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ABSTRACT

Model simplification is the process of developing a simplified version of an existing discrete-event simulation
(DES) to study the performance of specific system subcomponents relevant to the analysis. The simplified
model is referred to as a ‘metasimulation’. A widely used model simplification operation is abstraction, which
involves replacing the subcomponents, not core to the analysis, from the parent DES model with random
variables representing the lengths of stay in said subcomponents. However, the one-time computational
cost of developing metasimulations via abstraction can itself be considerable, as the approach necessitates
executing the parent model for generating the necessary data for developing the metasimulation. Thus, this
study proposes a queuing-theoretic approach for estimating the computational runtime reduction (CRR)
achieved through abstraction, wherein the prediction of CRR precedes the development of the metasimulation.
Towards this, we present preliminary results from applying this approach for simplification of DES models
made up of M/M/n workstations.

1 INTRODUCTION

A simulation originally developed to model a large and complex system may need to be adapted for
conducting experiments requiring only a subset of the model. In such cases, a simplified version of the
original simulation may reduce the computational overheads associated with the analysis. For instance,
Adan et al. (2014) developed a simplified version of a larger hospital simulation to determine appropriate
capacity levels for the emergency department. The simplification was achieved by omitting patient treatment
details from the main model. The process of developing simplified versions of larger simulation models is
known as ‘model simplification’. We henceforth refer to the original ‘full-featured’ simulation model as the
parent simulation and the associated simplified model as the metasimulation (analogous to ‘metamodel’).

Model simplification reduces the computational expense associated with model execution (Johnson
et al. 2005; Piplani and Puah 2004). It is a complexity reduction exercise in which the components
and connections in the parent models are modified so as to decrease computational expense with little
or no change in overall model behavior, including retention of the overall stochastic nature of simulation
outputs (Brooks and Tobias 2000). In the extant literature, several studies have reported a non-trivial
reduction in model execution times brought about through simplified models. For example, Fatma et al.
(2020) claimed a runtime reduction of up to 80%, whereas Hung and Leachman (1999) reported a reduction
of approximately 20%. In addition to reduced model runtime, simplified inputs and a shortened development
cycle have been documented as some of the potential benefits of model simplification (Brooks and Tobias
2000; van der Zee 2017).

Model simplification operations primarily include aggregation, substitution or abstraction, and deletion
of model components. These can be used in isolation or in combination with other operations (Rank et al.
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2016; Fatma et al. 2020). Note that the terms abstraction and substitution are used interchangeably in the
literature; however, we use the term abstraction to be consistent with recently published work (Fatma et al.
2020). Abstraction involves reducing the size and complexity of the model by substituting the redundant
subsystems or components from the detailed model with constant-valued delays (Johnson et al. 2005;
Brooks and Tobias 2000) or random variables (Fatma et al. 2020) representing the length of stay in the
subsystem. Consequently, in the simplified model, only the subsystems crucial to the modeling aim are
retained in their full-featured form. An illustration of abstraction using a two-stage tandem queuing system
and its simplified version is shown in Figure 1. It consists of two different subsystems, each comprising
one server and one queue. The figure depicts the abstraction of the second subsystem (enclosed in the
dotted rectangle in the parent model in Figure 1a) with a random variable representing the length of stay
in subsystem 2 (Figure 1b). The objective of the simplification exercise is to reduce the computational
costs associated with the execution of the parent model while still retaining a full-featured representation of
subsystem 1 (most relevant to the analysis at hand) as well as the total length of time spent in the system.

Figure 1: a. A two-stage tandem queuing system (parent model). b. A metasimulation (child) model of
the parent model developed by substituting the second subsystem with a random variable representing the
length of stay in the second subsystem.

On the other hand, in aggregation, multiple process-flows or components/products are combined to
form a single unified compound process-flow or machine/product (Lidberg et al. 2021). An example of
aggregation can be found in Fatma et al. (2020), in which six beds in the inpatient department of a hospital
were aggregated into a single bed, and the service rates were adjusted accordingly to retain the overall
utilization of the beds.

