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ABSTRACT 

There are significant differences between using systems as human-controlled tools to accomplish a specific 
task and using systems designed to “cooperate and partner” with humans to achieve capabilities beyond 
either side acting alone. The live, virtual, constructive (LVC) paradigm increasingly emphasized by the 
DoD has wide acceptance and is congruent with how the military thinks about training, evaluation, and 
mission rehearsal. Consequently, it may help address these challenges. This paper aims to overview the 

current LVC construct, challenges associated with human-AI teaming and intentional design of these 
dynamics to achieve new capabilities, and the resulting need to evolve the LVC construct to improve our 
pursuit of understanding and evaluation that leads to effective fielding. 

1 INTRODUCTION 

There are significant differences between using systems as human-controlled tools to accomplish a specific 
task and using systems designed to “cooperate and partner” with humans to achieve capabilities beyond 

either side acting alone. Systems intended to team with humans are increasingly enabled by artificial 
intelligence (AI), with varying degrees of adaptive or “learning” potential. Recognizing there is an entire 
spectrum of how reasoning, learning, and adaptation in algorithmic form is manifested, there is similarly a 
spectrum of how teaming may be realized across the spectrum of algorithmic capabilities. Comprehensive 
testing of all possible states is impossible or infeasible and the evaluative intractability inhibits our abilities 
to understand and design these relationships for effective use. We need to understand how to be intentional 

across various forms of teaming, and this has critical relevance for enhancing operational capabilities. 
The US Department of Defense (DoD) needs to train for and evaluate the effectiveness of humans 

teaming with AI-enabled systems across the high degree of potential variation to this dynamic to achieve 
and field new capabilities that operate as intended and are safe for use in theater. At present, however, there 
remains a capability gap with respect to designing human-AI teams and using training to drive innovative 
design and evaluation of those designs to support further training, design, and evaluation. The live, virtual, 

constructive (LVC) paradigm increasingly emphasized by the DoD has wide acceptance and is congruent 
with how the military thinks about training, evaluation, and mission rehearsal. While the LVC construct 
may help address these challenges, it is not yet designed for nor is there solid understanding of how we 
might apply it toward the problem of human-AI teaming. 

This paper aims to overview the current LVC construct, challenges associated with human-AI teaming 
and intentional design of these dynamics to achieve new capabilities, and the resulting need to evolve the 

LVC construct to improve our pursuit of understanding and evaluation that leads to effective fielding. 
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2 THE LVC CONSTRUCT 

The LVC construct, which categorizes the way humans interact with simulations, first originated in 1991. 
Inspired by the Army’s challenge to increase the effectiveness of training methods to meet the challenges 

posed by full spectrum warfare, GEN Paul F. Gorman presented a paper to the Society for Computer 
Simulation that argued “…most military training could be advantaged by Tactical Engagement Simulation 
(TES) in any or all of its three forms, Constructive, Virtual and Subsistent, and that, ideally, all three forms 
would be used interactively” (Gorman 1991). As documented in his Interservice/Industry Training, 
Simulation and Education Conference (I/ITSEC) Fellow’s paper, the terms in the 1991 paper morphed over 
time: “subsistent” became “live” and Seamless TES became “blended training” (Gorman 2011). Later, the 

Defense Science Board (DSB) Task Force on Simulation Readiness & Prototyping, on which GEN Gorman 
was a member, solidified the concept of LVC, by asserting “Everything is simulation except combat” and 
classified the whole of Modeling, Simulation and Gaming as Live, Constructive, and Virtual (DSB 1992).  

2.1 LVC Defined 

With this background in place, a commonly used figure capturing the LVC taxonomy emerged in 2013, as 
shown in Figure 1 (I/ITSEC 2013). Live simulation refers to Modeling & Simulation (M&S) involving real 

people operating real systems (e.g., a pilot flying a jet) for a simulated mission. A virtual simulation is one 
that involves real people operating simulated systems (e.g., a pilot flying a simulated jet). Constructive 
simulations are those that involve simulated people operating simulated systems (e.g., a simulated pilot 
flying a simulated jet). According to the matrix in Figure 1, there is no name for simulated people operating 
real equipment. When the LVC taxonomy was created in 1991, there were no examples of this type of 
interaction. However, technology has advanced to the point where simulated humans are operating real 

systems. For example, the DARPA AlphaDogfight Trial was a competition where AI controlled a simulated 
F-16 fighter jet in aerial combat against an Air Force pilot flying in a virtual reality simulator (Goecks 
2022). The winner defeated an experienced pilot in a simulated dogfight, demonstrating that an AI-based 
pilot may surpass human abilities. This quadrant has not been named, but is sometimes called Autonomy. 

