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ABSTRACT

Military planning operations deal with highly dynamic environments and a variety of complex optimization
challenges. In order to support decision-makers in this process, innovative concepts are required that can
automatically generate applicable solutions for certain aspects of mission planning. Such instruments can
simplify the planning process, reduce risks, and lower operating costs. This paper presents a simulation-
based optimization framework that addresses three problems in the context of aerial warfare planning: task
assignment, scheduling, and route planning. These problems are tackled with interconnected heuristics
based on either greedy approaches or genetic algorithms. Additionally, hierarchical task networks are
employed to incorporate domain knowledge in form of tactical doctrines into the solution. Our simulation
results confirm the viability of the proposed approach for small to medium-sized scenarios. However,
further investigation with regard to the evaluation function and the simulation environment is required.

1 INTRODUCTION

A well-planned mission is key to successfully conducting a military operation. However, the planning process
of such missions is very complex, since large fleets of different vehicle types with diverse capabilities must
be carefully coordinated in time and space. Attack aircraft, for example, need to synchronize with defense
suppression fighters when approaching a target to minimize the risk of collateral damage. Considering
that these different aircraft types are likely to operate from different locations, fly at different speeds and
altitudes, or have different detection ranges, a simple strike mission becomes a highly dynamic and complex
optimization problem (Zhang et al. 2020). Moreover, modern technologies such as unmanned aerial vehicles
(UAVs) increase tactical diversity by performing operations in areas where human intervention is dangerous.

Although it is a time-consuming and complex process with a large decision space, mission planning
is currently a decision-making task usually reserved for human operators (Quttineh and Larsson 2015).
However, assisting decision-makers with automated solutions can simplify and speed up the planning
process, potentially even computing more effective, less risky, and less expensive mission plans.

An automated planning system would need to support decisions such as the number and type of assets
to be used for the attack, the type of payload carried by each vehicle, the point of breach through enemy
positions, the attack strategies executed by each team, the sequence of attacks, or the flight routes of each
aircraft. These components are highly interconnected, making the entire coordination plan one large coupled
optimization problem. Despite the widespread interest in technologies that solve such complex mission
planning sub-problems, only few studies create combinatorial systems that provide solutions to multiple
aspects of mission planning simultaneously. (For more details on related work, the reader should refer
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to Section 2.) This coupled approach might find ambiguous cause-effect relationships between different
components and thus globally-optimal solutions instead of focusing on locally optimal answers. Making
decisions in isolation is already a difficult task, but it becomes even more complex when attempting to find
an optimal solution for interrelated problems, as noted by Bellingham et al. (2003).

The purpose of this paper is to present a framework that facilitates the creation of military mission
plans. The approach creates a joint solution concerning what attack strategy to perform against each enemy
position (task assignment), what assets to group in executing each attack strategy and the attack order
(scheduling), and what trajectories are best to fly in a given environment (route planning). Interconnected
heuristics based on either greedy approaches or genetic algorithms are used to find optimal answers to
these questions in terms of damage risk and operational cost reduction. In addition, domain knowledge in
the form of hierarchical task networks (HTNs) is included in the decision-making process.

The remainder of the paper is organized as follows. Related work is presented in Section 2. A formal
problem description is given in Section 3. Section 4 introduces the proposed method and its components.
The experimental setting and the simulation results are discussed in Section 5. Section 6 summarizes our
conclusions and future work directions.

2 RELATED WORK

Multiple studies conducted in recent years break down the optimization problem into sub-problems and
offer solutions to certain aspects of mission planning. Approaches that solve the task assignment problem
in a central manner include linear multi-agent network optimization (Schumacher et al. 2002) or genetic
algorithm with a simplified matrix representation of chromosomes (Shima et al. 2006). On the other hand,
decentralized approaches can be found in the literature. Jin et al. (2003) propose an approach where aircraft
autonomously select tasks in real-time using information about the current situation provided by a central
instance. Venugopalan et al. (2015) take inspiration from the team theory and implement an algorithm that
uses a search certainty map.

Several traditional and intelligent approaches have been used to solve the scheduling problem with a
focus on mission planning. Traditional methods include integer linear programming (Griggs et al. 1997),
Lagrange relaxation (Ni et al. 2011), or goal programming (Hocaoğlu 2019). However, due to their good
performance, intelligent optimization algorithms are currently widely used in the literature. Sonuc et al.
(2017) use parallel simulated annealing to accelerate the computation of pairing a large number of weapons
to targets. Kong et al. (2021) apply an improved multi-objective swarm optimization algorithm with high
convergence speed. Wang et al. (2021) put forward a genetic algorithm-based multi-objective optimization
method to generate the number and the type of weapons engaging with different targets.

Several references use traditional means to solve the route planning problem such as determining
polygonal paths through a set of threats using the concept of the Voroni-diagram in combination with
algorithms such as Dijkstra (Chandler et al. 2000), Eppstein’s k-shortest paths (Beard et al. 2002), or
artificial potential fields (Eun and Bang 2004). On the other hand, intelligent heuristics including genetic
computation (Gao et al. 2005), simulated annealing (Turker et al. 2016), ant colony optimization (Xin et al.
2021), or deep reinforcement learning (Hu et al. 2021) are used for vehicle routing in mission planning.