The model simplification process itself can be computationally expensive, with a one-time computational
cost incurred as part of metasimulation model development and validation. Therefore, access to a sufficiently
accurate prediction of the expected computational runtime reduction (CRR) at the conceptualization stage
of model simplification could be crucial for modelers to decide whether to pursue model simplification
at all and, if yes, what level of simplification they can consider. The question of whether the extent of
CRR can be determined before the simplified model has been constructed and executed has not yet been
addressed in the literature. To this end, we propose a queuing-theoretic based approach to predict the
computational savings associated with the metasimulation model at the point of its conceptualization before
executing the parent model for generating the data required to develop the metasimulation. This approach
can potentially be applied to general DES models developed to model service system operations, given
that they can typically be considered as complex queuing systems made up of simpler queuing subsystems,
especially if the subsystems have FCFS queuing disciplines. However, given that this is a first step towards
generating a priori CRR predictions associated with model simplification operations, the scope of the paper
is presently confined to computational implementation for DES models made up of M/M workstations.
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2 LITERATURE SURVEY

According to Zeigler et al. (2000), model complexity can be defined in terms of the number of elements,
connections, and model calculations. Further, the author proposed that the complexity of a model can be
reduced by replacing certain elements of the detailed model with a random variable (abstraction), combining
components of a model (aggregation), or restricting the set of values that the variable can assume.

Over time, numerous model simplification strategies have been developed, including deletion, aggre-
gation, and abstraction (Rank et al. 2016; Pegden et al. 1995; Lidberg et al. 2021). However, abstraction
and aggregation are the two most widely adopted techniques, with the common objective of reducing the
computational overhead without compromising the probability distributions of key simulation outcomes.
As discussed in the subsequent section, the abstraction operation is the focus of this study and, thus, is the
subject of the literature review.

Abstraction, model condensation or substitution (Piplani and Puah 2004) can be described as the process
of reducing the non-essential components from a detailed model. The common practice, as observed in
the literature, is to replace specific components or elements from the detailed model with either constant
delays (Hung and Leachman 1999; Johnson et al. 2005) or random-valued delays (Fatma et al. 2020;
Etman et al. 2011).

Rose (1998) used a simple simulation model to characterize the behavior of a wafer fabrication facility.
The author demonstrated the effectiveness of simplified simulations by studying the evolution of the work-
in-process after a catastrophic bottleneck failure. The model consisted of a full-featured bottleneck and
an abstraction—represented by an aggregated delay—of the remaining machines in the process flow. In a
subsequent study, Rose (1999) presented a statistical analysis of the lot interarrival time at the bottleneck
workstation. The probability distribution best describing the behavior of the data was identified and used to
model the arrivals at the bottleneck machine. In a follow-up study, Rose (2007) expanded the application
of the simple model by introducing inventory-dependent distributions for sampling the delay instead of the
fixed distributions used in earlier studies.

Further, for a semi-conductor manufacturing unit, tool set substitution along with process flow ag-
gregation was conducted to reduce the model complexity (Stogniy and Scholl 2019; Stogniy and Scholl
2020). The abstraction of the toolset was done using delays representing the time for loading, unloading,
processing, and waiting. Similarly, Hung and Leachman (1999) replaced low utilization workstations with
constant and also random valued variables representing the lengths of stay corresponding to waiting time
and processing time. Völker and Gmilkowsky (2003) included only the relevant processes in the simplified
model and substituted the others using the time lags corresponding to the processing and the waiting times.
Additionally, Fatma et al. (2020) developed simplified simulation models of a network of primary care
facilities in healthcare settings. The authors considered only the components relevant to their analysis and
replaced the non-core elements with random variables representing the patient lengths of stay (wait time
+ service time) at each element.

Our literature review has shown that despite the many benefits of model simplification, including
quicker development cycles, additional flexibility, and faster execution, its use by researchers has only been
sporadic (van der Zee 2017). Of the studies that exist, the primary focus has been on the simplification of
models to reduce their overall complexity and computational expense without compromising their utility and
credibility. Typically, models are simplified before runtime reductions are realized. In contrast, in this study,
we propose estimating the expected computational runtime reduction (CRR) at the conceptualization stage
of metasimulation development, after which model simplification may be undertaken if deemed necessary.
To the best of our knowledge, this is the first study to propose an approach whereby CRR estimates are
generated before the metasimulation is developed. Note that our study assumes that the representational
capability of the metasimulations with respect to the parent model is adequate, and hence we do not discuss
their validation in detail, and focus on generating accurate CRR predictions.
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3 COMPUTATIONAL RUNTIME REDUCTION PREDICTION METHODOLOGY

We first investigate the mechanism by which CRR is achieved by the abstraction model simplification
operation. This knowledge of the CRR mechanism helps motivate the key insights underpinning the
development of CRR prediction models.

