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ABSTRACT

Technological advancements have made autonomous aerial search using unmanned systems a promising
approach to search and rescue, targeting, and other mission sets. A handful of standard flight paths are
traditionally used for aerial search, but this research presents the Lissajous pattern as an alternative to these
traditional paths that could potentially locate targets more quickly. This research considers a searching
agent with imperfect detection capability and leverages Monte Carlo simulations to generate data for various
flight paths. Each flight path is evaluated by cumulative density functions representing the time it takes an
unmanned aircraft system (UAS) to reach some desired percent certainty of locating a randomly generated
target in a search area. Results show that Lissajous curves are viable search paths for superior aerial target
detection, particularly for evasive targets in a Reciprocal Gaussian sampling distribution.

1 INTRODUCTION

1.1 Purpose and Motivation

Unmanned aircraft systems (UASs) are becoming increasingly prevalent throughout the world, and their
civilian and military applications are rapidly expanding. Many tasks and activities are more safely and
efficiently accomplished from the air by autonomous agents than manually by human workers. Some
significant civilian applications include search and rescue (SAR) missions (Mishra et al. 2020), fertilizer
spreading in agriculture (Dutta and Goswami 2020), and even geoscientific analysis through aerial imaging
(Niedzielski 2018). On the military side, combat search and rescue (CSAR) is an important application
(Ayers and Wahlman 2021), as are other intelligence, surveillance, and reconnaissance (ISR) missions
(Paucar 2018). In many of these applications, pre-determined flight paths are often used to quickly and
comprehensively cover a region of interest. Though flight paths can be used to accomplish a number of
tasks, this paper specifically deals with the problem of generalized aerial search.

To motivate the need for robust autonomous aerial search, one may consider the application of maritime
search and rescue, which lies at the intersection of civilian and military interests. The U.S. Coast Guard
first established its UAS Program Office in 2008 (United States Coast Guard Aviation History 2008). The
Coast Guard averaged 323 lives lost per year in SAR missions prior to 2008, but since establishing this
program, the number has dropped to only 182 (Bureau of Transportation Statistics 2017). This demonstrates
that deployment of UASs can improve the success rate of search missions, but refining UAS search paths
could yield even further improvement. The research presented here examines the efficacy of UAS search
patterns based on Lissajous curves for finding targets using a rectangular projected field-of-view (FOV).
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Building on previous work (Blankenship et al. 2021), this research develops a framework to validate and
optimize Lissajous search patterns for different scenarios given mission variables such as target behavior
(initial belief distribution), acceptable risk level (certainty threshold), payload capabilities such as camera
quality (time constant), and FOV size.

1.2 Background

This research implements deterministic path planning for aerial search. A deterministic flight path means
that the entire route is pre-planned before the search agent is ever deployed. In contrast, information-theoretic
approaches use online information acquired during search to continuously change the path. Information-
theoretic approaches have an intuitive edge owing to their adaptive nature; however, they come with a
higher computational expense and are ineffective when information about the target or the environment is
unavailable (Steckenrider et al. 2020). Herein lies the motivation for pursuing a deterministic solution for
pre-mission path design. Another benefit of deterministic path planning is that such patterns can be used
in manned missions and not solely autonomous ones.

The International Aeronautical and Maritime Search and Rescue (IAMSAR) Manual presents the
“expanding square” and “parallel track” patterns as two of the standard deterministic flight patterns used
in SAR missions (IMO 2016). These flight paths are also referred to as the “expanding spiral” (ES) and
“horizontal sweep” (HS) respectively, and are shown in Figure 1 (Blankenship et al. 2022). Another
standard deterministic flight pattern worthy of mention is the triangular sector search. While not explored
in this analysis, it is a viable pattern that future research could examine. These patterns are attractive for
automated search because they are guaranteed to cover an entire search area over a long enough period
of time. However, this potentially large time cost raises some concerns. If the target resides along the
outside of the search area (in relation to the expanding spiral) or on the opposite side of the search area
(in relation to the horizontal sweep), then the UAS will not locate it quickly. While the guarantee of 100%
area coverage is a favorable property, many search missions also value timeliness in finding targets. This
is why we favor the alternative option of the Lissajous pattern to these canonically employed deterministic
flight paths.

Figure 1: Expanding spiral and horizontal sweep Search Patterns.

