Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

CLAVS/ODVS: COMBINING CLASS/OBJECT DIAGRAMS AND DEVS

Jordan Parezys
Randy Paredis
Hans Vangheluwe

University of Antwerp — Flanders Make
Middelheimlaan 1, Antwerp BELGIUM

ABSTRACT

The Discrete EVent system Specification (DEVS) formalism is a modular discrete-event modeling formalism.
It has a formal specification in terms of systems theory and is supported by several efficient and usable
simulator implementations. In these implementations, the DEVS formalism is often “grafted” onto an
existing Object-Oriented programming language. Examples are C++ in the case of ADEVS and Python
in the case of PythonPDEVS. To match this grafting, we present CLAVS, the CLAss diagram and deVS
formalism and its instance counterpart ODVS, the Object Diagram and deVS formalism, and their visual
notations. These languages use an automaton-like visual notation for Atomic DEVS models and a Class
Diagram notation augmented with port information and event structure specification. An implementation of
a visual CLAVS/ODVS modeling environment built on draw. io is presented. The use and usefulness of
the formalism is demonstrated by means of a simple traffic model whose detailed specification is presented.

1 INTRODUCTION

System engineers design, analyze, and deploy complex, software-intensive, Cyber-Physical Systems (CPS).
Multi-Paradigm Modeling (MPM) (Mosterman and Vangheluwe 2004), advocates explicitly modeling all
relevant aspects of a system using the most appropriate modeling language(s), at the most appropriate
level(s) of abstraction. DEVS (Chow and Zeigler 1994) is a popular modeling formalism that focuses on
state changes triggered by events. It is a general-purpose discrete-event modeling language and may serve
as an “assembly language” onto which other modeling languages can be mapped (Vangheluwe 2000).
However, the most appropriate notation for DEVS, as used in practice, is by grafting it onto an Object-
Oriented Programming (OOP) language. Examples are PythonPDEVS (Van Tendeloo and Vangheluwe
2016), DEVSJAVA (Sarjoughian and Zeigler 1998), adevs (Nutaro 2015), and Cadmium (Belloli et al.
2019). This “grafted” approach does not only allow simplified encoding of the state and functionality, but
also allows instantiating (helper) classes to be used in the model. In essence, this yields class diagrams
(Object Management Group 2002) that represent DEVS models.

It is pertinent that the resulting structure combining DEVS and Class Diagrams has a precise definition
that is compliant with the DEVS specification (Li et al. 2011). Furthermore, it must be as implementation-
language independent as possible. This implies that specific OOP language constructs should be made
explicit to ensure the functionality persists in every OOP implementation (Barroca et al. 2015). When
a visual notation is used, it should be user-friendly and meaningful in the context of DEVS modeling
(Maleki et al. 2015). Additionally, debugging tool support is crucial for usability of modelling formalisms
(Van Mierlo et al. 2017).

In this work, the CLAVS formalism is introduced as a combination of Class Diagrams and DEVS,
supporting the previously listed features. During simulation, instances of DEVS (Class) models are created,
evolve and interact, leading to behavior traces. ODVS formalism, a combination of Object Diagrams and
DEVS is introduced to formalize and represent these instance-level artifacts.

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 2591

Parezys, Paredis, and Vangheluwe

Structure. Section 2 introduces in detail a simple, yet representative example from the traffic domain.
In section 3, CLAVS and ODVS are introduced by means of the traffic example. Section 4 describes related
work and section 5 concludes the paper.

2 RUNNING EXAMPLE

While the practicality of CLAVS has been explored in a project with an industrial partner, this paper focuses
on a simple DEVS example from the traffic domain that covers all elements of the DEVS specification.
This example has been used for the last two decades in courses at McGill University and the University
of Antwerp to test students’ understanding of the DEVS formalism.

To introduce CLAVS and ODVS, we use the simplest possible usable traffic model: car traffic on a
straight stretch of road. This road is made up of a sequence of small road segments. Each road segment
can hold exactly one car. If more than one car is present in a road segment, a collision occurs.

The model consists of a coupled model named RoadSt retch, which is made up of a concatenation of
one Generator, followed by a series of RoadSegments, and terminated by a Collector, as depicted
in Figure 1.

G1_send(l [l G_recy Q_send([Q_recy Q_send———m 1 G_recy Q_send [|
G_rack [} 11 G_sack G_rack [} [3_sack C_rack [a—— [1G_sack Gl_rack [

Generator RoadSegment RoadSegment RoadZegment Collector
car_out[} 1 car_in car_out[] 1 car_in car_out [f———-= 1 car_in car_out[] 1 car_in

Figure 1: Road stretch use-case visualization.

The following sections describe all components and elements of this example.

2.1 Car

Cars are instances of the Car class and are generated by the Generator Atomic DEVS. They are passed
through a sequence of RoadSegment Atomic DEVS components, to finally end up at the Collector
Atomic DEVS.