3.1 Determinants of the CRR Achieved with Metasimulations

The DES models - both parent and metasimulation models - that are considered in this study are all
programmed in the Python programming platform using the salabim DES library (van der Ham 2018).
We now describe the terminology used in the development of our CRR prediction models. First, the
term ‘event list’ refers to an ordered record of the simulation’s pending events prepared so that they are
executed in the correct order. On the other hand, ‘simulation trace’, or simply ‘trace’, can be defined as the
time-ordered record of already elapsed events associated with the execution of a simulation. It is typically
available as standard output in most simulation platforms, including salabim. Next, the ‘generator’ can
broadly be defined as the function that generates objects or simulation entities arriving at the system seeking
service. The term ‘instructions’ is used in this paper to refer to messages that are relayed or passed by
the processor to execute the events from the event list. For instance, standard instructions may include:
‘generate component’, ‘enter queue’, ‘leave queue’, and ‘release server’.

We now briefly discuss the determinants of simulation runtime for DESs, which influence the choice
of independent variables for the CRR prediction models. The simulation execution time can be considered
to be a function of the number of simulation subsystems, the utilization of the servers of each subsystem,
and the simulation run length. Therefore, for a fixed simulation run length, the number of subsystems and
the server utilization primarily determine the model execution time. An increase in either of these values
will lead to a corresponding rise in the number of instructions or events on the event list. However, there
is a distinction between the nature of the increase in the number of instructions due to the increase in the
number of subsystems and the number of arrivals that merits discussion. As the number of subsystems
increases, keeping other factors fixed, the number of instructions per arrival does not change, but the total
number of instructions increases. On the contrary, the number of instructions per arrival changes (which in
turn determines the total number of instructions) based on the utilization of the servers in the system. The
server utilization determines the probability of a new arrival finding an idle server for receiving service. If
this probability is low, the service-seeking entity will likely receive service as soon as it arrives, implying
that fewer instructions are required. If this probability is high, more instructions are required to coordinate
the arrival of the entity, its service request, its entry into the queue, its activation when it is due for service,
and so on. In the context of salabim, when server utilization is high, the instruction set may include, for
example, passivate entity, activate entity and request on hold. When server utilization is low, the system
may not need to execute the instructions to passivate and activate the service-seeking entity given that it
is highly likely to receive service immediately upon arrival, and thus the number of instructions per unit
arrival would be significantly lower.

For a given model simplification task via the abstraction operation, the number of subsystems - either
in the parent model or in the metasimulation - do not change, and hence we consider only the utilization
of the subsystems that make up the parent model subcomponent to be abstracted out as a determinant of
the number of instructions per arrival. A brief note regarding notation: we use the symbol θ to denote the
number of instructions per arrival and the symbol I for the total number of instructions associated with a
given DES system and its execution.

We begin the development of the CRR prediction models by examining the list of instructions obtained
from the trace of a simulation. For illustration, the trace output from the two-stage M/M/1 queuing system
in Figure 1a (referred to henceforth as system 2s) and its corresponding metasimulation model in Figure 1b
(system ms henceforth) was extracted and compiled. Table 1 provides the retrieved trace output highlighting
the instructions executed by the processor for an arrival from generation to exit from both models. In
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the table, queue 1 and resource 1 denote the queue and the server in both the first stage of the parent
model and in the metasimulation. arrival.1 refers to the first entity created by the generator. Observe that
the metasimulation trace lacks resource 2 and queue 2, which correspond to the parent model’s second
subsystem.

Table 1: Sample instructions from a two-stage M/M/1 tandem queuing system and corresponding metasim-
ulation model with second stage abstracted out.

