
Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

A CONTEXT-FREE GRAMMAR FOR GENERATING FULL CLASSIC DEVS MODELS

María Julia Blas Doohwan Kim

Silvio Gonnet Bernard P. Zeigler

Instituto de Desarrollo y Diseño INGAR RTSync Corp.

Universidad Tecnológica Nacional 6909 W. Ray Rd. STE. 15-107

Avellaneda 3657 Chandler, AZ 85226, USA

Santa Fe, SF 3000, ARGENTINA

ABSTRACT

Existing grammars generate Finite Deterministic DEVS models, a restricted subset of DEVS. The proposed

context-free grammar generates the unrestricted set of Classic DEVS models. The grammar is implemented

in ANTLR, a powerful parser generator for reading, processing, executing, or translating structured text or

binary files. ANTLR enables the efficient processing of the specifications needed for generating members

of Classic DEVS with ports. Applications include an easier introduction to DEVS for students and easier

translation between different DEVS implementations.

1 INTRODUCTION

The Discrete Event System Specification (DEVS) (Zeigler et al. 2018) is a Modeling and Simulation (M&S)

formalism that supports a general methodology for describing discrete event systems with the capability to

represent both continuous and discrete systems due to its system theoretic basis. Both types of DEVS

models (i.e., atomic and coupled) are formalized by combining set theory and systems theory. When

practitioners want to simulate DEVS models, they need to program them in the input language of a concrete

simulator (Cristiá et al. 2019). That means writing code in Java, C++, or another general-purpose

programming language. Such implementation is often called “reduction to concrete form” (Zeigler 2019).

 In this regard, a DEVS formal model is defined using DEVS formal specification, and a DEVS concrete

model is defined as an implementation of a DEVS formal model. However, is it possible to ensure that a

DEVS concrete model developed with a programming language is (in fact) an implementation of a DEVS

formal model? According to Sarjoughian et al. (2015), ensuring that an implementation conforms to a

formalization is not straightforward. In (Blas and Gonnet 2023), we argue this is because i) formalization

and implementation are often carried out as two distinct tasks, and ii) the principles under which

programming languages are designed do not easily conform with the theory used in the DEVS formal

specification (i.e., the formal language supporting DEVS model definitions cannot be used directly in

programming languages). Thus, building an implementation of a DEVS formal model (i.e., a concrete

computer model) in a way that ensures its formal specification (i.e., the mathematical definition) is not easy.

 The lack of computer languages supporting the DEVS formalization task (i.e., domain-specific

computer languages) is evident. Namely, we are referring to a domain-specific modeling language. This

paper addresses the use of grammar and the role of metamodeling in the M&S field devoted to defining

DEVS formal models in a computer form through a new modeling language. When building a modeling

language, three components are required i) abstract syntax, ii) concrete syntax, and iii) semantics. The main

contribution of this paper is the development of a Context-Free Grammar (CFG) named CFG_DEVS that
can be used to support textual definitions of DEVS formal specifications as a well-defined concrete syntax.

Such a syntax was implemented using ANTLR (ANTLR 2023) and can be combined with the abstract

syntax already defined in “the DEVS metamodel” (Blas and Gonnet 2023). The paper points out the

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 2579

Blas, Gonnet, Kim, and Zeigler

technical aspects of the CFG developed. Applications include an easier introduction to DEVS for students

since (as we will show with some examples) the grammar allows defining models found in exiting literature

as a first step in a DEVS-learning process. Our final goal is to develop a computer language for expressing

DEVS formal specifications suitable for being used across different concrete simulators (i.e., M&S software

tools based on distinct programming languages). The semantics of the language is out of the scope of this

paper.

The remainder of this paper is structured as follows. Section 2 presents the main concepts used across

the paper by summarizing the fundamentals of the proposal. Section 3 presents the grammatical model

defined as CFG_DEVS. To show both applicability and usability, it includes a set of examples (taken from

the DEVS literature) (re)written in the grammar. Section 4 is dedicated to the discussion of our results,

including a comparison with other DEVS existing languages and a quality analysis of our development.

Finally, Section 5 is devoted to conclusions and future work.

2 COMPUTER LANGUAGES, METAMODELS, AND GRAMMARS

From the taxonomy proposed by Lando et al. (2007), we have that: i) programming languages are a subset

of general-purpose computer languages designed to express computer programs that can be understood by

humans, and ii) Domain-Specific Computer Languages (DSCLs) are a subset of computer languages limited

to the writing of particular types of expressions. Hence, languages used in computing that have a restricted

set of expressions (i.e., a distinct goal than expressing high-level computer programs) are designated as

DSCLs. These languages are claimed to increase productivity while reducing the required maintenance and

programming expertise (Barisic et al. 2011). Modeling languages are a particular type of DSCLs.

 In the software engineering community, a modeling language is a language used to “specify, visualize,

construct, and document a software system” (Rumbaugh et al. 2005). Such a definition can be extended

more generally into a problem domain, giving a Domain-Specific Modeling Language (DSML). Such a

type of computer language enables the specification of (computer) models using concepts and notations of

a specific domain (Kelly and Tolvanen 2008). In particular, a DSML for DEVS should enable the

specification of DEVS computer models using concepts and notations of the DEVS formal specification

domain. In this way, DSMLs enable domain experts to develop, understand, and verify models more easily,

without having to use concepts outside of their domain (Van Mierlo et al. 2019).