 

Figure 1: Categorizing simulations by the way humans interact with them. 

2.2 LVC Interoperability Challenges 

To explain some of the interoperability challenges of LVC simulations, we will start by describing the basic 

elements of a simulation: objects, events, behavior, environment, time, and data. Objects represent things 
such as people, vehicles, sensors or computers that are modeled in the simulation. An Event is an 
instantaneous occurrence that changes the state of the system; and each event has a time associated with it 
indicating when it occurred. Behavior represents the actions and interactions of the objects; it is the 
unfolding of events over time. The Environment in which those objects exhibit behavior could include land, 
sea, air, space, or none. Since a simulation is a method for exercising a model over time, Time is represented 

by a clock which is advanced as a result of the occurrence of events. Lastly, Data represents the parameters 
in the simulation as well as the scenario, and captures things like fidelity. To briefly explain some of the 
interoperability challenges associated with LVC, consider the notional scenario, represented by the center 
box in Figure 2, which includes aircraft, helicopters, ships, and land vehicles. 

2507



Loper and Sitterle 

 

 

On the far left of Figure 2 is a Virtual Aircraft. A Virtual simulation is one that involves real people 
operating simulated systems, which means that the objects and behaviors in the simulation will include both 
human (pilot) and models (aircraft). The environment will be simulated (land and sea), and time will 

advance with wallclock (real-time) to support the human decision making of the pilot. On the bottom of 
Figure 2 is a Live Helicopter. A Live simulation involves real people operating real systems, which means 
the objects and behaviors are human (pilot) and real (helicopter). The environment is real, and time will 
advance with wallclock to support the human decision making of the pilot. On the right of Figure 2 is 
Constructive Units. A Constructive simulation involves simulated (or no) people operating simulated 
systems, which means the objects and behaviors are represented as models (people, ships, vehicles). The 

environment is simulated (land and sea) and time will advance with the simulation clock managed locally 
(slower or faster than real time). 

Each of these LVC simulations exchange state information about their objects and behaviors (e.g., 
object type, time, position, velocity, weapons fire, emissions) repeatedly throughout the execution of the 
scenario. From this discussion, it is easy to illustrate the numerous issues associated with integrating 
simulations across LVC. For example, models of systems may have different mathematical representations 

and performance than real counterpoints, correlating real and synthetic environmental representations can 
introduce significant error, coordinate systems of real platforms and models have to be aligned, the 
aggregation of the objects (e.g., single helicopter or combination of planes) needs to be considered, 
wallclock and simulation clocks synchronized, causal ordering of events maintained, and still there are 
other issues such as network latency, security, etc. Some of these issues can be solved with standards, which 
is where Distributed Interactive Simulation, High Level Architecture, and Test and Training Enabling 

Architecture come into play. In other cases, for example semantic interoperability, standards are not 
enough. These known issues have been documented through numerous papers over many decades. 
However, they will become more complex when we introduce AI teaming with LVC simulations. 

 

Figure 2: LVC interoperability challenges. 