The Lissajous pattern (Figure 2), is a deterministic path that can balance comprehensiveness with
speed (Blankenship et al. 2021). With open space between its large, sweeping movements through the
middle of a search area, the Lissajous is not guaranteed to achieve 100% coverage. However, it does travel
through each subdomain of the search area faster than the standard patterns take to traverse its entirety.
By sacrificing a small level of certainty in locating a target, a Lissajous pattern may still locate targets a
majority of the time much faster than traditional patterns.

Mathematically, a Lissajous curve is a set of parametric equations based on harmonic motion as depicted
in Equations (1),

x(t) = Ax sin(ωxt +ϕx) (1a)

y(t) = Ay sin(ωyt +ϕy), (1b)

where A is amplitude, ω is frequency, and ϕ is phase shift. The pattern is attractive as a search path given
its adaptability via the ratio of frequencies rω = ωx

ωy
. Through small changes in this frequency ratio, an
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infinite number of different patterns can be generated, from lines to circles to figure-8’s (Blankenship et
al. 2021). Patterns with irrational frequency ratios will never repeat and will therefore eventually cover an
entire search domain.

Figure 2: Example Lissajous patterns.

1.3 Research Objectives

One primary objective of this research is to investigate the conditions under which Lissajous patterns
outperform traditional deterministic patterns, specifically when a small target is sought with an optical sensor
with a rectangular FOV. This leads to the nontrivial determination of a suitable metric for probabilistically
evaluating the performance of a search pattern. Another important objective is to determine which frequency
ratios perform best for a given search scenario. Finally, the influence of an aerial sensor’s probability of
detection (POD) on the optimality of a Lissajous pattern is investigated. These objectives are pursued by
conducting Monte Carlo simulation experiments and extracting conclusions from statistical results.

In order to address the above, several assumptions that frame the Monte Carlo simulations must be
described. First, we assume that the aerial search problem is effectively two dimensional. The ground
image that the search agent sees with a downward-facing camera is modeled by a rectangular FOV sweeping
across the search space, whose relative size is dictated by the agent’s altitude. This is addressed in part
by generating simulations with varying UAS FOV sizes. We also neglect flight physics and any motion of
targets in the search space when conducting Monte Carlo experiments. These are all elements which we
plan to address in future iterations of this research.

2 METHODOLOGY

2.1 Monte Carlo Simulation

Due to the intractability of analytically optimizing Lissajous curves, a Monte Carlo simulation approach
was taken to generate data for evaluating search paths in this research. As depicted in the left part of Figure
3, the simulation randomly generates a target in a one-by-one unit search space. We keep all dimensions,
other than time, unitless to preserve broad applicability. A UAS with a set FOV size then travels through
the search area on a particular flight path–either a Lissajous pattern with a set frequency ratio, an expanding
spiral, or a horizontal sweep. When the FOV passes over the target, it is probabilistically "detected" (see
Sec. 2.3).

The simulation randomly generates k targets in the search space as shown in Figure 3. Sending the
search agent over the prescribed path and recording the time at which each target is located generates a
cumulative density function (CDF). These CDFs give the probability that any single randomly located target
was detected before the corresponding time (seconds) by a UAS with a selected flight path. Each point
along the CDF represents a single target and the time taken to locate it. (See Sec. 3 for visual examples
of CDF outputs from the simulations.)
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Figure 3: Simulation showing a single generated target (left) and k = 10000 uniformly generated targets
(right). The red square represents the agent’s FOV (1% of the overall search area).

2.2 Convergence Study

Given the use of simulation-based methods, each search path must be executed enough times to yield
consistent data. A convergence study revealed that k = 10,000 iterations of the simulation (i.e. 10,000
targets generated in the search area) for a given flight path was adequate to attain these consistent results.
Naturally, the more iterations performed, the more consistent and repeatable the results will be. However,
the simulation trades computational efficiency for each iteration it performs. To determine the adequacy
of 10,000 iterations, a search scenario was simulated 500 times, each with a different number of iterations
between 1 and 100,000. Each simulation produced a CDF, with the simulation of 100,000 iterations being
considered the "ground-truth" CDF. The CDF accuracy only marginally improves between 10,000 and
20,000 iterations, with the RMSE changing by only 0.00055. This justifies 10,000 iterations as a reasonable
number for this research.