Modeling languages can be either graphical or textual (Engelen and Van Den Brand 2010). Visual

modeling languages provide the means to effectively convey components and interactions allowing

developers to focus on parts of a system/domain at any time. However, primarily textual modeling

languages achieve these intended uses more concisely without the problems of secondary notation (e.g.,

layout and typographic cues) (Petre 1995). It is not clear what an appropriate notation (i.e., textual or

graphical) is in a given context. There are no rules to apply here: graphical, textual, and hybrid notations

are more or less useful depending on specific circumstances. For representing DEVS formal models, we

decided to develop a DSML based on a textual notation. That is mainly because (i) we want to maintain the

mathematical form of notation used in the formal specification, and (ii) textual languages are more like

programming languages, making it easier for programmers to start using the DSML.

A key question is: for what do we intend to use a DEVS formal modeling language? Modeling

languages are built to be used by designers (not programmers) (Paige et al. 2000). In this regard, we aim to

develop a modeling language friendly to both DEVS designers and programmers, allowing them to build

DEVS models following their formal specifications in a simple way. Simulationists (from any field, not

necessarily computer sciences) will benefit from such a language. For those who do not have programming

skills, the language provides an easy way to develop computational DEVS models starting from the formal

specification. That is great for educational purposes since DEVS could be quickly used in practice without

requiring teaching basic notions of programming languages. On the other hand, for simulationists that also
are great programmers (i.e., those you can assume will have a faster development using general-purpose

programming languages), the main benefit is in the verification process. Using the modeling language, the

cost of ensuring a concrete model follows its formal definition is very low.

2580

Blas, Gonnet, Kim, and Zeigler

2.1 How to Build a Domain-Specific Modeling Language?

Modeling languages, like programming languages, need to be designed if they are to be practical, usable,

accepted, and of lasting value (Paige et al. 2000). Commonly, these languages are defined using three

primary blocks (Krahn et al. 2007): abstract syntax, concrete syntax, and semantics. The abstract syntax

identifies modeling concepts, while the concrete syntax clarifies how these modeling concepts are rendered

by visual and/or textual elements (Baar 2006). Both syntaxes need to be consistently defined to avoid

discrepancies and problems while handling the language (Krahn et al. 2007). Frequently, a mapping

function is defined to match a concrete syntax with the abstract syntax. At this point, it is worth noting that

we can have more than one concrete syntax for the same abstract syntax (depending on the application

scenario and modeler profile). Both syntaxes frequently are developed first, and then semantics is designed

to define the meaning of the language (Harel and Rumpe 2004). To avoid confusion, the vocabulary used

in this paper is defined as follows:

• A concrete modeling language is defined as the abstract syntax, concrete syntax, and semantics that

defines the full vocabulary (i.e., it includes the meaning of the models built from such a language).

• For textual concrete syntaxes, a grammatical model is a method for analyzing sentence structures

(Crystal 2008). Such a grammatical model includes a methodology of generative grammar designed

to produce grammatically correct strings of words (Seuren 2015).

The abstract syntax of a language is typically captured in a metamodel (Kleppe 2008). Metamodeling

allows defining such a syntax in a precise, non-ambiguous way. For the DEVS formal specification, we

have proposed such a metamodel originally in (Blas et al. 2021). An updated version was introduced in

(Blas and Gonnet 2023). The “DEVS metamodel” is defined as a layered set of ten UML packages:

Mathematical Function, Set Theory Utility, DEVS Model Core, DEVS Structural Model, DEVS Coupling
Definition, DEVS Atomic Behavioral Model, DEVS Atomic Structural Model, DEVS Coupled Structural
Model, DEVS Atomic Interaction Model, and DEVS Coupled Function Definition. Each package groups

concepts and relationships according to their scope. For example, the “DEVS Model Core” package defines

basic concepts used to identify a DEVS Model such as DEVS Model, Atomic Model, Atomic Structural
Part, Atomic Behavioral Part, and Coupled Structural Part.

 According to (Baar 2006), the abstract syntax definition is the most basic block when defining a

modeling language but, at the same time, it is the only block for which a commonly agreed format exists.

Other blocks (i.e., concrete syntax and semantics) are given in many cases only informally. This is not our

case. In the following sections, we present a grammatical model to address the concrete syntax of “the

DEVS metamodel” using a CFG. A CFG is defined as a finite set of symbols (alphabet), a finite set of

variables (also called nonterminal character), a finite set of productions (also called rewriting rules), and a

start symbol (Hopcroft et al. 2001). All these elements allow for defining a context-free language composed

of structured sentences. Indeed, we propose a CFG specifically designed to describe DEVS formal models

(atomic and coupled) following the most common mathematical expressions observed in current literature.