The Car is a container for all the relevant information pertaining to a car (and its driver, if that level of
detail is required), set at initialization time: (1) a unique ID; (2) the car(driver)’s preferred speed v_pref
(i.e., the speed that the car tries to attain); (3) the car’s maximum acceleration (velocity increase) over
one road segment (dv_pos_max); (4) the car’s maximum deceleration (velocity decrease) over one road
segment (dv_neg_max); and (5) the time at which the car leaves the Generator (departure_time).
The attribute v keeps track of the car’s current speed.

We also give the Car an attribute distance_travelled, which changes during the course of the
simulation to reflect its changing state. The attribute distance_travelled is initialized to 0. Each
time a Car object leaves a road segment, distance_travelled is incremented with L, the length of
that road segment. Thus, at each point in simulated time, distance_travelled reflects the distance
the car has travelled, irrespective of the traffic system’s topology and the particular route taken by the car.

This entity is output on the car_out ports and input in the car_in ports from Figure 1.

2.2 Query and QueryAck

The moment a car enters a new road segment, a Query message is sent to the next road segment through
the sender road segment’s Q_send output port. The receiving road segment receives the Query through
its Q_recv input port.

2592

Parezys, Paredis, and Vangheluwe

This Query is used to model, at a discrete event level of abstraction, the driver’s observation of the next
road segment for the presence of a car. In this style of discrete event modeling, where the road segments are
the active components, the next road segment replies, after some observation delay observ_delay, with
a QueryAck message through its Q_sack “query send acknowledgement” output port. The QueryAck
message is received by the Query’s sender on the latter’s Q_rack “query receive acknowledgement” input
port.

While the Query has no attributes, the QueryAck carries information about the presence of a car in
the next road segment. It contains the single attribute t .until_dep, which can be 0 (no car is present
in the next road segment), a strictly positive number (time delay until the car in the next road segment
exits that segment, i.e., the time until it is safe to enter the next road segment) or +oo (the car in the next
segment has velocity 0, meaning a collision has occurred). A CarId attribute was added to ensure correct
identification of the messages.

2.3 Generator

A Generator models the road system’s “environment” by producing Cars entering the system. It
generates Car instances on its car_out output port. The Inter-Arrival Time (IAT) of cars is uniformly
distributed over the interval [TAT_min, IAT_max). Every time a Car instance is generated, it is passed
a value for v_pref by the Generator. This value is sampled from a uniform distribution over the range
[v.prefmin, v_pref max).

Note that it is likely that at the moment of car departure, there is still a car in the first road segment,
which will lead to a collision. The solution is for a Generator to have a Q_send output port and a
Q_rack input port exactly like a RoadSegment. A Generator should, like a RoadSegment, look
forward at the road segment ahead. If a collision could occur, the Generator delays producing the next
car’s arrival.

This implies that a car output should not be produced when the IAT elapses, but the generator rather
needs to go into another mode in which it immediately (after time delay 0) produces a query output to
check if there is a car in the first road segment. If we were to use a non-zero time-delay, that would bias
our IAT distribution which does not reflect reality. The time it takes to receive an acknowledgement to the
query is the observation delay. Note that after we output the query, we keep waiting (until we receive an
acknowledgement) for a duration o, as we really need to know what lies ahead. Note that in practice, a
Generator will never be immediately connected to a Collector.

When the reply received indicates there is no car ahead, we can output the car immediately. Note that
receiving an acknowledgement triggers the external transition function. It is however only at the time of
an internal transition that an output can be generated. So, we need to add another zero time delay after
which a car should be output and a transition is made to the original mode, where we the system will stay
for IAT time.

When the reply received indicates there is a car ahead, we need to wait. As for a regular road segment,
we schedule our departure after a time given by the t _until_dep attribute of the reply received.

2.4 Collector

The Collector models the road system’s “environment” by accepting Cars leaving the system. Its main
purpose is to collect statistics. For this simple use-case, we are interested in the following two statistics:
(1) the average t ransit_t ime of each car and (2) the average deviation between the car’s average speed
and the v_pref for each car.

Note how unlike a RoadSegment, a Collector does not have a Q_recv input port nor a Q_sack
output port. This means that Query messages sent from the last RoadSegment do not go anywhere and
hence that last RoadSegment never receives a QueryAck. This is reasonable as a Collector has an
infinite capacity for collecting cars. The fact that the last RoadSegment never receives a QueryAck

2593

Parezys, Paredis, and Vangheluwe

is not a problem. A car entering that last road segment just continues at the v_o1ld velocity at which it
entered the segment. It is thus scheduled to leave that segment after L / v_old.

2.5 Road Segment

A road segment has the following parameters: (1) the length L of the road; (2) the maximum allowed speed
v_max; and (3) observ_delay, the delay between obtaining a Query and sending a QueryAck.