3 AI TEAMING 

3.1 Spectrum of System Capabilities 

Of paramount importance to design behavior dynamics and desired outcomes for systems including AI 
elements is the understanding that AI and machine learning (ML) capabilities cannot be treated 
monolithically. The adaptivity and autonomy an AI-enabled system demonstrates (or is allowed to exhibit) 
drives overall system and hybrid system behaviors. A wide range of AI and ML approaches imbue systems 
with varying capability and behavior profiles, and researchers characterize them in different ways. 
Parasuraman et al. (2000), for example, employs Sheridan’s 10-point scale for levels of automation to 

characterize four primary automation functions: information acquisition, information analysis, decision and 
action selection, and action implementation. New capabilities in autonomy, enabled through AI and ML, 
extend beyond automation. They challenge current DoD approaches to system design, validation, and – 
importantly – to how we develop the confidence and knowledge to use these systems in theater. Figure 3 

Live Helicopter
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and events in the world (e.g., object type, time, 

position, velocity, weapons fire, emissions)
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• Environment: real
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RT
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illustrates a high-level characterization of systems with functionality driven by AI or ML; it is heavily 
influenced by considerations for operational use in defense situations. ML is taken as a subset of AI, where 
the former uses specific algorithm types and the latter is the broader concept with highly varying approaches 

seeking to enable a machine or system to sense, reason, act, or adapt. General AI is considered as AI with 
the flexibility, resourcefulness, and self-awareness of humans, a conventional yet debated definition. 

 

Figure 3: High-level classification spectrum of ML, AI, and learning-enabled systems for LVC 
consideration, adapted from (Collopy and Sitterle 2019). 

Narrow ML or AI is typically task-specific and fixed in terms of its algorithm code and parameters 
once trained. Moreover, strictly ML-based algorithms based on pattern recognition offer no inherent causal 
inference. These systems exhibit the same brittleness and considerations as other automated engineering 
systems, and are consequently already accounted for in the existing LVC construct. The challenge occurs 

as we move toward ML and AI systems able to handle greater numbers of operational situations with greater 
degrees of autonomy. Yang et al. (2020) define algorithmic complexity as probabilistic, adaptive, evolving 
probabilistic, or evolving adaptive and relate this to system performance and, in turn, user performance. 
Like Collopy and Sitterle, Yang et al. note that learning-enabled system performance will fluctuate and 
diversify with unseen data a system is exposed to over time. As development goals seek increasingly 
autonomous learning systems with greater adaptive capabilities, the very nature of systems being learning-

enabled means the behavior at one point in time may not at all be the behavior at another. In LVC 
simulations, this poses substantially increased difficulty in accounting for the behavior and time elements. 

3.2 What Does it Mean to Team? 

When considering how humans and AI-enabled systems can function together to achieve new operational 
capabilities beyond either alone, one must address what it means to team. Interactions that significantly 
impact a collective performance dynamic can be intentional or unintentional. Intentional interactions are 

those considered from the outset in the design and training for elements (human or machine) that interact 
with other elements to achieve a greater capability. Unintentional interactions are those not pre-considered 
and explicitly designed for, yet impact performance outcomes none-the-less. For the former, many studies 
anthropomorphize the entire dynamic and consequently focus on dimensions well-studied for human-
human teams: the value of team interactions, trust as a matter of personally ascribed agency, social 
intelligence, shared understanding and situation awareness, etc. Others eschew “team” and instead focus on 

“human-AI interaction” design challenges relevant to emergent behaviors; this includes task sharing and 
design for skill complementarity (Parasuraman et al. 2000; Wilder et al. 2020; Yang et al. 2020). Such 
approaches typically highlight using the AI-enabled system as a tool, but can be extended to consider a 
more complex teaming between humans and adaptive, learning-enabled AI systems more analogous to 
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existing human-human dynamics and shared decision making. Multiple systems with heterogeneous 
capabilities and high autonomy (even if the overall capability is simple and not adaptive) may also interact 
cooperatively via negotiation or similar algorithmic methods – a current, intentional design paradigm. 

 For unintentional interactions, producing collective even if not collaborative outcomes remain critical 
for military scenarios, notably for the increasing use of attritable systems. Elements may not explicitly 
cooperate, or may function in variable membership groups without direct algorithmic control, but collective 
actions still create constructive or destructive performance dynamics. This may occur in AI-AI and human-
AI interactions and is highly relevant to cyberphysical effects, in which interactions support response to, 
interaction with, or creation of direct effect(s) in a physical environment (e.g., fires, jamming, etc.).  