As a remark, when building a new language, one of the main aspects to be considered regarding

language implementation is the transition from (or to) existing technologies. For example, the designers of

UML focused on standardizing the syntax and informal semantics of the modeling language as long as

ensuring a degree of syntactic and conceptual compatibility from existing technologies to UML (Paige et

al. 2000). Hence, it is not enough to build a DSML for DEVS formal models. It is also important to develop

a solution that can be integrated with existing M&S software tools keeping all capabilities already provided

by them. As stated earlier, there is a collective agreement that DEVS models are implemented as a tool-

depending artifact (Van Tendeloo and Vangheluwe 2017). Porting models between different M&S tools

involves rewriting the model from scratch since most M&S software tools are based on general-purpose

programming languages (or special libraries developed over such languages). The development of a high-

level modeling language with a well-defined meaning can lead to a joint community effort to allow porting
models based on the translation of formal model definitions to specific implementations (without requiring

rewriting tasks). From this point of view, DEVS models (been implemented as computer programs) will be

2581

Blas, Gonnet, Kim, and Zeigler

implemented as computer models based on the DEVS formal specification. Such computer models act as

the formalization of previous implementations in a higher level of modeling hierarchy (Blas et al. 2021).

2.2 Related Work: Existing Approaches

Over the years, several notations have been developed to address the definition of DEVS models. Some of

them are (in practice) considered modeling languages. Two of the most used (and related to our work) are

DEVSML (Mittal and Douglas 2012) and DEVSNL (Zeigler and Sarjoughian 2017). Each one is focused

on defining DEVS simulation models from a particular modeling perspective. In both cases, there are

software tools supporting their use in practice.

DEVSML (DEVS Modeling Language) provides a platform-independent way to specify DEVS

models. The language is based on Finite Deterministic DEVS (FD-DEVS), an extension of DEVS whose

sets of events and states are finite among other things (i.e., a restricted subset of DEVS). Like any language,

DEVSML uses keywords that allow modelers to build their definitions in a structured manner. The grammar
was specified using an Extended Backus-Naur Form (EBNF) notation (i.e., a meta-syntax notation for

CFGs). While the atomic model has a notion of ports, the language has a notion of messages specified as

entity structures that are eventually transformed into port definitions. Models defined in DEVSML can be

transformed into platform-specific language implementations (such as, for example, Java and C++).

On the other hand, DEVSNL (DEVS Natural Language) provides a natural language structure to

understand FD-DEVS simulation models. These models can be used to automatically generate DEVS

atomic models in Java that have full capability to express messages and states. The modeling perspective

is defined as a “constrained natural language specification of DEVS models”. Indeed, as in DEVSML, the

textual notation was defined as an EBNF. Due to the EBNF specification, the processing of textual

expressions/definitions defined in DEVSNL does not involve any natural language reasoning (i.e., the

language does not involve dealing with, for example, natural language ambiguity). In Section 4, we present

a DEVS atomic model defined using DEVSNL.

As detailed before, both DEVSNL and DEVSML are based on FD-DEVS. Regarding this perspective,

CFG_DEVS (Section 3) can be used to define textual specifications of DEVS formal models in general

(i.e., the grammar does not restrict the specification to a particular DEVS extension). Since FD-DEVS is a

class of DEVS models, the set of models that can be defined in DEVSNL and DEVSML is smaller than the

set of models that can be defined with CFG_DEVS. That is one of the main foundational differences

between our paper and existing approaches. Other differences are described with an example in Section 4.

3 THE DISCRETE EVENT SYSTEM SPECIFICATION AS A GRAMMATICAL MODEL

3.1 DEVS Formal Models

Table 1 presents the mathematical specification of DEVS models. Such a mathematical definition with the

system basis allows for building hierarchical models using sets and functions. See (Zeigler et al. 2018) for

more details regarding the DEVS formal definition.

3.2 The DEVS Context-Free Grammar: CFG_DEVS

The DEVS grammar was developed using ANTLR. ANTLR (ANother Tool for Language Recognition) is

a powerful parser generator for reading, processing, executing, or translating structured text or binary files

(ANTLR 2023). By using such a technology, the grammatical model was defined as an ANTLR project

composed of five source files (named CFG_DEVS_MODEL.g4, CFG_SET_THEORY.g4,

CFG_BOOLEAN_EXPRESSION.g4, CFG_MATH_EXPRESSION.g4, CFG_TOKENS.g4). Each file

groups production rules according to its scope. Moreover, each element defined as a concept in “the DEVS
metamodel” is represented by a production rule. For space reasons, we describe the main content of each

file. In some cases, syntax diagrams are used to denote the structure of nonterminal symbols as a graphical

approach to how the grammar is defined.

2582

Blas, Gonnet, Kim, and Zeigler

Table 1: Formal definition of DEVS models.

DEVS Atomic Model DEVS Coupled Model

DEVS = {X, Y, S, δext, δint, λ, ta}

where

X = {(p,v)| p ∈ InPorts, v ∈ Xp } is the set

of inputs, with

InPorts as the set of input ports, p as the pth port

of InPorts, Xp as the set of input values for the p,

and v as an element of the p-values;

Y = {(p,v)| p ∈ OutPorts, v ∈ Yp } is the

set of outputs, with

OutPorts as the set of output ports, p as the pth

port of OutPorts, Yp as the set of output values

for the p, and v as an element of the p-values;

S is the set of sequential states;

δext is the external state transition function;

δint is the internal state transition function;

λ is the output function;

ta is the time advance function.