The RoadSegment has a list cars_present as part of its state to keep track of the cars currently
in that road segment.

The moment a car enters a road segment (at velocity v_old, found in the car’s attribute v), that
road segment first checks if there are already cars present. If there are, the arriving car is added to the
cars_present list, and all cars’ velocities v are set to 0, denoting a collision.

If there are no cars present however (the list of present cars is empty), the RoadSegment immediately
sends a Query message to the model downstream, via the ouput port Q_send.

It also schedules a departure of the car at time L / v_old.

Note how there may only be one downstream model as otherwise there would be a choice of where
to go. This should be modelled explicitly in a choice model (not included here for brevity).

Some elapsed time later, a QueryAck is received interrupting the scheduled departure. During that
time, the car will have travelled a distance xi = elapsed * v_old. There still remains a distance
remaining_x = L — xi to be travelled to leave the road segment.

When a QueryAck is received, the road segment’s external transition handles it. It updates the distance
still to be travelled, and retrieves from the QueryAck object, the t_until_dep of the car in the next
road segment. This time is used locally as t _.no_col1, the minimum time the car must stay in the current
road segment to not collide with the car in the next road segment when leaving. Note how collision may
still occur as (1) the t_until_dep received in the QueryAck is only an approximation and (2) the car
may not be able to slow down sufficiently within the remaining distance in the current road segment.

function calculateCarSpeed() {

xi = elapsed * v_old

remaining_x = L - xi

t_no_coll = ack.t_until_dep

v_new = remaining_x / min(v_pref, v_max)

v_new = remaining_x / max(t_no_coll, v_new)

return min(v_old + dv_pos_max, max(v_old - dv_neg_max, Vv_new))

}

Let us first consider the case where there is no car in the next road segment and the t _until_dep
received in the QueryAck is thus 0. This case is depicted in Figure 2 in two examples.

As there are no restrictions on the speed imposed by the next road segment, the car will want to update
its speed to its v_pref. However, the car should not exceed the current road segment’s speed limit v_max.
The new target speed is thus min (v_pref, v_max). It may not be possible to attain this target speed
due to the maximum velocity changes dv_pos_max and dv_neg_max. The final new speed v_new takes
this into account. A departure is scheduled after t until dep = remaining_x / v_new.

Let us now consider the case where there is a car in the next road segment and the t _until_dep
received in the QueryAck is thus a positive number. This case is depicted in Figure 3 in two examples.

Now, we cannot just set the target speed to min (v_pref, v_max) as that might bring us to the
next road segment too early (i.e., before the car in that segment has left). The time until departure must
thus be the maximum of t_no_coll (obtained from the QueryAck’s t_until_dep) and the time it
would take to leave at the intended target speed remaining.-x / min (v_pref, v_max). This requires
an updated speed of remaining x / max (t_no_.coll, remaining.x / min (v_pref, v.max)).
It may not be possible to reach this speed however due to the maximum velocity changes dv_pos_max

2594

Parezys, Paredis, and Vangheluwe

W W
v_pref
v_max
v_new
v_old Idu_pos_max v_old
w_plef dv_neg_max
u_new = v_rjax
t t
X X
L L
=] A€
1] 1]
- t - t
t_until_dep t_until_dep

Figure 2: Two examples of adapting the speed of a car w.r.t. an empty road segment ahead.

and dv_neg_max. The final new speed v_new takes this into account. A departure is scheduled after
tuntil_dep = remaining_x / v_new.

An extension to the use-case can be made by adding a crossroad (intersection) segment component
which inherits from the standard road segment. Instead of only allowing through traffic, the crossroad
segment also allows exiting in another direction. Multiple crossroad segments can be combined to create
any n-way-intersection or roundabout. An additional input and output port need to be added, indicating
whether traffic to this segment came from/goes to the intersection itself. Though this and a further extension
for signals/traffic lights are needed to model realistic traffic networks, it does not add to our explanation
of the CLAVS and ODVS formalisms. These segment types will hence not be discussed.

3 CLAVS AND ODVS

The use-case will be modeled using the CLAVS and ODVS formalisms. CLAVS is composed of Class
diagrams and DEVS.

3.1 Class Diagrams

Class diagrams (Object Management Group 2002) are used to represent the internal class-structure of
software. It consists of class signatures (depicted by boxes) and associations (depicted by lines). Each
class signature lists a set of attributes and methods that belong to instances of that class. At the association
end, a multiplicity may be given to specify how many class instances (objects) may be in a relationship.
Hollow arrows denote inheritance, a re-use mechanism. Figure 4 shows a class diagram for the use-case.

The classes Car, Query and QueryAck represent (passive, in that they do not have behavior) events,
while the others represent the active building blocks for the use-case model.