 That being said, this paper is concerned with intentionality and, specifically, how the LVC paradigm 
may be extended to enable improved outcomes via intentional design and principles discoverable only 
through the rigorous experimentation offered by the construct beyond all-digital M&S abstractions. 
Moreover, for intentional interactions, the common views above seem inadequate for the challenge likely 
to manifest as we strive to advance realizable capabilities in theater. Consequently, in this paper, we define 
teaming as captured in the introduction: intentionally developed relationships and forms of interaction 

specific to humans working with AI-enabled systems designed to work cooperatively with those humans to 
achieve capabilities beyond either side acting alone. Teaming embodies intentionality. This definition goes 
beyond the notion of AI-enabled systems as simple means (i.e., tools or interactive appliances) but does not 
ascribe human contextualization abilities or emotive characteristics across the hybrid construct. There will 
be three primary intentional teaming categories for which we will need to develop effective frameworks, 
foundational studies, and pilot implementations to promote effective design and development of design 

principles: (i) AI-AI teaming, especially for increasingly learning-enabled, adaptive systems, (ii) human-
AI cyberphysical teaming as described above, and (iii) human-AI analytical teaming, where interactions 
are necessary to add context and promote abductive reasoning about complex problem spaces (e.g., 
derivation of situational awareness and decision-making support). 

3.3 Key Drivers and Functional Groupings Most Relevant to Operational Scenarios 

Another aspect critical to understanding human-AI relationship dynamics is the concept of intelligence. 

Dellerman et al. (2019) and Dubey et al. (2020) each discuss the synthesis of AI and human capabilities, 
capitalizing the strengths of each to achieve desired results. The groups note that “intelligence” strengths 
differ across the two, and how they are synthesized is a major determinant of behavioral outcomes. Kaplan 
and Haenlein (2019) define AI as “a system’s ability to interpret external data correctly, to learn from such 
data, and to use those learnings to achieve specific goals and tasks through flexible adaptation.” This 
definition is most in line with the intent of this paper and – importantly – with the concept of teaming 

defined above. For human-AI teaming in real operational environments, two nuances that should be added 
are aspects of action, namely scenarios where AI-enabled systems can take action with real world effects, 
and that AI-enabled systems can operate at speeds and scales across vast amounts of data and dimensions 
that far exceed human capacity. Humans, for their part, bring powerful abductive reasoning and 
contextualization. The relationship dynamics are not balanced. 

Relatedly, studies emphasize either agency or autonomy with AI systems. Abedin et al. (2022) 

discusses the significance of tensions between human and AI system agency on outcome dynamics as well 
as the influence of communication on human-AI collaboration and the ability to achieve a hybrid, or 
augmented capability. Caldwell et al. (2022) emphasize AI autonomy in human-AI teams and its influence 
on distributed formulation of decisions across a hybrid team and the role of trust. Often, it seems agency 
and autonomy are used interchangeably, and so some works diligently differentiate the two (Cummins 
2014; Rubel et al. 2021; Bennett et al. 2023). Agency emphasizes capacity to take action, unlike 

deterministic automation; agency may also take the form of performing tasks in pursuit of objectives 
specified by a principal (i.e., a human or another AI system), and hence autonomy may be limited. 
Autonomy is a more comprehensive concept of self-rule, a freedom to act without external control or 
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influence. AI systems may have any of these characteristics. Agency may be within aspects of command 
and control, whereas autonomy capabilities will more strongly impact the nature of “teaming” with humans. 

This relates directly to one of the most frequently cited drivers of effective human-AI teaming – trust. 

Dimensions of assurance associated with origins, security, asset tracking, authentication, etc. are used to 
define trust across machine-to-machine and human-machine interactions. However, for humans, trust refers 
to placing oneself in a vulnerable position, by conferring responsibility to and relying on another entity in 
the face of uncertainty (i.e., taking a leap of faith). Though related to and often conflated with confidence, 
confidence derives from belief that events or capabilities occur in line with one’s expectations, based on 
prior experience and clear conveyance of uncertainty or assessment of risk. Confidence can be established 

through outcomes achieved by conveying trust or by executing control (i.e., over an agent that is not fully 
autonomous). Adams (2005) articulates the distinctions between the two and their importance related to 
defense, and the National Academies of Sciences, Engineering, and Medicine (2021) report on human-AI 
teaming notes that “trust in technology may differ from trust in people” as it expounds on the dimensionality 
of this concept further. In all cases, trust and confidence are not single-state concepts but dynamically form 
and break down as events, data, and experiences occur over time. 