2.3 Probabilistic Target Detection

In order to broadly capture the behavior of an aerial field detector without the computational burden
of low-level vision simulation, a probabilistic model for target detection is employed. Because missed
detections will undoubtedly occur in autonomous (or even manned) visual search, the probability of target
detection is broadly modeled as a function of the amount of time that a given target is inside an agent’s
FOV. As adapted from Stone (1975), this probability of detection is given by:

p(td) = 1− exp
( td

τ

)
, (2)

for td ≥ 0, where td is the detectable time, defined as the amount of time in seconds that a target was within
the FOV of a search agent. This POD model maps a target’s detectable time to its probability of having
been detected, as influenced by the time constant parameter τ . Section 2.6.4 provides a more detailed
exploration of the time constant. This parameter effectively models the quality of a given detector.

Determining the detectable time for a target requires counting the time steps during which the target
is within a searcher’s FOV. This becomes a geometric problem which asks, "Given a target’s location
xT = [xT yT ]

⊤ in 2D space, determine if that point falls within the boundaries of a rectangle of width w
and height h, centered at coordinates xA = [xA yA]

⊤, oriented at an angle θ ." Since this problem must be
solved for all 10,000 targets in any given simulation, it is important to solve with computational efficiency
in mind. As such, the following initial qualifying filter is applied to all targets:

||xTi −xA||2 <
√

(h/2)2 +(w/2)2.

If this condition is true for the ith target, it is further considered for detection. If not, no additional checks
are implemented since the target and agent are too far from one another (in a 2D sense) for the target to
possibly fall within the FOV.
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The second and final check of whether or not a target has been detected solves the geometric problem
stated above. Since the FOV may be oriented at any angle θ in the plane, it is difficult to directly assess
whether a target is located within the FOV. For this reason, a coordinate system transformation is first
implemented which greatly simplifies this task. The ith target’s location is transformed into the frame of
the search agent by

x′Ti
= R(−θ)(xTi −xA),

where R(−θ) is a 2D rotation matrix. Finally, a target is determined to have been detected if the following
conditions are true:

−w/2 < x′Ti
< w/2, −h/2 < y′Ti

< h/2.

If this is satisfied for a particular target, the number of time steps used to compute the detectable time for
that target is incremented.

2.4 Average Speed

Simulated search agents move along predetermined waypoints that trace out flight paths in a search area. In
order to ensure fairness in the comparison between Lissajous patterns and traditional ES and HS patterns,
search agents using any path must travel at the same average speed for the duration of each simulation.
Because the standard deterministic patterns follow rectilinear paths, determining the waypoint spacing for
a desired constant velocity is simple. However, Lissajous path waypoints are not constantly spaced: they
become closer together around tight turns and more widely spaced across quasi-straight stretches, which
means a Lissajous search agent will not move at a constant speed. Nonetheless, the average speed of the
Lissajous pattern must still equal the speed of the other patterns to ensure a fair comparison.

The position of a search agent at some point in time along a Lissajous path is given by Equations (1).
Therefore, the velocities of the agent are given by:

x′(t) = Axcos(ωxt +ϕx)ωx,

y′(t) = Aycos(ωyt +ϕy)ωy,

which implies that the speed of the agent is

s(t) =
√

Ax
2cos2(ωxt +ϕx)ωx

2 +Ay
2cos2(ωyt +ϕy)ωy

2.

The average speed over some time period T then becomes:

s̄(T ) =
1
T

∫ T

0
s(t)dt =

1
T

∫ T

0

√
Ax

2cos2(ωxt +ϕx)ωx
2 +Ay

2cos2(ωyt +ϕy)ωy
2 dt.

To simplify the problem, several parameters can be assumed without loss of generality in the problem space
of this research. Assuming the searcher begins in the lower-right corner of the search domain, ϕx =

π

2 and
ϕy =−π

2 . Since the efficacy of a Lissajous search pattern is independent of the size of the search space,
it can further be assumed that Ax = Ay = 1. This simplifies Eq. 2.4 to:

s̄(T ) =
1
T

∫ T

0

√
sin2(ωxt)ωx

2 + sin2(ωyt)ωy
2 dt.