Parent model Metasimulation
Component generator: Component generator:
1. Current 1. Current
2. Hold for ∼ exp

( 1
λ

)
time 2. Hold for ∼ exp

( 1
λ

)
time

Component process: Component process:
1. Create 1. Create
2. Activate 2. Activate
3. Current 3. Current
4. Enter queue1 4. Enter queue1
5. Request resource1 5. Request resource1
6. Request for resource1 is scheduled for time = ∞, goes to
passive statea

6. Request for the resource1 is scheduled for time = ∞,
goes to passive statea

7. Request honored, scheduled for time = t 7. Request honored, scheduled for time = t
8. At time = t, current (from passive state) 8. At time = t, current (from passive state)
9. Leave queue1 9. Leave queue1
10. Claims resource 1 and holds for ∼ exp

(
1
µ

)
10. Claims resource 1 and holds for ∼ exp

(
1
µ

)
11. At time t1 = t+∼ exp

(
1
µ

)
, current 11. At time t1 = t+∼ exp

(
1
µ

)
, current

12. Release resource1 12. Release resource1
13. Enter queue2 13. Schedule for time = t1+∼ t∗b

14. Request resource2 14. At time = t1+∼ t∗, current
15. Request for the resource2 - scheduled for time= ∞, goes
to passive statea

15. End

16. Request honored, scheduled for time = t2
17. At time = t2, current
18. Claims resource and holds for ∼ exp

(
1
µ ′

)
19. At time t3 = t2+∼ exp

(
1
µ ′

)
, current

20. Release resource2
21. End

Notes. ∼ indicates ‘sample from distribution’. λ = mean arrival rate. µ,µ ′ = mean service rates of resources 1 and 2,
respectively. t∗ = length of stay in subsystem 2. aResource occupied, component waits for its turn. bRandom variable
representing length of stay in subsystem 2 (abstracted out).

It is evident that there were fewer instructions per arrival for the metasimulation model. This reduction in
the number of instructions is most likely responsible for the decrease in the model runtime. This observation
led us to develop a model for predicting CRR from the abstraction model simplification operation as a
function of the expected Reduction in Number of Instructions (RNI) with the metasimulation, which in
turn we modeled as a function of server utilization.

We briefly discuss impact of two other aspects of DES systems on computational runtime needs to
be addressed: (a) the number of servers at a queueing subsystem and (b) the number of process routings
in a model on the computation time. An M/M/n queuing model was developed to determine how the
number of servers (resources) affects the model runtime. The experiment involved varying the number
of servers from 1000 to 100 in decrements of 100 and further decreasing the number of servers to 25 in
decrements of 25. The service rate was adjusted proportionally for each case such the server utilization
remained unaffected. The computational runtime in minutes was then recorded for each configuration, with
a given system configuration determined by the number of servers. This experiment, in essence, mimics
the ‘aggregation’ model simplification operation.
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We observe from this experiment that the computational runtime decreases only when the number of
servers reaches 100, after which it remains approximately constant. This is likely because, especially at
moderate utilization levels (for example, approximately 50%), as the number of servers increases, more
computational effort is expended in searching for the first idle server for the job assignment. For this study,
we assume that the number of servers in the workstations within the systems that are modeled is much
fewer than 100, and hence we no longer consider the number of servers in a queuing workstation/subsystem
as a contributing factor to the CRR that can be achieved by abstraction. This is also why we do not
consider the aggregation model simplification operation involving replacing multi-server workstations with
single-server workstations in this study.

We also do not consider process routings, the logical paths that simulation entities follow within the
model, as a factor affecting computational runtimes. This is because unless the number of routings is very
high, implying a very high degree of complexity of the simulation model, it is unlikely that the number of
instructions will be significantly affected.

From the above discussion, the insight driving the development of the CRR prediction approach emerges
as follows. The reduction in the total number of instructions associated with the metasimulation (when
compared to the parent model) drives the reduction of its computational runtime, and, for a fixed simulation
run length, the number of instructions associated with either the parent simulation or the metasimulation
is a function of the utilization of the subsystems being abstracted out. This implies that the key model
required for predicting the CRR associated with the metasimulation is a relationship between the RNI
achieved when the abstraction model simplification operation is performed and the corresponding CRR.
However, developing this model will, in turn, require estimating the RNI achieved with the metasimulation.