Many of the aforementioned studies propose frameworks or categorizations whereby future research in 
human-AI dynamics could be organized and studied. The specifics of each are heavily influenced by how 
the groups interpret each of the main concepts discussed in this section:  teaming, intelligence, autonomy, 
and trust. In general, however, there are commonalities across key drivers that are germane to the 
operational problem and map well with the categories defined in the National Academies report: level of 
automation, AI dynamics and temporality, granularity of control, and other human-AI team interaction 

issues including trust and bias in both human and AI. Taking an operational lens, we can define a high-
level functional distillation that aligns to core warfighting needs to complement the National Academies 
categorization. These functions are illustrated in Figure 4, although we recognize these processes will often 
not occur in a linear fashion in real-world application. As AI system and human processes co-evolve, the 
behavior dynamics in each functional grouping as well as across the entire functional space are highly-non-
deterministic. Extending the LVC paradigm may offer a solid foundation through which we can 

systematically explore, develop, and train for the hybrid capabilities we need operationally. 

 

Figure 4: High-level functional distillation of warfighting needs to perform an operation. 

4  AI IN SIMULATION 

Recent progress with AI and ML in the sciences has resulted in several advancements: import of domain 
knowledge into ML models and export knowledge back to the scientific domain; leveraging ML for 
numerically intractable simulation and optimization problems; generating myriads of synthetic data; 
quantifying and reasoning about uncertainties in models and data; and inferring causal relationships in the 

data. It is at the intersection of AI and simulation sciences where we can expect significant strides in 
scientific experimentation and discovery. In Lavin (et al. 2021), they present a unifying holistic perspective 
to advance the intersection of AI and simulation sciences. They coin this area Simulation Intelligence, and 
present a roadmap for the development and integration of the algorithms necessary to merge scientific 
computing, scientific simulation, and AI. This is important work for LVC follow, but it is more narrowly 
focused on constructive simulations. When considering AI and ML in a broader context, we can think about 

two general categories to explore: how AI benefits from simulation and how simulation benefits from AI. 

Sense.          Communicate.          Compute.          Decide.          Execute.

Human

AI

Human

AI

Human

AI

Human

AI

Human

AI

2511



Loper and Sitterle 

 

 

4.1 How AI Can Benefit from Simulation 

Games and simulations are commonly used as a testbed for developing and training AI/ML algorithms. 
Games such as StarCraft II, Dota 2, Atari, Go, chess, and heads-up no-limit poker have all been used as 

platforms for training artificially intelligent agents (Goecks et al. 2022). Fawkes (2017) gives details behind 
several of these examples. DeepMind tested its AI using computer games, claiming its system was not pre-
programmed rather it learned from experience, using only raw pixels of Atari games as data input. In 2013, 
they published a paper describing an AI playing seven different Atari 2600 video games (Pong, Breakout, 
Space Invaders, Seaquest, Beamrider, Enduro, and Q*bert). In 2017, OpenAI developed an AI agent that 
beat professional players in the strategy game Dota 2.  

Simulations are also being explored as a medium to train robotic systems. Nvidia created the Isaac 
simulator in which systems can self-learn through trial and error to carry out tasks and interact with the 
simulation. Alphabet’s Waymo has developed autonomous cars through testing in both the real world and 
in simulation. In 2016 Waymo logged 3 million miles on real world public streets and 2.5 billion virtual 
miles in simulation systems. Waymo gave three reasons for using simulation: more miles can be driven 
than would be possible with a physical fleet; simulated miles focus on difficult interactions for the cars 

rather than uneventful miles; and the development cycles for the software can be much faster. Lastly, 
Reinforcement Learning (RL) can also benefit from simulation. Since RL operates on a model of a system, 
this model can be developed using simulation. 