Expressing this in terms of the frequency ratio rω = ωx
ωy

gives:

s̄(T ) =
1
T

∫ T

0

√
sin2(ωxt)ωx

2 + sin2
(

ωx

rω

t
)

ω2
x

r2
ω

dt

=
ωx

T

∫ T

0

√
sin2(ωxt)+

1
r2

ω

sin2
(

ωx

rω

t
)

dt (4)
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Even in this fully simplified form, Equation (4) is intractable and there is no closed-form analytic
solution. To circumvent this issue, the average speeds of thousands of Lissajous patterns with different
ωx and rω values were generated and stored in a lookup table which is then referenced during simulations
to obtain the required ωx for a desired s̄(T ). This approach ensures agreement of all patterns’ average
speeds with precision on the order of ten-thousandths, without the need for a closed-form solution for the
Lissajous pattern’s average speed.

2.5 Evaluation Metric

The simulation’s output CDF provides holistic information about search pattern performance over time, but
it does not provide a single summarizing value with which to compare patterns. Favoring the pattern that
most quickly locates all k targets ignores the speed-certainty trade off of the Lissajous pattern. Instead, one
could choose a certainty cutoff and test which search pattern can reach 85% certainty (for example) the
fastest, but even this approach presents issues. A CDF could be underperforming over the entire simulation
but then improve at just the right time to be considered the fastest to reach a desired certainty threshold.
To resolve this issue, we propose the expected value from the CDF as the evaluation metric for comparing
search patterns.

Visually, the expected value is the area above the CDF (Feller 1971), given mathematically as:

E(X) =
∫

∞

0
(1−FX(x)) dx,

where a lower expected value implies better search performance. This metric can be interpreted as the
expected time at which a search mission is considered complete. The calculation is still paired with a
certainty threshold, as to not ignore the Lissajous pattern’s speed/certainty trade-off, where the upper bound
of the integral is modified to be the time at which the CDF reaches said threshold. This provides a single
summarizing value for pattern comparison which also has an intuitive interpretation from the CDF.

2.6 Simulation Parameters

Since Monte Carlo methods are used in this work to extract performance metrics from thousands of search
scenario simulations, these scenario outcomes are highly dependent on several simulation parameters. Each
of the critical parameters is detailed in a subsection below.

2.6.1 Frequency Ratio

Because the frequency ratio rω controls the "order", or basic shape, of a Lissajous curve, it is one of the
most important parameters in this research. Determining whether a Lissajous search path is better than
a traditional search path necessarily raises an intermediate question of which specific Lissajous patterns
should be considered. Naturally, some Lissajous paths will perform considerably better than others given
the infinite variability in shape based on frequency ratio. Figure 4 shows the relationship between the
average time step at which a target is found and the frequency ratio used for the search pattern, with
all other simulation parameters held constant. As the plot shows, frequency ratios around highly rational
numbers (e.g. 1/2, 2/3, 4/5, etc.) demonstrate poor performance since those patterns very nearly repeat
after a short time, leaving large unsearched gaps. (It is important to note that only frequency ratios in the
range (0,1) were used since the simulated search space has 90° rotational symmetry.)
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Figure 4: Expected mission completion time by Lissajous curve shape for optimizing frequency ratio given
a set of simulation parameters.

2.6.2 Field of View Size

The FOV parameter adds an element of realism to the simulations, allowing different flight altitudes and
sensor types to be broadly modeled. The FOV is modeled as a square, centered on the search agent’s
position at every time step, whose orientation remains perpendicular to the path of the searcher. In order
to keep simulations dimensionless, the FOV size is specified as a percent of the overall area of the search
space. As FOV size increases with all else being constant, targets are naturally found faster and so the
average slope of the CDF also increases. Figure 5 demonstrates this relationship.

Figure 5: Relationship between FOV size and search pattern performance.

This research compares the Lissajous pattern with traditional patterns using a 1% FOV. Commercial
drones on the market today have FOV angles ranging from less than 70° up to 180° or higher, and the
Federal Aviation Administration limits drone altitude to 400 feet (Federal Aviation Administration 2023).
Therefore, assuming a search agent with a 90° FOV angle flying at 400 feet, the camera could capture
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approximately 0.23 square miles in its FOV. If modeling this scenario with a 1% FOV size, the simulation’s
total search space would be 23 square miles. Such a search scenario is demonstrated in Figure 6 over
lower Manhattan Island. This qualitatively shows that a 1% FOV is reasonable for a large-scale mission
searching for a sizeable target, but of course the simulation framework can easily be modified to meet any
scenario-specific constraints. Because it was found that larger FOV sizes in fact favored the performance
of Lissajous patterns, the 1% choice is both conservative and realistic.