3.2 CRR Prediction Model Development Process

At this stage, we note that the CRR prediction needs to be generated prior to the development of the
metasimulation model, and ideally without the need to execute the parent simulation for the aforementioned
purpose. However, it is assumed that a table of key outcomes from the parent simulation, including
utilization estimates for each subsystem being abstracted, is available. Therefore, the CRR prediction must
ideally be generated as a function of one of these available outcomes. We recall here that the utilization
of the abstracted subsystem is the key determinant of the number of instructions associated with it. Thus
we first develop a model that captures the relationship between the number of instructions per arrival and
its utilization. The output of this model is used to derive the total number of instructions associated with
the subsystem being abstracted. From this, the number of instructions associated with the corresponding
representation of this subsystem in the metasimulation is subtracted, yielding the RNI achieved by the
metasimulation, and can then be provided as input to the model that relates CRR to the RNI.

We now discuss the fact that developing these models will involve regressing data for the CRR and the
RNI. This data can be generated by considering any DES system and its metasimulation, as the independent
variable is only the RNI, and not the number of instructions itself. Thus, we consider the parent model and
its metasimulation depicted in Figure 1 - i.e., the systems 2s and ms for the development of this relationship.
Secondly, the DES system ss, consisting of a queue and a server with exponentially distributed service
times (without a generator), can be considered the fundamental building block of most DES systems. For
example, the 2s system can be considered to be made up of a generator and two ss systems in tandem. This
is also keeping with the fact that M/M workstations with multiple servers were found not to have any more
of an impact on computational runtime than a single-server M/M system as long as the number of servers
was approximately less than 100. Thus, when abstracting out a subcomponent of a DES, the subcomponent
will be made up of these ss systems. Hence the RNI associated with the abstracted out subcomponent in
the metasimulation can be calculated as a function of the sum of the number of instructions associated

2559



Shoaib, Mustafee, and Ramamohan

with each ss system (in turn calculated as a function of its utilization) making up the subcomponent. It
is therefore important to develop a relationship between the number of instructions associated with an ss
system and its utilization. This is why we consider the 2s, ms and ss systems in developing the CRR
prediction approach.

The CRR prediction model development process can be divided into two stages. The first stage
involves the development of models to predict the number of instructions per arrival from the parent and
metasimulation models. The second stage uses the models developed in the first stage to derive the CRR
prediction model.

The overall approach is described below.

Stage 1. Model: Number of instructions per arrival versus server utilization for each DES system
k ∈ K = {2s,ms,ss}.
I. For each k ∈ K and for multiple utilization values of the subsystem being abstracted out, perform the
following steps. Note that for the 2s system, the subsystem in question is the second stage queue and
server, as depicted in Figure 1, and for the ms system, this refers to the first stage queue and server. In
constructing the CRR prediction models, we assume that the utilization of both servers in the 2s system
is the same.

(a) Execute DES for kth system and obtain trace as output.
(b) Use the trace as input to record the average number of instructions per arrival, θk.

II. Using data collected from step 1.I, for each k ∈ K, fit regression model between θk (dependent variable)
and server utilization (independent variable).
Stage 2. Model: CRR versus RNI achieved with metasimulation.
I. Perform the below steps for k ∈ {2s,ms} systems for multiple values of server utilization.

(a) Record the average execution time (tk) and the average number of arrivals (nk).
(b) Using the regression model obtained from Stage 1 relating θk and server utilization, estimate the

expected number of instructions per arrival (θk).
(c) Estimate the average total number of instructions (Ik = nk×θk).

II. For each value of Ik and tk (k ∈ {2s,ms}) collected in 2.I, perform the following:

(a) Calculate the RNI as: Ī = I2s− Ims.
(b) Calculate the CRR as: φ = t2s− tms.

III. Using the average CRR values (φ ) as the dependent variable and the average RNI (Ī) as the independent
variable, fit a regression model to obtain φ as a function of Ī.