N = {X, Y, D, Md, EIC, EOC, IC, Select}

where

X and Y are defined in the same way as in the atomic

model, with IPorts as the set of input ports and

OPorts as the set of output ports;

D is the set of the component names;

For each d ∈ D, Md is a DEVS model, with

Xd = {(p,v)| p ∈ IPortsd, v ∈ Xp}, and

Yd = {(p,v)| p ∈ OPortsd, v ∈ Yp};

EIC = {((N,ipN),(d,ipd))|ipN ∈ IPorts, d∈

D, ipd ∈ IPortsd} are the external input couplings;

EOC = {((d,opd),(N,opN))|opN∈ OPorts,d ∈
D,opd∈OPortsd} are the external output couplings;

IC = {((a,opa),(b,ipb))|{a,b}∈ D, opa∈
OPortsa,ipb∈IPortsb} are the internal couplings;

Select is the tie-breaking function.

CFG_DEVS_MODEL. The CFG_DEVS_MODEL.g4 file contains the start symbol devsModel and

imports other source files to use their notation as part of its productions. It defines that a devsModel can

be either an atomicModel or coupledModel. For each nonterminal symbol, a production rule is specified.

For example, the atomicModel symbol is defined as:

atomicModel: modelSignature EQUAL atomicModelTuple WHERESYMBOL modelDefinition;

atomicModelTuple: BEGINPARENTHESES setInModel COMMA setInModel COMMA setInModel COMMA
DELTAEXTNAMESYMBOL COMMA DELTAINTNAMESYMBOL COMMA LAMBDANAMESYMBOL COMMA TANAMESYMBOL
ENDPARENTHESES;

modelDefinition: modelSentence (SEMICOLON modelSentence)*;

 In these rules, elements named as EQUAL, WHERESYMBOL, BEGINPARENTHESES, COMMA,

DELTAEXTNAMESYMBOL, DELTAINTNAMESYMBOL, LAMBDANAMESYMBOL, TANAMESYMBOL, ENDPARENTHESES and

SEMICOLON are tokens defined in the CFG_TOKENS.g4 file. The rule defined for the nonterminal symbol

modelDefinition implies a model is defined as a sequence of (at least one) modelSentence separated by

semicolons. Each modelSentence can be either a setExplicitDefinition or a function.

 The setExplicitDefinition is described in the CFG_SET_THEORY.g4 file. The function is a

generic nonterminal symbol for defining delExtFunction, delIntFunction, lambdaFunction,

taFunction, and selectFunction. A partial syntax diagram of such a symbol can be seen here. At the

basic level of the function definition, the nonterminal symbol mathExpression is used to describe

mathematical expressions. Such a symbol is defined in the CFG_MATH_EXPRESSION.g4 file. Moreover,

grammar allows combining conditions (defined in the nonterminal symbols ifThenCondition or

ifCondition) with function statements. These nonterminal symbols are defined in the
CFG_BOOLEAN_EXPRESSION.g4 file.

 As part of the function definitions, assignments can be defined. To this end, the grammatical model

includes a set of productions used to identify such statements as follows:

2583

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2023/07/Syntax-Diagram_Function.png

Blas, Gonnet, Kim, and Zeigler

assignIdentifier: variable ASSIGNOPERATOR identifier;

assignParameter: variable ASSIGNOPERATOR parameter;

assignValue: variable ASSIGNOPERATOR value;

 Each nonterminal symbol is used for a specific purpose to ensure a proper definition of model elements.

The ASSIGNOPERATOR token (from the CFG_TOKENS.g4 file) is used to denote the operation. The

variable, identifier, parameter, variableTuple, and tupleValue are special elements of the

grammar defined in a unique form in the CFG_TOKENS.g4 file.

CFG_SET_THEORY. The CFG_SET_THEORY.g4 file contains productions used to denote a set in an

implicit (nonterminal symbol setImplicitDefinition) or explicit (symbol setExplicitDefinition)

way. In practice, the setExplicitDefinition involves a setSymbol and a setImplicitDefinition.

Hence, we explain here the setImplicitDefinition definition defined as follows:

setImplicitDefinition: setDefinition | setOperationResult;

 As the previous rule shows, we consider a set can be defined "statically" in a setDefiniton or, instead,

be the result of a set operation (setOperationResult). For the first case, we consider both

elementCollection and tupleCollection. The elementCollection syntax diagram can be seen here.

 For operations returning a new set, we provide a set of nonterminal symbols to identify sentence

structures for several set operations such as cartesian product, union, intersection, and difference. The

precedence of operators in an expression is given following mathematical foundations. Other basic

operations involving sets are also allowed in the grammar (e.g., belongs to).

CFG_MATH_EXPRESSION. The file contains production rules used for all nonterminal symbols

defining a mathematical expression (mathExpression). Available operations to define complex

expressions are addition, subtraction, multiplication, division, square root, and power. As in the set theory

production rules, the precedence of operators in an expression follows mathematical foundations. A partial

syntax diagram of the mathExpression can be seen here.

CFG_BOOLEAN_EXPRESSION. As in the previous case, the file contains all the production rules

defined for identifying Boolean expressions (nonterminal symbol booleanExpression) as follows:

booleanExpression: boolExpressionTerm | binaryCondition;

binaryCondition: boolExpressionTerm (binaryConditionalOperator boolExpressionTerm)*;

boolExpressionTerm: relationalExpressionTerm | unaryCondition;

 We consider that a booleanExpression can be a term (boolExpressionTerm) or the result of a well-

defined condition (defined over a binaryCondition). A Boolean term is defined as a

relationalExpressionTerm (based on relational operators such as “equal to”, “greater than”, “less than

or equal to”, and so on) or as a unaryCondition. On the other hand, a binaryCondition is structured

using boolExpressionTerm combined with (binary) conditional operators. The operators included in the

grammar are “and” and “or”. Again, the precedence in an expression follows mathematical foundations.