Figure 6: Real-world demonstration of a realistic 1% FOV search scenario over Manhattan.

2.6.3 Certainty Threshold

The certainty threshold is the level of confidence in finding a target which is satisfactory enough to designate
a search mission as being complete. This parameter, which determines the upper bound in the expected
value calculation, affects several aspects of the simulation. For example, the y-axis of Figure 4 which bears
on the optimality of a Lissajous frequency ratio depends on the certainty threshold. If the desire is 100%
certainty of finding a target without care for expediency, then the traditional patterns will inevitably be
ideal. The benefit of the Lissajous curve is a trade-off in certainty for speed. However, this trade-off must
still reflect an appropriate level of risk. With anything less than an 80% chance of locating the target, one
may deem the approach too uncertain of success. On the other hand, high certainty thresholds de-value
time, potentially increasing the risk associated with delayed target detection.

An externally supported justification for a reasonable certainty threshold is the “85% Rule for Optimal
Learning” which presents 85% as the optimal training accuracy for artificial neural networks (Wilson et al.
2019). While the work presented here is not a machine learning algorithm, it is data-driven research looking
to determine an acceptable error rate. Additionally, the United States Coast Guard had an approximately
87% success rate in 2017 SAR missions (4,188 lives saved versus 618 lives lost), which further justifies
this ballpark as a realistic standard (Bureau of Transportation Statistics 2017). While the certainty threshold
should reflect the modelled scenario, this research uses 85% as the certainty threshold metric for comparing
search patterns.

2.6.4 Time Constant

The time constant parameter τ of Equation (2) models the quality of the detector by scaling how quickly the
probability of detection increases over time as the agent traverses the search space. A small time constant
yields a high probability of detecting a target inside of the agent’s FOV quickly, whereas with larger time
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constants, a target must be inside the FOV for a much longer time to yield such a high probability. Since
the trajectories of a Lissajous path overlap and repeat, the certainty of locating a target will approach
100% given enough time. However, a single pass with the traditional patterns is not the same. Under the
perfect detection assumption, those patterns are guaranteed to reach 100% certainty, but with probabilistic
detection and a scaling parameter, the traditional patterns reach a maximum probability less than 1 as seen
in Figure 9 in the Results.

Referencing back to the justifications for certainty threshold, this research aims to compare the Lissajous
path to traditional patterns that are guaranteed to reach 85% certainty of target location in a single pass
through the search space. As such, the results compare patterns using a time constant τ = 4, which yields
this desired "level-off" probability for the traditional search paths.

2.6.5 Target Distribution

The distribution of targets in a search space substantially influences the results of the Monte Carlo simulations
and reflects the scenario that a given simulation is modeling. A uniform target distribution (Figure 7, left)
produces targets located at any position in the search space with equal probability. A Gaussian target
distribution (Figure 7, center) produces targets with a higher concentration in the center of the search space.
A Reciprocal Gaussian target distribution (Figure 7, right) produces targets with a higher concentration
along the perimeter of the search space.

Figure 7: Target Distributions: Uniform (left), Gaussian (center), Reciprocal Gaussian (right).

The simulations compare search patterns across these target distributions to observe the benefits of each
pattern in different scenarios. The Uniform scenario can be considered the most general case, as a uniform
distribution maximizes the information entropy about a target and best models the scenario where no prior
information is known. The Gaussian distribution is used to broadly model a SAR scenario in which the
last known location of the target is the center of the search space and the target will not move far since it
wishes to be found. In contrast, the Reciprocal Gaussian distribution models a targeting scenario where an
adversarial target that wishes not to be found is fleeing the search space. The Gaussian scenario naturally
lends itself to the expanding spiral search pattern, but the hypothesis is that the Lissajous pattern will be
particularly effective in locating evasive targets modeled with the Reciprocal Gaussian.

3 RESULTS AND DISCUSSION

To compare search pattern performance, the expanding spiral, horizontal sweep, and Lissajous patterns are
evaluated against the three scenarios in Sec. 2.6.5. The FOV size, certainty threshold, and time constant
are standardized among the scenarios for the provided justifications, with FOV= 1%, Threshold= 85%,
and τ = 4. A Uniform target distribution defines the general case (scenario 1), where the search patterns
can be holistically evaluated without assuming any prior target knowledge. A Gaussian target distribution
characterizes a simulated Search and Rescue mission (scenario 2) with the targets concentrated at the center
of the search space. A Reciprocal Gaussian target distribution simulates a targeting mission (scenario 3)
with the agent searching for an evasive target fleeing the search space. A Lissajous pattern is chosen
for each scenario by optimizing its frequency ratio through direct search, and the chosen pattern is then
compared to the traditional search patterns based on the evaluation metric described in Sec. 2.5. Table
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1 summarizes the simulation parameters for each of the tested scenarios. Figure 8 shows the Lissajous
patterns with optimal frequency ratios associated with each search scenario.