Note that in Stage 1 we derive a model for predicting the number of instructions per arrival θ as a
function of the utilization of the subsystem being abstracted, but then use θ in conjunction with n to estimate
the total number of instructions I associated with the execution of the simulation in question to estimate
the CRR φ (and do not use θ directly). This is because the expression for φ estimates the expected CRR
in absolute time units (e.g., seconds), and hence the simulation run length, and consequently the number
of arrivals during the run length of the simulation, needs to be accounted for when estimating the CRR.

An example of the computational implementation of the above CRR prediction model development
process is provided via pseudocode for Stage 2 in Algorithm 1.
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Algorithm 1: Pseudocode for the implementation of Stage 2 of the CRR prediction model
development process.
1 Specify a set of server utilization values S, average service rate µ , number of replications (r) to be run for each

server utilization value
2 Determine average arrival rates, A = {λ : λ = s×µ,s ∈ S}
3 Initialize arrays (time_list, arrival_list, θ k_list, Ik_list) for data collection
4 for k ∈ {2s,ms} do
5 for s ∈ S do
6 i← r
7 while i 6= 0 do
8 Run simulation at arrival rate λ & server utilization µ

9 Record the number of arrivals (ni,k
s ) and model runtime (t i,k

s ) (i.e., time_list.append(t i,k
s ),

arrival_list.append(ni,k
s ))

10 i = i−1

11 Obtain the average number of arrivals (nk
s ) and average model runtime (tk

s ) over r replications, store tk
s in

tk_list (e.g., tk
s =

sum(time_list)
r )

12 Estimate θ k
s as a function of s using the regression model from Stage 1, store in θ k_list

13 Calculate Ik
s = θ k

s ×nk
s , store in Ik_list

14 Calculate reduction in number of instructions Ī = I2s_list− Ims_list
15 Calculate CRR φ = t2s_list− tms_list
16 Regress φ on Ī

4 COMPUTATIONAL IMPLEMENTATION OF THE CRR PREDICTION APPROACH

In this section, we describe the computational experiments conducted to demonstrate the development of
the CRR prediction models and the validation of this approach. All computational analyses were conducted
on a Windows 11 64-bit workstation with an Intel i7 4-core processor with 3.3 GHz clock speed and 16
gigabytes of memory.

4.1 CRR Prediction Model Development: Computational Demonstration

Stage 1 demonstration: development of the θ versus server utilization regression model. The first step in
this process was the development of the DES systems 2s, ms and ss. Mean service times of 1 minute were
assumed for each relevant server in each system. In order to gather sufficient data points for the regression,
the server utilization levels were varied by 1% between 25% and 92% (beyond 92% nonlinearity in queue
outcomes such as average wait time becomes prominent). The server utilization was used to compute the
mean interarrival time for service-seeking entities in conjunction with the mean service time.

Having determined the DES input parameters for each simulated system, the parent simulation model
(the 2s DES) was executed to obtain the trace as the output. The trace was fed as input to a method
that returned the number of instructions for every simulation entity listed in the trace. Following this, a
predetermined number of entries (50 in our implementation) were randomly selected from each replication
to determine the number of instructions per arrival for that replication. Then, 5 such replications were
performed at each server utilization value, and correspondingly the average number of instructions per
arrival was computed for each value of server utilization. A linear regression model was then fitted to the
recorded average number of instructions per arrival and server utilization data. The resulting linear model
had an R-squared value of 0.99, indicating a good fit. The same approach was executed for the other
systems - the ms and the ss systems to derive expressions for θss and θms as functions of server utilization.
Below, we briefly discuss the construction and validation of the metasimulation (i.e., the ms DES).
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Given that the ms DES is constructed from the parent 2s DES, the second stage in the 2s DES was
replaced with a random variable representing the length of stay in the second stage. The length of stay
values in the second stage obtained from the parent model underwent a distribution-fitting procedure, and
the chi-squared distribution was identified to be the best-fitting probability distribution with a p-value of
0.99 for the Kolmogorov-Smirnov test. The ms DES was then constructed with the second stage in the
2s DES replaced (abstracted) by the chi-squared random variable. The ms DES was validated against
its 2s parent DES by conducting a Kullback-Leibler (KL) divergence test comparing the distributions of
the total lengths of stay in both systems. The KL test results indicated negligible deviations between the
distributions of the length of stay samples from both the 2s and the ms models.