 Finally, the file contains two symbols for identifying conditional structures based on if conditionals:

ifCondition: ifSymbol booleanExpression | ifSymbol BEGINPARENTHESES booleanExpression
ENDPARENTHESES | inOtherCaseSymbol;

ifThenCondition: ifSymbol booleanExpression thenSymbol | ifSymbol BEGINPARENTHESES
booleanExpression ENDPARENTHESES thenSymbol | inOtherCaseSymbol;

 These structures combined with the booleanExpression allow describing complex functions as part

of DEVS models.

2584

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2023/07/Syntax-Diagram_ElementCollection.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2023/07/Syntax-Diagram_MathExpression.png

Blas, Gonnet, Kim, and Zeigler

CFG_TOKENS. The file contains all tokens used in the grammar. These tokens include keywords (either

symbols or operators) and special characters (e.g., ‘(’, ‘)’, ‘{’, ‘}’, and so on). Keywords start with ‘\’ and

follow with the string naming its purpose. For example, the token EMPTYSETSYMBOL is defined as the string

“\emptySet” while the token ASSIGNOPERATOR is defined as “\assign”. We decided to use such a naming

convention to get a complete identification of sentences (including keywords). If a modeler uses the “real”

CFG, he should write models following this naming convention. However, intelligent editors can be

developed based on the use of macros (i.e., identifiers associated with token strings) associated with

keywords. Once the macros are ready to be used, preprocessing can be performed to substitute the token

string for each occurrence of the identifier in the text. In this way, for example, the empty set symbol ∅ (or

the LaTex notation \emptyset) will be able to be used in the model definition and (when preprocessing the

text) been replaced with the string “\emptySet”.

 The definition of basic elements is also included in the CFG_TOKENS.g4 file. Each element type is

defined using a naming convention as follows:

modelSymbol: UPPERCASEID | LOWERCASEID | FULLCASEID;

variable: LOWERCASEID APOSTROPHE;

parameter: HASH LOWERCASEID;

identifier: LOWERCASEID;

 For the modelSymbol, any string that starts with a letter and follows with a combination of

letters/numbers can be used. For the variable, parameter, and identifier, lowercase letters are

mandatory. In these cases, the naming requires an extra symbol to distinguish between them.

3.3 Rewriting Models from the Literature Using CFG_DEVS

Our first example is “the Switch” proposed in (Zeigler et al. 2018). Figure 1 shows the original definition

of the atomic model, while Figure 2 presents the model rewritten using CFG_DEVS. The parse tree obtained

when parsing the specification of Figure 2 using the CFG_DEVS can be seen here.

 To show how different CFG_DEVS notations work, we use “the Worker model” defined by Goldstein

et al. (2013). Instead of defining function results as tuples, such an atomic model details values for state

variables using conditional expressions. Figure 3 presents the formal specification. Figure 4 shows one

possible way of writing such a model in our grammar. The parse tree of Figure 4 can be consulted here.

Figure 1:“The Switch ” (Zeigler et al. 2018).

Figure 2: CFG_DEVS specification of Figure 1.

2585

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2023/07/Figure-2_ParseTree.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2023/07/Figure4_ParseTree.png

Blas, Gonnet, Kim, and Zeigler

 A larger atomic model is “the Hummingbird Feeder” (Zeigler and Sarjoughian 2003). Such a model

employs parameters (i.e., time_feed, time_refill, time_query) and special conditions surrounding function

statements (for space reasons, see the DEVS formal model here). Figure 5 presents the CFG_DEVS

specification of this atomic model. The parse tree can be seen here.

Figure 3:“The Worker” (Goldstein et al. 2013). Figure 4: CFG_DEVS specification of Figure 3.

Figure 5: The CFG_DEVS specification for “the Hummingbird Feeder” (Zeigler and Sarjoughian 2003).

2586

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2023/07/HummingbirdFeeder_FormalModel.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2023/07/Figure5_ParseTree.png

Blas, Gonnet, Kim, and Zeigler

 As an example of DEVS coupled models, we present “the Lighting model” proposed in (Goldstein et

al. 2013). Figure 6 shows the formal specification. Figure 7 presents the model expressed in the CFG_DEVS

notation. The parser tree can be consulted here. As the reader can appreciate, in all cases both definitions

are quite similar except for the use of keywords instead of symbols.

Figure 6: “The Lighting model” (Goldstein et al.

2013).

Figure 7: The CFG_DEVS specification for the

model detailed in Figure 6.

4 DISCUSSION

Frequently, the DEVS formalization task is left aside due to distinct reasons (e.g., time constraints, good

programming skills, and so on) - that is due to the development of DEVS formal models being a time-

consuming task that delays the delivery of operational model solutions. However, when introducing DEVS

formalism to students (or even in literature), DEVS formal specifications are used. Then, the students

(depending on their programming skills) should get the equivalent model implementations that allow model

execution. So far, existing grammar implementations are focused on describing DEVS models using other

modeling perspectives (such as proving interoperability or using natural language). Moreover, they generate

FD-DEVS models (i.e., a restricted subset of DEVS).