4.2 How Simulation Can Benefit from AI 

A recent Dagstuhl seminar, Computer Science Methods for Effective and Sustainable Simulation Studies, 
addressed methodological challenges in conducting effective and sustainable simulation studies. The 

seminar broke into three working groups, one of which investigated how ML and M&S can be effectively 
integrated. Initially, two topics were identified: i) AI/ML + Simulation, and ii) Enabling Models to Run 
Efficiently on Heterogeneous Hardware (Cai et al. 2022). The group eventually merged the discussion into 
one topic: Intelligent Modeling and Simulation Lifecycle. The discussion focused on how M&S can benefit 
from advances in AI/ML as well as emerging hardware, computing paradigms and systems.  

Current societal and technical challenges require building increasingly complex models and carrying 

out larger scale simulation experiments, which call for more efficient and intelligent approaches in all 
aspects of simulation studies, from model creation to model execution and experimentation. The working 
group examined existing and emerging AI/ML techniques in the context of the M&S lifecycle, and what 
resulted is shown in Figure 5. Using this lifecycle as a framework, we will discuss a few examples of how 
AI/ML is being used or envisioned in each phase of the modeling and simulation lifecycle. 

4.2.1 Creation 

One area of creation is when simulations need agents to reason in more human-like ways, something that 
may be described as cognitive AI. In this, the decision logic uses factors and reasoning similar to what 
humans like to believe is the basis of their actual behaviors (Davis and Bracken 2022). The earliest attempt 
to do this was in 1988 in the SIMNET program with semi-automated forces (SAF) (Shiflett 2013). As larger 
and more complex exercises were conducted, more vehicles were needed to provide a realistic context for 
training. However, the original SAF didn’t constitute true AI, in that the AI techniques at that time only 

constitute "automated computation," or a predetermined set of responses to a predetermined set of inputs 
(Fawkes 2017). Historical examples of AI used in SAF for can be found in (Oswalt and Cooley 2019).  

As AI/ML techniques matured, they have been used in numerous simulations to represent behavior. RL 
is one technique used to provide agents with winning strategies, particularly in combat models. For 
example, RL has been used in agents to engage in various tactics and to move and attack a defender in a 
combat simulation (Goecks et al. 2022). As described by Szabo, RL approaches have also been successful 

at solving problems in dynamic environments and in some cases when dealing with incomplete information 
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(e.g., contested and dynamic environments with poor and unreliable network conditions) (Cai 2022). 
Another example described by Cai includes using a ML approach to create a car-following model (instead 
of a traditional physics-based model) and how to dynamically calibrate the model (Cai 2022). 

 

Figure 5: The intelligent modeling and simulation life cycle. 

A number of recent papers have postulated how AI/ML capabilities can be incorporated into wargames. 

One approach modified and augmented the rules and engagement statistics to enable (1) remotely operated 
and fully autonomous combat vehicles and (2) vehicles with AI/ML-enabled situational awareness, which 
included their vulnerability to selected enemy countermeasures, such as jamming (Tarraf 2022). While AI 
decision-making has recently focused on games, modeling decision-making strategies at both tactical and 
strategic levels requires novel algorithms that can operate within dynamic environments with changing 
rules, uncertainties, individual biases and randomness (Yuksek et al. 2023). 

4.2.2 Calibration 

With the emergence of using sensor data as input to simulations and analytics to derive insight from massive 
data sets, ML techniques can be used to extract useful knowledge and insight from the data to facilitate 
model development and calibrate simulation models. As discussed by Tan, techniques include simulation-
based inference, which link simulation models with empirical data by designing statistical inference 
procedures, and data assimilation, where the observed data are assimilated into the model to produce a time 

sequence of estimated system states (Cai 2022). 
Several papers discussed the idea of using large volumes of data to provide greater decision speed of 

ML algorithms for military planning (Goecks et al. 2022). As described in (Yuksek et al. 2023), an 
intelligent wargaming approach was proposed to evaluate the effectiveness of a military operation plan in 
terms of operational success and survivability of the assets. The goal was to use AI to discover tactics and 
suggest effective concepts of use for new military capabilities under consideration. Another paper discussed 

the application of ML to create algorithms from massive intelligence collection on adversary operations. 
What once took months or years to collect and analyze may now be available in very short periods of time, 
as algorithms on operational procedures for wargames or M&S (Davis and Bracken 2022). Oswalt and 
Cooley (2019) discuss how ML/AI can ingest data and outcomes, and develop (and extend) rules, to reflect 
a real-time understanding of the battlefield, especially strategy, operations, and tactics. They suggest AI/ML 
techniques can adapt LVC training systems for things like order of battle and concepts of operation.  