The linear regression relations relating θ to server utilization obtained for the 2s,ms and ss systems
along with their R-squared values are provided in Table 2.
Stage 2 demonstration: the CRR versus RNI regression model. The CRR versus RNI regression model was
developed by implementing Algorithm 1. This involved executing the 2s DES and its simplified counterpart
(the ms DES) and recording the total number of arrivals (denoted by n) and the model runtime. This
process was repeated for every utilization value considered for the experiments - that is, server utilization
values between the range 25-92%, in increments of 1%. Following this, the equations for θ2s and θms

developed via Stage 1 and provided in Table 2 were used to estimate the number of instructions per arrival
for each server utilization value. Then the total number of instructions for both models was calculated by
multiplying the number of instructions per arrival and the number of arrivals (n), after which the difference
in the total number of instructions and the computational runtimes between the parent and child model was
calculated. A regression line was then fitted to the data for the RNI and the CRR (φ ). This CRR prediction
model is shown in Table 2 along with its R-squared value.

Table 2: Linear regression equations comprising the CRR prediction model for the abstraction model
simplification operation.

DES Expression R2 value
Two-stage θ2s = 22.02+1.97x 0.99

Single server θss = 9.02+0.98x 0.92
Metasimulation θms = 15.01+0.97x 0.92

CRR prediction model φ =−0.05+0.04Ī 0.99

x is server utilization, Ī is the RNI with the metasimulation
in units of 10000 seconds, and φ is the expected CRR.

Note that the average total number of arrivals (n) used for calculating the total number of instructions
were obtained from the simulation output. However, the value could also be estimated by multiplying
the average number of arrivals (estimated from the server utilization and mean service rate) and the total
simulation run duration. We developed the CRR prediction model by estimating n in this manner as well
and the approach yielded comparable results.

We now describe the computational experiments conducted to demonstrate how to apply the CRR
prediction approach. Each of these experiments also serve to validate the CRR prediction approach.

4.2 CRR Prediction Model Deployment and Validation

We conducted two sets of experiments as part of the deployment and validation exercise. In the first set,
the CRR prediction approach was applied for the 2s system DES and its metasimulation represented by
the ms system DES. The approach for deployment and validation for this case proceeded as follows. For a
given server utilization value - we recall here that the 2s system was parameterized to have equal utilization
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values for each server - the number of instructions per arrival θ2s and θms were estimated as a function of
the server utilization using the relevant equations in Table 2. Then the number of arrivals (n) for a given
simulation run length was computed (n = server utilization × service rate × simulation run length), and
this, in turn, was used to estimate the total number of instructions I2s and Ims. The RNI Ī was calculated
as I2s− Ims, and this was then used in conjunction with the equation in the last row of Table 2 to predict
the CRR φ . This process was then repeated for 131 server utilization values between the range 25% to
91%. Note that as part of the above process, neither the 2s nor the ms DESs were executed.

For each of the above 131 server utilization values, the actual CRR achieved by the metasimulation
was then estimated using the DESs of the parent and metasimulation models. The CRR for each server
utilization value was estimated as the average of 30 replicate values and then compared to the predicted
values. The performance of the CRR predictions was quantified using two commonly used metrics for
regression models: the mean absolute percentage error (MAPE) and the mean percentage error (MPE).

The MAPE is calculated as
N
∑
j=1

|O j−Pj|
O j
×100, where O j and Pj are the observed and predicted values of the

regression dependent variable, and N represents the size of the sample (131 in this case). Similarly, the

MPE is calculated as
N
∑
j=1

(O j−Pj)
O j
×100. For this exercise, we observed MAPE and MPE values of 8.61%

and 8.15%, respectively. Note that the errors were positively biased, indicating that the prediction model
produced conservative CRR estimates.