2595

Parezys, Paredis, and Vangheluwe

W W

v_pref
v_max
v_old w_old
V_NEw = v ﬁUICDH v new Idvinegimax
dv_neg_max v_pref
¥_ma
t t
% £.no_coll * t_no_call
L L
L M|
o 0
- t - t
£_until_dep t_until_dep

Figure 3: Two examples of adapting the speed of a car w.r.t. the road segment ahead.

3.2 DEVS

Discrete EVent System Specification (DEVS) (Chow and Zeigler 1994) is a block-based modeling language
for precisely defining the behavior of discrete event systems. The blocks exchange events. An event can
be modeled as a class that only has attributes. Each block has a state that may change throughout the
simulation.

Atomic DEVS models are the most basic blocks in a DEVS model. They are described by an 8-tuple
(X,Y,S,Ginit, Oint, Ocxt, A ta). Here, X defines the input set (i.e., the set of accepted input events), Y the output
set (i.e., the set of possible generated output events) and S the set of sequential states of the model. The
internal transition function O, : S — S denotes internal state changes that result in an output event. Output
events are produced by the output function A : S — Y. The external transition function 8.y : Q X X — S,
with the set of total states Q = {(s,e)|s € S,0 < e < ta(s)}, produces a state change upon receiving an input
event. g, denotes the initial total state (g € Q) and ta: S — Ra +eo (i-e., the time advance function)
defines, in the absence of external input events, the time spent in a state before J;, is invoked.

Atomic DEVS models may be visually represented as a Timed Finite State Automaton (TFSA). A TFSA
consists of multiple states or modes (depicted by roundtangles) and transitions between them (depicted by
arrows). Along the arrow is shown when a transition must be followed (either after a delay, or when an
input is received).

In Figures 5, 6 and 7, the Atomic DEVS models for the Generator, the Collector and the
RoadSegment are shown (respectively). The purple rectangle on the left depicts the state of the model.
The inputs are depicted by the blue triangles on the left and the outputs are the red triangles on the right.
Both the inputs and the outputs are ports that can only send events of a specific type. In the middle,
the TFSA that represents the model’s behavior is shown. Blue arrows depict external transitions and red
arrows depict internal transitions. The labels on the arrows provide additional information. For external
transitions, they start with the description of the received event. For internal events, a forward slash is used
to denote which output is generated. All other information describes the internal logic executed when that
arrow/transition is followed. For readability, complicated logic is encapsulated in helper functions.

2596

Parezys, Paredis, and Vangheluwe

|o.
Query QueryAck

+ Carld: int + Carld: int
+ t_untl_dep: real

0.

BN

0.* 0..*

0.1 0.1 0.1 0..1
RoadSegment

Generator

- IAT: real + L:real Collector
- IAT_min: real 0.1 1| +v_max: real 1 0.1
- IAT_max: real - observe_delay: real - global_time: real
- v_p?ef_min: real
- v_pref_max: real

. —| - calculateCarSpeed(): real
- generateCar(): Car - resetParams(): void
- next_|AT(real, real): real CrossRoadSegment
0.1 0.1 o
- - destinations

0.*

- cars_present: Car[] - transit_time: Dict<int,real>
-t_no_coll: real l<t—

0.1

Car

+ID: int

- v_pref: real
0..1 | - dv_pos_max: real 0.*
- dv_neg_max: real

+ departure_time: real

+ distance_travelled: real
+v: real

Figure 4: Road stretch class diagram.

The Generator (Figure 5) consists of four TFSA states, starting in “Check Next Segment”, where a
Query was sent to the next road segment. Upon receiving a QueryAck, a car is generated (“Generate
Car”) and the IAT is waited before outputting the car (“Await IAT”).

The internal TFSA of the Collector (Figure 6) only contains a single state (“Await Car”) in which
it waits for a new car to exit a road segment. By storing all information about the cars in the state, the
statistics can be computed at the end of the simulation.

Collector
Generator / car_out: Car
Await IAT Check Next Segment
IAT |IAT=self.next_IAT(IAT_Min,IAT_Max) global_time car_in

IAT_min car=self.generateCar() /Q_send: Query transit_time
IAT_max Q rad Q_rack: l + - o car_in: o
v_pref_min - Que_ryAck: transit_time[car.ID] = calculatedTransitTime

car

Figure 6: Atomic DEVS visualisation

Figure 5: Atomic DEVS visualisation for the Generator.
for the Collector.

The RoadSegment (Figure 7) contains six TFSA states and starts in “Await Car”. Upon the arrival
of a car (“Receive Car”), a Query is sent (“Check Next Segment”). If the QueryAck is received, the
road segment becomes “Occupied” until t _no_coll time has passed, after which it returns to the initial
state. When a new car arrives in an “Occupied” road segment, a “Collision” has occurred.