4.2.3 Execution 

There are many ways AI/ML can support the execution of LVC simulations. Recent research focused on 
using a data-driven approach to improve performance of simulation execution and simulation-based 
optimization. The research used ML to dynamically analyze simulation state to determine level of details 
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to be used in the model of an object during simulation execution. The objective was to reduce the simulation 
runtime while maintaining accuracy of the simulation results (Cai 2022).  
 AI can also promote better understanding of the delivery, pace, and content of just-in-time training and 

long-term educational opportunities. Often, training is static; a trainee starts at the beginning of a program 
and works through all modules on all required topics. An AI enabled simulation-based training system 
could adapt in real-time to trainees’ progress, allowing them to receive more training on deficient tasks and 
less on highly proficient tasks, thereby reducing time and increasing efficiency (Cooley and Oswalt 2021). 
In LVC training, AI could ingest data and outcomes, and develop implementing rules that tailor training in 
numerous simulations for hundreds of participants, across geographic locations (Oswalt and Cooley 2019). 

4.2.4 Experimentation 

Data analytics and ML techniques can be used to manipulate or steer simulation experiments on the fly. Cai 
(2022) describes an approach to dynamically predict the usefulness of a simulation run. If the results of a 
simulation run won’t contribute to the overall optimization objective, then the simulation run can be 
terminated early, thereby reducing the total number of runs required in a simulation-based optimization 
process. Similarly, ML/AI could optimize networks, reduce latency, and efficiently distribute resource 

requirements. It could advance the inclusion of environmental parameters in simulation-based training 
events by providing insights on when, where, and in what context the myriad of possible weather effects 
significantly impacts force employment outcomes (Oswalt and Cooley 2019).  

5 A NEW PARADIGM FOR LVC + AI TEAMING 

The military community is traditionally and understandably risk-averse; we must be intelligent about how 
to design, operate, and train for hybrid human-AI teams. Most studies on human-AI interactions focus on 

the human dynamic of human-AI teaming. In theater, however, teams will consist of humans and AI 
systems with heterogeneous capabilities and specialization. Teams will include human-human, human-AI, 
and AI-AI dynamics with each being bidirectional. Operations require a capability-oriented form of teaming 
where hybrid teams make decisions and act on them to produce a synergistic if not unified capability with 
real-world consequences. All levels of sensing, communicating and coordinating, computing, deciding and 
executing will need to be explored; all may take place in the face of uncertainty and severe time constraints 

and be distributed to varying degrees depending on the operation.  
 This is a complex and intractable problem space, one for which LVC may offer the best framework for 
meaningful and comparative study leading to better, intentional design and well-founded training. There 
are several possibilities to start accommodating a new AI dimension. After considering whether it was 
simply part of the Autonomy quadrant, we decided the human-AI teaming interactions are more complex. 
Thus, we decided it required adding a third dimension to the current planar construct, shown in Figure 6. 

In other words, we propose to expand LVC to treat AI-enabled systems as another “Actor” in the simulation 
framework, distinct from real people and simulated platform interfaces (M&S components traditionally 
employed to add “real feeling” (virtual)) or entirely abstracted versions of likely dynamics (constructive). 
Fundamentally, we need the LVC construct to capture what it means for a human and AI to team together. 
Figure 7 is a planar representation, using binary notation to indicate whether a given LVC entity (people, 
conventional system, or AI system) is real, simulated, or not present. 