Table 1: Summary of simulation parameters for each scenario.

Scenario Target Distribution Optimal Frequency Ratio FOV Size Certainty Threshold Time Constant
General Case Uniform 0.8660 1% 85% 4

Search and Rescue Gaussian 0.9531 1% 85% 4
Targeting Reciprocal Gaussian 0.7789 1% 85% 4

(a) General Case (b) Search and Rescue (c) Targeting

Figure 8: Optimal Lissajous patterns for each search scenario.

The three CDFs per scenario corresponding to the three search patterns are generated for visual
comparison in Figure 9, and the expected values of each CDF are summarized in Table 2.

(a) General Case (b) Search and Rescue (c) Targeting

Figure 9: Cumulative Density Functions for each search pattern and scenario.

Table 2: Summary performance data for each search pattern by scenario.

Expected Value from the CDF (seconds)
Scenario Expanding Spiral Horizontal Sweep Lissajous Pattern

General Case 609.78 580.46 756.33
Search and Rescue 140.51 528.68 426.61

Targeting 919.57 639.49 557.62

Figure 9a shows that traditional search patterns outperform the Lissajous in the general case. Both the
expanding spiral and horizontal sweep maintain very similar performance for the duration of the simulation
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until around 750 seconds when the expanding spiral begins its last pass around the search space. Because the
agent’s FOV overlaps the edge of the search space in this last pass, it accumulates probability at a decreased
rate. The Lissajous pattern maintains similar performance to the traditional patterns for 500 seconds, but
then its probability accumulation rate decreases steadily. While under-performing in comparison with the
traditional patterns, the Lissajous still performs well for the uniform target distribution scenario. In fact,
for FOVs greater than 1%, the Lissajous pattern was found to outperform the traditional patterns.

Unsurprisingly, the search and rescue scenario depicted in Figure 9b shows that the expanding spiral
significantly outperforms both the horizontal sweep and the Lissajous pattern. A spiraling pattern is naturally
tailored to search scenarios with a high target probability in the center of the search space with decreasing
probability outward. However, the Lissajous pattern does beat out the horizontal sweep against a Gaussian
target distribution with an expected value over 100 seconds faster. While the expanding spiral may be
the ideal flight pattern for certain search and rescue missions, the Lissajous pattern is still a better search
method than the horizontal sweep.

Figure 9c shows that the Lissajous pattern significantly outperforms the traditional search patterns in
the targeting scenario. The expanding spiral performs quite poorly until 500−1,000 seconds when it makes
its final pass around the perimeter of the search space. The horizontal sweep’s first trajectory traces the
outside bottom perimeter of the search space, and as such, it performs similarly to the Lissajous pattern for
the first 250 seconds. However, it begins to under-perform as it passes through the middle of the search
space. The Lissajous pattern maintains strong performance for the full duration of the simulation when
tested against a Reciprocal Gaussian target distribution.

4 CONCLUSION

The results primarily show that no flight path can be crowned the "standard" for all unmanned aerial search
missions. Rather, every unique scenario calls for a search path best fit to the parameters of the situation.
While not ideal for every scenario, the Lissajous pattern is in fact reasonable and even competitive for some
search missions. Any situation with a concentrated probability at a particular location naturally lends itself
to the expanding spiral pattern, and traditional patterns may be better suited for general search missions
with unknown target behavior. However, these findings suggest that an optimized Lissajous pattern may be
an effective flight path for evasive targets or in situations with concentrated probability around the perimeter
of the search space.

Future work should expand on this research by implementing dynamic targets that can individually move
in the simulation, rather than simulating target behavior with only a constant distribution. Additionally,
next steps are to investigate ways of analytically optimizing the frequency ratio rather than relying on
computationally expensive brute-force methods. Notwithstanding the improvements that future work could
bring, this research further demonstrates the utility of the Lissajous pattern in certain search contexts.
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