Multiple DEVS models connected in a network form a Coupled DEVS model. This network has
structure A = (Xa,Ya,D,M;,1;,Z; j,select). Just like Atomic DEVS, X4 and YA denote the input and output
sets of the network. D is the set of component references and M; refers to the model component i, with
i € D). The set of influencees of component i is denoted by 1;,Vi € DU{A} and i € I;. The transfer function
Zij (Znj:Xa—=Xjs Zin:Yi—Ya; Z; ;1Y — Xj; Vie DU{A}, j € I,) allows for translating events from
model output to model input along a connection. For instance, a CarDeparture event must become
a CarArrival event. It is possible to make this translation implicit by allowing CarDeparture and
CarArrival to be of the same class Car. Finally, the function select : 2° — D allows for tie-breaking

2597

Parezys, Paredis, and Vangheluwe

RoadSegment
(R e car_in: cars_present.append(car) \ Rz Cer)
calculateCarSpeed()
Q_racl Q_sen
/ Q_send: Query
Check Next Segment
Q_rack: QueryAck: Q sac
L Q_recy cars_present.remove(car) tno_coll = QreryAck.tfunulfdep P

Vv_max resetParams() / car_out: car
observe_delay
cars_present
t_no_coll car_in:

cars_present.append(car)

car_in: cars_present.append(car)

Occupied

¥
/ Q_sack: QueryAck

car_ou

T

car_in Q_recv: Query:

Observe Delay

Figure 7: Atomic DEVS visualisation for the RoadSegment. Given the inheritance of the
CrossRoadSegment, it also describes most of that component’s logic.

when multiple i € D are due to transition at the same time. Often, the select function implements some
form of priority scheme. Because a coupled model can be substituted by an equivalent Atomic DEVS
model (i.e., thanks to the closure under coupling of the DEVS formalism), arbitrary hierarchical models
can be built.

Figure 8 shows a full CLAVS model of the Road Stretch example. As can be seen in the figure,
this extends the class diagram from Figure 4 with additional DEVS-specific annotations. The ports have
been added to the class descriptions, as well as a number in the top right to specify the multiplicity of
the class instances. To indicate the set of allowed inputs on a port, the port names are amended with a
comma-separated list of all allowed inputs. For the presented example, only a single event type is allowed
for each port. Event classes have been given a red border. The red, striped arrow represents the DEVS
connection between the multiple classes. The hollow arrow again depicts inheritance. All ports and fields
are inherited, including the connections of the superclass. New members and ports have been added to the
child.

3.3 ODVS
The instance-level complement of CLAVS are Object Diagrams + DEVS. An example is shown in Figure 9.

3.4 Graphical Notations

In the past, different graphical notations for DEVS have been developed. (Traoré 2009) bases itself on the
concept of flowcharts and a so-called state event chart, mainly focusing on the event-based behavior of
the individual DEVS components. It uses its own state notation, yielding a slight overhead to new users
already familiar with FSAs. Like CLAVS, CD++ (Wainer et al. 2001) also allows modeling of DEVS
components by means of simple state machines. Creating coupled models allows any components to be
connected. CLAVS diagrams allow explicit specification of the allowed connections in a DEVS network.
Maleki et al. (2015) introduced DesignDEVS, a conceptual method of modeling DEVS, also allowing Lua
code (instead of just state machines) for the behavior of Atomic DEVS. The main idea behind DesignDEVS
is that non-modeling experts can easily learn it.

Another graphical representation for DEVS can be obtained via the mapping from existing languages,
giving them behavioral expressiveness. This has been done for SysML (Kapos et al. 2014; Nikolaidou
et al. 2015) and AADL (Ahmad and Sarjoughian 2023) among others. A downside of those mappings is
the lack of uniformity, platform-independence and tool support.

2598

Parezys, Paredis, and Vangheluwe

Generator

- IAT: real

- IAT_min: real

- IAT_max: real

- v_pref_min: real
- v_pref_max: real

- GenerateCar(): Car

Q_rack:
QueryAck

+ ID: int

- v_pref: real
- dv_pos_max: real

- dv_pos_min: real

+ departure_time: real

+ distance_travelled: real
+v: real

:Generator

-IAT =5

- IAT_min =4

- IAT_max =6

- v_pref_min =10
- v_pref_max = 65

RoadSegment

+L: real
+ v_max: real

Collector

- observe_delay: real
- cars_present: Carf]
- t_no_coll: real

0.1
- global_time: real

1
1
1
: - calculateCarSpeed(): real
1
1

- transit_time: Dict<int,real>

:RoadSegment

1
1
1 - resetParams() R){ car_in:
: _)(Q_rack: Q_send B : Car
' QueryAck Query 1
U S _)(Q_recv: Q_sack o !
Query QueryAck :
_______)(car_in: car_out: [__1_
1 Car Car [
1 1!
! Y * - 1
: 0.. 0. .
P e R T T T - 1
QueryAck n
CrossRoadSegment n + Carld: int
+t_untl_dep: real
- destinations
i - . Query n
car_in_cr: car_out_cr: L _
' _)(Car Car D 1
: 1 |+ Carld: int
1
e e e e e - = == = = == 1
Figure 8: Road stretch CLAVS diagram.
:RoadSegment :RoadSegment :Collector
+L=10 +L=10 - global_time = 0

+L=10
+v_max = 100

- generateCar(): Car
- next_IAT(real, real): real

Q_send

>{ Q_rack

car_out

- >< Q_rack

- observe_delay = 0.1
- cars_present =[]
- t_no_coll = inf.