 Our grammatical model allows defining the unrestricted set of DEVS formal models that can be

processed in a computational form to denote well-defined sentences. As examples presented in Section 3.3

show, all definitions are almost identical to the “natural” specification of DEVS (formal) models. Moreover,

parse trees show our ANTLR implementation can recognize members of the Classic DEVS with ports

structure without any trouble. That enables a further matching among these members and metamodel

concepts. Both are advantages of our notation. The latter is about the development of a new modeling

language, while the first is regarding our grammar over existing ones.

 Take as an example Figure 8 which shows “the Switch” (i.e., a DEVS atomic model) defined in

DEVSNL using MS4 Me (MS4 Me 2023). Such a model definition is quite different from the model detailed

in Figure 1 (i.e., the model formal specification). But it is also closer to a “natural language” definition (we

use quotes because, as stated in Section 2.2, it is not based on natural language processing). That makes

sense because the modeling perspective used as a guide in DEVSNL was focused on getting natural

language expressions for defining DEVS models. Most likely, natural language expressions are useful for

describing DEVS models. Still, for books and teaching processes, the use requires knowing the DEVSNL

language structure and how DEVS specifications are translated into such a language. Both alternatives

(Figures 2 and 8) are suitable. Still, when using CFG_DEVS, the modeler (students or non-DEVS experts
in the context described) only must type the DEVS specification model in an editor (does not need to

“translate” the formal modeling perspective to a new form of structured sentences). In this way,

CFG_DEVS enables a suitable introduction to DEVS for students.

2587

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2023/07/Figure7_ParseTree.png

Blas, Gonnet, Kim, and Zeigler

Figure 8: The DEVSNL specification for the model of Figure 1 (“The Switch” (Zeigler et al. 2018)).

 Building a software tool as an editor of the CGF_DEVS grammar is crucial. So far, we are parsing

model specifications using ANTLR directly. ANTLR implementations can be embedded in other platforms

to use parsing capabilities of a defined grammar in distinct environments. Unifying such a parser in an

editor with the metamodel (already implemented in Ecore) to instantiate well-defined DEVS formal models

is part of the development in progress. Both activities are part of our current joint work with RTSync.

 Like the case of DescribeML (Giner 2022), describing models in a structured format based on a textual

notation promotes the development of other semi-automated formal scenarios that are not possible in

programming language implementations, such as, for example, generating artifacts from a model

specification, such as documentation regarding formal definitions and hierarchical traceability. Moreover,

using a well-defined modeling language with a semantic meaning enables the translation between different

DEVS implementations.

4.1 About the Quality of the CFG_DEVS Notation

Textual notations should follow basic quality principles. Most of these properties are relevant when the

concrete syntax is not something brand new (i.e., it uses icons or keywords that users may already associate

asemantic with). The analysis performed by Cabot (2022) focuses on how the quality of a good

mathematical notation can be applied to evaluate the quality of modeling language. From such an analysis,

we can say that the CFG_DEVS achieves the following features: i) Preservation of quality (every “natural”

concept in the abstract syntax should be easy to express in the notation): Each element defined as a concept

in the metamodel is represented by a production; ii) Error correction/detection (typos in a well-formed

expression should create an expression that can be easily corrected -or at least detected- to recover the

original intended meaning -or a small perturbation thereof-): We promote a set of production rules that

allow parsing sentence elements detecting pitfalls in expressions; and iii) Suggestiveness (the calculus of

formal manipulation in the language should resemble the calculus of formal manipulation in other

languages that users of the language are already familiar with): The grammar is defined just as the

mathematical form of DEVS models.

 Other features such as unambiguity (every well-formed expression in the concrete notation should

correspond to a single instantiation of the abstract syntax), expressiveness (every abstract syntax

instantiation should be describable in at least one way using the concrete notation), and transformation

(“natural” transformation of concepts in the abstract syntax should correspond to “natural” manipulation of
their symbolic counterparts in the concrete syntax notation) cannot be discussed at this point.

 As a remark, we still have not evaluated the “costs” of the notation defined. Such costs are classified

into two types (Cabot 2022): “one-time costs” (e.g., the difficulty of learning the notation and avoiding

2588

Blas, Gonnet, Kim, and Zeigler

standard pitfalls with that notation) and “recurring costs” (costs incurred with each use of the notation). So

far, modelers using the CFG_DEVS notation are primarily related to the development team.

5 CONCLUSIONS AND FUTURE WORK

Formalization and implementation of DEVS models are two activities that are often carried out

independently of each other. While formalization deals with the definition of a model over the basis of a

formal specification, implementation deals with developing a concrete model (from the formal definition)

in a programming language. That is one key difference of DEVS models with other types of formal models,

for example, models from the operation research field (where modelers are focused on improving the

mathematical definition to obtain better and faster results in the equivalent implementation).