Further, for the second set of experiments, a more complex system, shown in Figure 2, was created.
This parent model is a three-stage tandem system with two parallel systems in the third stage. Two model
simplification scenarios were considered as part of this experiment: a) the third stage of the parent model
was abstracted out as shown in the second system from the top in Figure 2; and b) the second and third
stages were abstracted out together and replaced with a single random variable, depicted in the bottom-most
system in Figure 2. Validation similar to that conducted for the 2s and ms systems was done for these
metasimulations as well. Before we provide the details of the experiments, we first note that both cases
involve abstracting out subsystems that are ss systems - i.e., they are M/M/1 workstations with a queue
and a server, but without a component (i.e., service-seeking entity) generator. Thus in predicting the
number of instructions per arrival as a function of the utilization of such a system, the regression equations
developed for θss in Table 2 are used here. Secondly, we also observe via our computational experiments
that abstracting such a system with a random variable representing the length of stay in the system incurs
2 instructions per arrival.

Figure 2: CRR prediction validation: the parent model and two corresponding metasimulation models.

2563



Shoaib, Mustafee, and Ramamohan

For the first case ten server utilization values for subsystems 3 and 4 were randomly generated between
25% and 92%. First, for subsystems 3 and 4, the expected number of instructions per arrival, which we
denote by θss3 and θss4, were computed using the equation for θss from Table 2 corresponding to each
utilization value. Then, the total number of instructions in both subsystems were obtained by combining the
number of arrivals and the number of instructions per arrival. At this point, we note that in calculating the
RNI associated with abstracting out the third stage - subsystems 3 and 4 together - will involve summing up
the total number of instructions associated with both subsystems and subtracting the number of instructions
associated with replacing the third stage by the corresponding length of stay random variable. Thus, the
expected RNI Ī associated with this abstraction operation can be calculated as: Ī = n× (θss3 +θss4−2),
where n is the number of arrivals in the desired simulation run duration. The expected CRR is then
computed using the regression equation for φ from Table 2 as a function of Ī.

Next, in order to validate the CRR predictions, the actual CRR associated with this abstraction operation
was calculated for each server utilization value in a manner similar to that for the previous validation exercise
for the 2s and ms systems. The average values of MAPE and MPE observed were 7.37% and 2.89%,
respectively.

For the second abstraction scenario, where both stages 2 and 3 are abstracted out by a single random
variable, the same approach is followed. In this case, 5 randomly generated server utilization values were
considered, and the expected total RNI, using the regression model for θss developed earlier, was calculated
as follows: Ī = n×(θss2+θss3+θss4−2). The expected CRR φ was then calculated as a function of Ī. The
actual CRR values were computed by executing the parent model and its corresponding metasimulation
in a manner similar to the first validation exercise, and the observed MAPE and MPE values were 4.81%,
and 3.77%.

Overall, given that the MAPE and MPE values for each validation exercise considered above are less
than 10%, it is reasonable to conclude that the CRR prediction approach is performing well.

5 DISCUSSION AND CONCLUSION

The paper presents a methodological investigation into DES model simplification operations. We first
investigate the mechanism underpinning the CRR achieved through the abstraction model simplification
operation. Next, insights from this investigation contributed to the development of a methodology to predict
the CRR prior to model simplification. Given that this study is the first step towards being able to generate a
priori estimates of the expected CRR from model simplification operations, we demonstrate the application
of this approach for a relatively simple DES model comprising of M/M queuing subsystems. Based on
our computational experiments, the CRR prediction approach performs well.

The prediction approach was developed to determine, at the metasimulation conceptualization stage,
whether the model simplification was a worthwhile endeavour, and if so, the extent to which it may be
pursued. Such an approach may also serve as the first step towards the incorporation of automated model
simplification operations within commercial DES platforms. For example, we envision a scenario where a
modeler selects certain subsystems in an existing ‘parent’ DES for abstraction (e.g., clicks on components
in a graphical representation of the modeled system), receives an estimate of the CRR associated with this
operation, and if acceptable, then performs the model simplification operation via another ‘click’ or two.

Future work involves extending this methodology to more general DES models of service systems that
can be represented as complex queuing systems. This includes, for example, complex queuing networks
made up of G/G systems. Further, incorporating more complex queuing considerations into the approach,
such as multi-class service systems, more complex queuing disciplines such as those with reneging and
balking, nonstationary arrival and service patterns, etc., will provide a rich set of problems to pursue.
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