+v_max = 100

- calculateCarSpeed)(): real
- resetParams()

Q_send
){ Q_recv car_out
){ car_in Q_sack

+v_max = 100

- observe_delay = 0.1
- cars_present =[]
- t_no_coll = inf.

- calculateCarSpeed(): real
- resetParams()

""""" *{ Q_recv Q_sack
"""""){ car_in Q_send [)f---------»
B){ Q_rack car_out | T >

3.5 Tooling

In the past, multiple domain-specific (meta-)modeling environments were built.

- transit_time = {}

- observe_delay = 0.1
- cars_present =[]
- t_no_coll = inf.

- calculateCarSpeed(): real

Figure 9: Road stretch ODVS diagram.

- resetParams()
Q_rack Q_send
,,,,,,,,,, ,‘ Qrecy car_out
,,,,,,,,,, >{ carin Qsack
€
AToM? (de

car_in

Lara and

Vangheluwe 2002) made use of the primitive Python Tklnter library whereas its successor AToMPM
(Syriani et al. 2013) used the Raphaél Javascript library. draw. io (https://diagrams.net) is a graph-based
diagramming tool that closely resembles both AToM? and AToMPM in terms of the creation of diagrams.
Very little effort was required to use it for CLAVS and ODVS modeling, whilst maintaining builtin features
such as sophisticated diagramming and SVG exporting.
Additional advantages of draw.io are the usage of the Electron 9 framework to allow both web-based

and stand-alone use. The Mathematical Typesetting feature allows for rendering I&TpXformulas.

In draw. io, everything that is drawn is a “shape”, which can have user-defined properties in the form of
key-value pairs. A property propName can be used literally, or its value can be rendered using placeholders
(i.e., sSpropName%). Every time the value is changed, the diagram will be re-rendered. This feature is a direct
result of the elegant and modular underlying mxGraph data structures (https://jgraph.github.io/mxgraph/)
which keep the essential graph structure consistent with the visual graph information. The interactive
behavior of draw.io can be customized by specializing callbacks. This allows for the inclusion of
well-formedness checks written in JavaScript.

2599

https://diagrams.net
https://jgraph.github.io/mxgraph/

Parezys, Paredis, and Vangheluwe

3.6 Simulation Results

When simulating this use-case with parameters chosen to reflect a busy highway, the transit time distribution
is as shown in Figure 10a. This experiment setup assumes high velocities and low IAT. The first few cars
complete the full trajectory fast, but as soon as some congestion starts to appear, the transit time gradually
decreases.

The average deviation (in absolute value) between the actual velocity and the preferred velocity is
shown in Figure 10b.

8000 +

7000 - 1750 4

6000 4 1500

5000 4 1250 4

Cars

4000 - 1000 4

Cars

3000 4 750 4

2000 500 1

1000 4 250 4

o

0

5 10 15 20 25 30 35 000 025 050 075 100 125 150 175
Transit Time (s) Velocity Deviation (my/s)

(a) Road stretch transit time distribution. (b) Road stretch velocity deviation distribution.

Figure 10: Road stretch experiment results.

3.7 Implementation

CLAVS was designed with a few desired features in mind. First, a precise definition (compliant with DEVS)
was required. The Atomic DEVS representation, as shown in Figures 5, 6 and 7, clearly incorporates the
full 8-tuple of an Atomic DEVS. Second, CLAVS had to be as implementation-language independent as
possible. While our Proof of Concept implementation uses PythonPDEVS, the CLAVS diagram itself was
created using the target simulation language-neutral draw. 1o (http://diagrams.net). A library containing
CLAVS components was created, allowing custom constraints on models. Connections between port of
building blocks is built into the diagram editor draw. io.

A conversion script was designed to generate Python files compliant with PythonPDEVS. The action
language used in the Atomic DEVS TFSA is still Python code. In order to be fully target simulation
language agnostic, a neutral action language such as DEVSLang (Barroca et al. 2015) should be used
instead. An advantage of a neutral language/framework is that the conversion to an OOP language may
include several validation checks to ensure the end result is compliant with the DEVS specification. No
usability studies were performed. However, CLAVS has successfully been used to solve problems with
industry partners. Usability will be drastically improved once debugging is supported.