 To get a new modeling language to support the definition of DEVS models in a computational form,

we have presented a CFG as textual notation for DEVS formal models. Such a grammatical model can be

combined with “the DEVS metamodel” to define a new modeling language with computational support.
Since the definition of the concrete syntax is a determining factor in the usability of a DSML, we have

followed the mathematical expressions used in the DEVS specification. Examples presented in Section 3.3

show how CFG_DEVS grammar can help to learn DEVS allowing students to define DEVS formal models

in a computer form without needing to learn programming or other languages. These examples follow the

syntactical rules defined in the CGF_DEVS model identifying members of Classic DEVS with ports in a

parse tree. In this way, we have shown how the grammatical model allows describing DEVS formal models

using mathematical notions. Such a definition allows for building a textual specification of DEVS models

that can be verified to ensure syntactical correctness. We are working now on building the syntactical

mapping of the concrete syntax (presented in this paper) with the abstract syntax (i.e., the metamodel) in a

formal well-defined function.

 Regarding semantics, the future work is devoted to completing the language definition by including a

formal specification of the semantics. Having semantics explicitly defined makes different interpretations

impossible, enabling the possibility of integration among different DEVS implementations.

REFERENCES

ANTLR. 2023. ANother Tool for Language Recognition (ANTLR). https://www.antlr.org/, accessed 8th April.

Barisic, A., V. Amaral, M. Goulao, and B. Barroca. 2011. “Quality in Use of Domain-specific Languages: A Case Study”. In

Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation and Usability of Programming Languages and Tools, edited

by S. Markstrum, E. Murphy-Hill, and C. Anslow, 65–72. New York, NY: Association for Computing Machinery.

Baar, T. 2006. “Correctly Defined Concrete Syntax for Visual Modeling Languages”. In Proceeding of the 2006 Model Driven

Engineering Languages and Systems Conference, edited by O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, 111-125.

Berlin: Springer Berlin Heidelberg.

Blas, M. J., and S. Gonnet. 2023. “Modeling and Simulation Through the Metamodeling Perspective: The Case of the Discrete

Event System Specification”. In Handbook of Model-Based Systems Engineering, edited by A.M. Madni, N. Augustine, and

M. Sievers, https://doi.org/10.1007/978-3-030-27486-3_86-1. Cham: Springer.

Blas, M., S. Gonnet, and B. Zeigler. 2021. “Towards a Universal Representation of DEVS: A Metamodel-Based Definition of

DEVS Formal Specification”. In Proceedings of the 2021 Annual Modeling and Simulation Conference, edited by C. Ruiz-

Martin, M. Blas, and A. Inostrosa-Psijas, 1-12. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Cabot, J. 2022. Qualities of a Good Notation – A Mathematician Perspective. Modeling Languages. https://modeling-

languages.com/qualities-notation-dsl-mathematician-perspective/, accessed 6th October 2022.

Cristiá, M., D. A. Hollmann, and C. Frydman. 2019. “A Multi-target Compiler for CML-DEVS”. Simulation 95(1):11-29.

Crystal, D. 2008. A Dictionary of Linguistics and Phonetics. 6th ed. Malden: Wiley-Blackwell.

Engelen, L., and M. Van Den Brand. 2010. “Integrating Textual and Graphical Modelling Languages”. Electronic Notes in

Theoretical Computer Science 253(7):105-120.

Giner, J. 2022. DescribeML: A Tool for Describing Machine Learning Datasets. Modeling Languages. https://modeling-

languages.com/describeml-machine-learning-datasets/, accessed 12th October 2022.

Goldstein, R., G. Wainer, A. Khan. 2013. “The DEVS Formalism”. In Formal Languages for Computer Simulation:

Transdisciplinary Models and Applications, edited by P. Fonseca and I. Casas, 62-102. Pennsylvania: IGI Global.

Harel, D., and B. Rumpe. 2004. “Meaningful Modeling: What’s the Semantics of “Semantics”?”. Computer 37(10):64–72.

2589

https://www.antlr.org/
https://doi.org/10.1007/978-3-030-27486-3_86-1
https://modeling-languages.com/qualities-notation-dsl-mathematician-perspective/
https://modeling-languages.com/qualities-notation-dsl-mathematician-perspective/
https://modeling-languages.com/describeml-machine-learning-datasets/
https://modeling-languages.com/describeml-machine-learning-datasets/

Blas, Gonnet, Kim, and Zeigler

Hopcroft, J., R. Motwani, and J. Ullman. 2006. Introduction to Automata Theory, Languages, and Computation. 3rd ed. Boston:

Addison Wesley.

Kelly, S., and J. P. Tolvanen. 2008. Domain-Specific Modeling: Enabling Full Code Generation. 1st ed. New York: John Wiley &

Sons Inc.

Kleppe, A. 2008. Software Language Engineering: Creating Domain-Specific Languages Using Metamodels. 1st ed. New York:

Pearson Education.

Krahn, H., B. Rumpe, and S. Völkel. 2007. “Integrated Definition of Abstract and Concrete Syntax for Textual Languages”. In

Proceedings of the 2007 Model Driven Engineering Languages and Systems Conference, edited by G. Engels, B. Opdyke, D.

C. Schmidt, and F. Weil, 286-300. Berlin: Springer Berlin Heidelberg.

Lando, P., A. Lapujade, G. Kassel, and F. Fürst. 2007. “Towards A General Ontology of Computer Programs”, In Proceedings of

the Second International Conference on Software and Data Technologies, edited by J. Filipe, B. Shishkov, and M. Helfert,

163-170. Portugal: Institute for Systems and Technologies of Information, Control and Communication Press.

