we are planning to include
group quarters PUMS records so as to include people living in group quarters such as hospitals, hotels, etc.
Currently, the models include both individuals and households. It is feasible to further abstract the model to
a larger area and such abstractions are planned for future work. Our CITYSCAPE software is freely available
on https://github.com/raodj/cityscape. Nevertheless, we are planning to develop a convenient website where
modelers can create custom models for their analysis (Rao, Chernyakhovsky, and Wilsey 2000). We are also
exploring the application of our model for simulation-based analysis by extending our parallel simulator
called MUSE (Higiro, Gebre, and Rao 2017) with application to computational epidemiology, sustainable
transportation, and smart city planning.
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