4 RELATED WORK

This work follows Multi-Paradigm modeling (MPM) (Mosterman and Vangheluwe 2004) principles. MPM
advocates modeling all relevant parts and aspects of a system at the most appropriate level(s) of abstraction,
using the most appropriate modeling language(s).

Li et al. (2011) does an analysis of multiple DEVS frameworks in OOP languages to verify the
compliance with the original DEVS formalism, as was described in Chow and Zeigler (1994). In (Barroca
etal. 2015), the usage and importance of a neutral action language is discussed, to make models independent

2600

http://diagrams.net

Parezys, Paredis, and Vangheluwe

of the target implementation language. Song (2006) created a neutral modeling language and environment
for DEVS, whereas Muzy and Nutaro (2005) describes an abstract simulator for DEVS. Frameworks such
as PythonPDEVS (Van Tendeloo and Vangheluwe 2016), DEVSJAVA (Sarjoughian and Zeigler 1998),
adevs (Nutaro 2015), Cadmium (Belloli et al. 2019) and many others implement such a simulator, albeit
grafted on an OOP language.

DEVSJava, DEVSimPy (Capocchietal. 2011) and DesignDEVS (Goldstein et al. 2016) are (conceptual)
visual modeling environments for DEVS. Maleki et al. (2015) studied how to visualize DEVS modeling
frameworks to allow non-programmers to easily understand the formalism.

Kapos et al. (2014) introduces a translation of SysML onto DEVS, giving an explicit execution semantics
to an architecture model. While theoretically relatively close to CLAVS, the paper mainly encodes all
DEVS logic in SysML, instead of co-existing.

S CONCLUSION AND FUTURE WORK

We introduced CLAVS, the CLAss diagram and deVS formalism as well as its instance counterpart ODVS,
the Object Diagram and deVS formalism, as well as their visual notations, by means of a simple traffic
model whose detailed specification was presented. CLAVS uses an automaton-like visual notation for
Atomic DEVS models and a Class Diagram notation augmented with port information and event structure
specification. An implementation of a visual CLAVS/ODVS modeling environment built on draw.io
was presented.

While CLAVS aims at being neutral in terms of OOP, the action (programming) language (as used
to specify 0;,; and O,y is still Python. We plan to use the implementation-language independent action
language DEVSLang (Barroca et al. 2015) in the future.

Any formalism is always part of a family of complementary formalisms: modeling language, state
language, trace language, and property language (Meyers et al. 2020). This implies that CLAVS/ODVS
must be complemented by a Discrete Event State and Event Trace (DESET) formalism. This will be added,
based on the trace language developed in Song (2006).

To be usable, modeling and simulation tools must support debugging. We plan to use our experience
building a Parallel DEVS debugger in our meta-modelling tool AToOMPM (Van Mierlo et al. 2017) to add
debugging support to our Proof of Concept implementation of CLAVS/ODVS tooling.

In this paper, we have used logical arguments to convince the reader of the usefulness of the CLAVS/ODVS
formalisms. A thorough empirical usability study is however still required.

ACKNOWLEDGEMENT

This work was partially supported by the Flanders Make strategic research center.

REFERENCES

Ahmad, E., and H. S. Sarjoughian. 2023. “An Environment for Developing Simulatable AADL-DEVS Models”. Simulation
Modelling Practice and Theory 123:102690.

Barroca, B., S. Mustafiz, S. Van Mierlo, and H. Vangheluwe. 2015. “Integrating a Neutral Action Language in a DEVS
Modelling Environment”. In Proceedings of the eighth International Conference on Simulation Tools and Techniques,
SIMUTools °15, 19-28: ICST.

Belloli, L., D. Vicino, C. Ruiz-Martin, and G. Wainer. 2019. “Building DEVS Models with the Cadmium tool”. In Proceedings
of the 2019 Winter Simulation Conference, edited by N. Mustafee, K.-H. G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo,
P. Haas, and Y.-J. Son, 45-59. IEEE.

Capocchi, L., J. F. Santucci, B. Poggi, and C. Nicolai. 2011. “DEVSimPy: A Collaborative Python Software for Modeling and
Simulation of DEVS Systems”. In 2011 IEEE 20th International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 170-175. 1EEE.

Chow, A. C. H., and B. P. Zeigler. 1994. “Parallel DEVS: A Parallel, Hierarchical, Modular, Modeling Formalism”. In
Proceedings of the 1994 Winter Simulation Conference, edited by J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F.
Seila, 716-722: 1EEE.

2601

Parezys, Paredis, and Vangheluwe

de Lara, J., and H. Vangheluwe. 2002. “AToM3: A Tool for Multi-Formalism and Meta-Modelling”. In FASE, 174-188.