      The concept of “simulated” or “not real” AI is intentionally absent in these figures. Using the existing 
LVC paradigm as a guide, we considered “simulated AI” or “not real AI” to be AI abstracted and simulated 
at a lower level of fidelity than the true algorithms (i.e., the “real AI”). While possible to do, it will likely 
not reflect true performance of an AI system, and the software nature of these elements makes it more 
reasonable to simply use a copy of the AI software itself rather than a less representative version. Note this 
is entirely distinct from using simulated data to train AI algorithms. True AI systems (i.e., “real”, not some 

lesser version) may be trained on simulated data and then fielded in the LVC model as-trained or for 
additional training, which is accounted for through the representation of simulated people and traditional 
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systems together with “real AI” in the construct (i.e., ConstructiveE (0, 0, 1) in Figure 7). Accordingly, and 
as there is no “real” versus “not real” characterization of AI in the literature, these figures reflect the current 
LVC model as “AI not present” and the proposed extension as “AI present”. The extended LVC model 

explicitly calls out Adaptive, learning-enabled AI systems. As explained in Section 3, narrow AI and ML 
systems, for which there is no learning or adaptive capability function similar to automated engineering 
systems, are inherently already accounted for in the conventional LVC model. 

 

Figure 6: The revised LVC model including artificial intelligence. 

 

Figure 7: Planar representation of revised LVC model. 

To illustrate how AI extends our current understanding of LVC, consider several examples of AI defense 

applications discussed in Frank (2022): 

1. Attention Management (LiveE) 
Decision-makers face the prospect of information overload. AI can monitor information flows, 
detect anomalies or events of interest, identify trends, and raise issues for decision-makers. 

2. Information Exploitation and Model Validation (VirtualE) 
AI can exploit information to optimize military operations. Successful exploitation depends on a 

clear sense of the problem to be solved, and efficient and effective routines to address them. 

3. Exploratory Analysis (ConstructiveE) 
Exploratory analysis may provide organizations with deeper insights into adversarial behavior. AI 
can seek multiple explanations for available intelligence making them less vulnerable to surprise. 

4. Autonomy and Principal–Agent Relations (AutonomyE) 
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Initial development and employment of autonomous systems and Autonomous Weapons Systems 
in the battle-space may include robotic vehicles for logistics support and C4ISR systems. 

AI-enabled teams will increase the adaptive capacity of military forces. If AI can effectively focus 

decision-makers on critical problems, perform robust exploration to discover novel innovations, and 
optimally solve strategic, operational, and tactical conditions, then the tradeoffs and constraints that lie at 
the heart of strategic decision-making may be radically transformed (Frank 2022). LVC will be key in this 
evolution. However, experiments need to be well formed and representative of characteristics teams will 
experience in the real world. This can be accomplished by using AI techniques to improve design and 
execution of LVC models (as described in the previous section) in experiments to evaluate these new teams.  

Similar to the original 90’s LVC work, there are tremendous challenges at the seams when trying to 
bring simulations and AI together in a unified way. Beyond a construct, as provided here, activities such as 
building scenarios around the expanded dimensions will be critical for stakeholders to understand 
requirements; frameworks, foundational studies, and pilot implementations will all need to be developed. 
This will lead to new interoperability challenges and perhaps a commensurate evolution of standards and 
other approaches to help address them. Organizations like the Simulation Interoperability Standards 

Organization will be instrumental in this new paradigm and can pioneer design and development principles 
that will increase the effectiveness of how human and AI-enabled systems can make decisions together. 

6 CONCLUSIONS 

Ultimately, advances in AI capabilities are achieved through innovative mashups of mathematics and 
human insight synthesized into algorithmic form. Even so, AI is advancing to the degree that it can be 
considered a new, emerging technology with tremendous promise and, if used poorly, peril. Newer AI 

forms are a technology evolution that offer entirely new ways of working together, whether as humans 
using AI as an “augmentation” or in a human-AI social ecosystem with truly new capabilities. Increasingly 
adaptive and learning-enabled AI functionality can overcome much of the brittleness inherent in traditional 
algorithms; importantly, however, it can be just as unpredictable as it is flexible. For confidence in fielding 
AI alongside and in collaborative relationships with warfighters, we need to design and operate the 
technology well and safely. This goes beyond simply ascribing computational or policy guardrails, and this 

is where LVC offers a path to understand how to achieve effective, intentional teaming relationships. 
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