Mittal, S., and S. A. Douglas. 2012. “DEVSML 2.0: The language and the stack.”. In Proceedings of the 2012 Symposium on

Theory of Modeling and Simulation - DEVS Integrative M&S Symposium, edited by H. ElAarag and A. Tolk, 17. New York:

Association for Computing Machinery.

MS4 Me. 2023. MS4 Systems. http://www.ms4systems.com/pages/main.php, accessed 18th April.

Paige, R. F., J. S. Ostroff, and P. J. Brooke. 2000. “Principles for Modeling Language Design”. Information and Software

Technology 42(10):665-675.

Petre, M. 1995. “Why Looking isn’t Always Seeing: Readership Skills and Graphical Programming”. Communications of the ACM

38(6):33–44.

Rumbaugh, J., I. Jacobson, and G. Booch. 2005. The Unified Modeling Language Reference Manual. 2nd ed. India: Pearson

Education.

Sarjoughian, H. S., A. Alshareef, and Y. Lei. 2015. “Behavioral DEVS Metamodeling”. In Proceedings of the 2015 Winter

Simulation Conference, edited by L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, 2788-

2799. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Seuren, P. A. 2015. “Prestructuralist and Structuralist Approaches to Syntax”. In Syntax-Theory and Analysis: An International

Handbook, edited by T. Kiss and A., 134-157. Berlin: Mouton de Gruyter.

Van Mierlo, S., H. Vangheluwe, and J. Denil. 2019. “The Fundamentals of Domain-Specific Simulation Language Engineering”.

In Proceedings of the 2019 Winter Simulation Conference, edited by N. Mustafee, K. Bae, S. Lazarova-Molnar, M. Rabe, C.

Szabo, P. Haas, and Y. Son, 1482-1494. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Van Tendeloo, Y., and H. Vangheluwe. 2017. “An Evaluation of DEVS Simulation Tools”. Simulation 93(2):103-121.

Zeigler, B. P. 2019. “How Abstraction, Formalization and Implementation Drive the Next Stage in Modeling and Simulation”. In

Summer of Simulation, edited by J. Sokolowski, U. Durak, N. Mustafee, and A. Tolk, 25-37. Switzerland: Springer Nature.

Zeigler, B. P., A. Muzy, and E. Kofman. 2018. Theory of Modeling and Simulation: Discrete Event & Iterative System

Computational Foundations. 3rd ed. London: Academic Press.

Zeigler, B. P., and H. S. Sarjoughian. 2003. “Introduction to DEVS Modeling and Simulation with JAVA: Developing Component-

based Simulation Models”. Technical Document, University of Arizona.

Zeigler, B. P., and H. S. Sarjoughian. 2017. “DEVS Natural Language Models and Elaborations”. In Guide to Modeling and

Simulation of Systems of Systems, edited by B. Zeigler and H. Sarjoughian, 39-62. London: Springer.

AUTHOR BIOGRAPHIES

MARIA JULIA BLAS is an Assistant Researcher at INGAR and an Assistant Professor at UTN. She received her Ph.D. degree

in Engineering from UTN in 2019. Her research interests include UML modeling and discrete-event M&S. Her email address is

mariajuliablas@santafe-conicet.gov.ar.

SILVIO GONNET received his Ph.D. degree in Engineering from UNL in 2003. He currently holds a researcher position at

CONICET. His research interests are models to support design processes and conceptual modeling. His email address is

sgonnet@santafe-conicet.gov.ar.

DOOHWAN KIM is the founder and president of RTSync Corp., which specializes in Predictive Analytics and Model-Based

System Engineering based on DEVS M&S technology. Dr. Kim has been involved in the design, development, and delivery of the

advanced M&S solutions for highly complex real world information science and engineering problems. He received his Ph.D.

degree from the University of Arizona in 1996. His email address is dhkim@rtsync.com.

BERNARD ZEIGLER is Professor Emeritus of Electrical and Computer Engineering at the University of Arizona (USA) and

Chief Scientist of RTSync Corp. (USA). Dr. Zeigler is a Fellow of IEEE and SCS and received the INFORMS Lifetime

Achievement Award. He is a co-director of the Arizona Center of Integrative Modeling and Simulation. His email address is

zeigler@rtsync.com.

2590

http://www.ms4systems.com/pages/main.php
mailto:mariajuliablas@santafe-conicet.gov.ar
mailto:sgonnet@santafe-conicet.gov.ar
mailto:dhkim@rtsync.com
mailto:zeigler@rtsync.com

	ABSTRACT
	1 INTRODUCTION
	2 COMPUTER LANGUAGES, METAMODELS, AND Grammars
	2.1 How to Build a Domain-Specific Modeling Language?
	2.2 Related Work: Existing Approaches

	3 The Discrete Event System Specification AS A GRAMMATICAL MODEL
	3.1 DEVS Formal Models
	3.2 The DEVS Context-Free Grammar: CFG_DEVS
	3.3 Rewriting Models from the Literature Using CFG_DEVS

	4 Discussion
	4.1 About the Quality of the CFG_DEVS Notation

	5 CONCLUSIONS AND FUTURE WORK
	REFERENCES
	AUTHOR BIOGRAPHIES