Goldstein, R., S. Breslav, and A. Khan. 2016. “DesignDEVS: Reinforcing Theoretical Principles in a Practical and Lightweight
Simulation Environment”. In Proceedings of the 2016 Spring Simulation Multiconference, 1-8. Pasadena, CA, USA: Society
for Computer Simulation International (SCS).

Kapos, G.-D., V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos. 2014. “An Integrated Framework for Automated Simulation
of SysML Models Using DEVS”. SIMULATION 90(6):717-744.

Li, X., H. Vangheluwe, Y. Lei, and W. Wang. 2011, April. “A Testing Framework for DEVS Formalism Implementation”. In
Proceedings of the 2011 Spring Simulation Multiconference, 183—188. Boston, MA, USA: Society for Computer Simulation
International (SCS).

Maleki, M., R. Woodbury, R. Goldstein, S. Breslav, and A. Khan. 2015. “Designing DEVS Visual Interfaces for End-User
Programmers”. SIMULATION 91(8):715-734.

Meyers, B., H. Vangheluwe, J. Denil, and R. Salay. 2020. “A Framework for Temporal Verification Support in Domain-Specific
Modelling”. IEEE Transactions on Software Engineering (TSE) 46(4):362 — 404.

Mosterman, P. J., and H. Vangheluwe. 2004, September. “Computer Automated Multi-Paradigm Modeling: An Introduction”.
SIMULATION 80(9):433-450.

Muzy, A., and J. J. Nutaro. 2005. “Algorithms for Efficient Implementations of the DEVS & DSDEVS Abstract Simulators”.
In Ist Open International Conference on Modeling and Simulation, 273-279. Clermont-Ferrand, France.

Nikolaidou, M., G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos. 2015. “Simulating SysML models: Overview
and challenges”. In 2015 10th System of Systems Engineering Conference (SoSE), 328-333. IEEE.

Nutaro, James J. 2015. “adevs”. http://www.ornl.gov/~1qn/adevs/. Accessed 22" April 2022.

Object Management Group 2002. “UML”. http://www.uml.org/. Accessed 22”4 April 2022.

Sarjoughian, H. S., and B. R. Zeigler. 1998. “DEVSJAVA: Basis for a DEVS-Based Collaborative M&S Environment”.
SIMULATION 30:29-36.

Song, H. 2006. “Infrastructure for DEVS Modelling and Experimentation”. Master’s thesis, School of Computer Science, McGill
University.

Syriani, E., H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H. Ergin. 2013. “AToMPM: A Web-based Modeling
Environment”. In Proceedings of MODELS’13 Demonstration Session, 21-25.

Traoré, M. K. 2009. “A Graphical Notation for DEVS”. In Proceedings of the 2009 Spring Simulation Multiconference, 1-7.
San Diego, CA, USA: Society for Computer Simulation International (SCS).

Van Mierlo, S., Y. Van Tendeloo, and H. Vangheluwe. 2017. “Debugging Parallel DEVS”. SIMULATION 93(4):285-306.

Van Tendeloo, Y., and H. Vangheluwe. 2016. “An Overview of PythonPDEVS”. In JDF 2016, 59-66: Cépadues.

Vangheluwe, H. 2000. Multi-Formalism Modelling and Simulation. Ph. D. thesis, Universiteit Gent.

Wainer, G., G. Christen, and A. Dobniewski. 2001. “Defining DEVS Models with the CD++ Toolkit”. In Proceedings of ESS,
633-637.

AUTHOR BIOGRAPHIES

JORDAN PAREZYS developed CLAVS as part of his Master’s thesis in the Modelling, Simulation and Design Lab (MSDL)
at the university of Antwerp (Belgium). His e-mail address is jordan.parezys@hotmail.com.

RANDY PAREDIS is a Ph.D. student in MSDL. He develops a generic framework for model-based design of Digital Twins. He
also develops techniques and tools to use DEVS as a common denominator for discrete-event and hybrid modeling languages.
His e-mail address is randy.paredis @uantwerpen.be.

HANS VANGHELUWE is a Professor and head of the MSDL. He develops modeling and simulation methods, techniques and

tools to increase system builders’ productivity. He has a long-standing interest in the DEVS formalism and is a contributor to
the DEVS community of fundamental and technical research results. His e-mail address is hans.vangheluwe @uantwerpen.be.

2602

http://www.ornl.gov/~1qn/adevs/
http://www.uml.org/
mailto://jordan.parezys@hotmail.com
mailto://randy.paredis@uantwerpen.be
mailto://hans.vangheluwe@uantwerpen.be

	INTRODUCTION
	RUNNING EXAMPLE
	Car
	Query and QueryAck
	Generator
	Collector
	Road Segment

	CLAVS AND ODVS
	Class Diagrams
	DEVS
	ODVS
	Graphical Notations
	Tooling
	Simulation Results
	Implementation

	RELATED WORK
	CONCLUSION AND FUTURE WORK