Several publications solve mission planning with combinatorial optimization methods. Approaches
for scheduling and path planning include the conjunction between mixed-integer linear programming and
straight-line path approximations (Bellingham et al. 2003), greedy algorithm and Voroni tessellation
(Maddula et al. 2004), or Dijkstra algorithm applied in discrete networks and linear bottleneck assignment
(Babel 2019). Qie et al. (2019) solve the scheduling and the path planning problem simultaneously by
applying a multi-agent deep deterministic policy gradient algorithm.

The literature also provides solutions that attempt to schedule multiple assets to perform tasks on
multiple targets while optimizing trajectories to their destinations. Shima et al. (2005) propose a genetic
algorithm to collectively execute the task assignment and the scheduling problem. The path planning
is built into the fitness function and solved with Dubin’s algorithm. Soleyman and Khosla (2020) use
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hierarchical reinforcement learning to train agents to perform strategic military actions and move around
the environment. The assignment of each agent to its nearest target is performed using the Hungarian
algorithm.

3 THE MISSION PLANNING PROBLEM

3.1 Problem Description

We consider a suppression or destruction of enemy air defense (SEAD or DEAD) mission in which a
group of aerial vehicles aims to cooperatively breach enemy air defense systems, referred to as threats, and
engage with predefined targets. While SEAD’s goal is to disrupt air defense systems using a combination
of electronic warfare, anti-radiation missiles and mere presence, DEAD operations force the physical
destruction of threats.

The battlefield is represented as a two-dimensional environment, where assets of both the offensive and
defensive teams are distributed in feasible tactical formations. Each side disposes of resources with different
abilities. On the one hand, the striking team consists of a variety of aircraft types, ranging from manned to
unmanned vehicles, armed with percussion ammunition such as signal-seeking missiles or electric warfare
for jamming. The aerial vehicles can change their position in the environment by flying at a constant
speed and group together based on predefined attack strategies to engage with targets. When striking, the
members of a group must synchronize with each other to minimize the risk of damage. Factors such as the
firing range of each asset’s weapon or the radar cross-section relative to the target need to be considered.
On the defense side, stationary anti-aircraft systems are used to protect high-value unarmed assets, referred
to as targets. Each air defense unit is equipped with radars that can detect the position of an attacking
aircraft within a unique threat range and strike within a specific lethal range.

The goal of the mission planning system is to automatically generate optimal solutions to the following
problems: 1. The task assignment problem allocates each member of the defense team an attack strategy
to be carried out against them, taking into account constraints in form of tactical formations, attack angles,
timing restrictions, or task precedence. 2. The scheduling problem allocates a group of aircraft to perform
each task based on the shortest distance factor. 3. The route planning problem estimates mission plan
costs and risks by calculating possible flight trajectories between assets and hostile threats or targets, while
complying with spacial, velocity, and safety constraints.

3.2 Notation

We denote U = {Ui|i,NU ∈ N∧ i ≤ NU} the set of aerial vehicles, V = {Vi|i,NV ∈ N∧ i ≤ NV} the set of
hostile threats, and W = {Wi|i,NW ∈N∧ i ≤ NW} the set of targets. Z = V ∪W is used to define the set of
length NZ ∈ N that contains all members of the defense side. All resources on the battlefield are modeled
as point objects which occupy the location LPi = (xPi ,yPi),∀Pi ∈ U ∪Z in the environment. While threats
and targets are stationary, aircraft can move with constant speed σUi .

Both the threats V and the aerial vehicles U have the ability to use ammunition against their opponents.
Air defense systems can detect attacking aircraft at a threat range of up to φ h

Vi
km and strike at a lethal range

of up to φ l
Vi

km. Since the positions of the members of the opposing side are known in advance, aircraft
within a specified weapon release range ωUi can attack them. Depending on their capability κUi ∈ K ,
different aircraft types can be used for the attack. Note that for each capability κ only a limited number
of resources Nκ

U ∈ N are available.

3.3 The Mathematical Model

The model of the mission planning problem is inspired by the conceptual model of artificial intelligence
(AI) planning as described in Russell and Norvig (2020) and is defined as the 4-tuple {S ,A ,γ,R}. The
following subsections describe each component in detail.
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3.3.1 State Space

The state space of length NU +NZ can be formulated as S = {LUi |Ui ∈ U }∪{IZ(Zi)|Zi ∈ Z } with

IZ(Zi) =

{
0, if enemy asset i is destroyed
LZi , otherwise

It contains the coordinates in two-dimensional space of all air vehicles, threats, and targets available in the
environment. If a target or threat is destroyed, the coordinate tuple is replaced with the value 0.

3.3.2 Action Space

Each aircraft can either change its position or alter the environment by performing an action. Possible
attack strategies on threats and targets are represented as hierarchical task networks (HTNs), an approach
inspired by Kiam et al. (2019).

An HTN begins with a goal task (GT) which is progressively broken down into more specific tasks.
Depending on the level of abstraction, a distinction is made between compound tasks (CTs), compound task
methods (CTMs), and primitive tasks (PTs). CTs are high-level tasks that need to be refined into CTMs. In
our case, a CTM represents a specific attack strategy, such as engaging a target with a team consisting of
one fighter and one jammer. We denote Tm, Tm(Zi), Tm(U ′), or Tm(U ′,Zi) as elements of the CTM-set Tm,
depending on whether we are referring to a CTM in general, a CTM used against a specific target Zi ∈Z , a
CTM performed by a set of resources U ′ ⊆U , or a CTM applied by a set of resources against a target. Each
CTM is characterized by a set of constraints CTm = {α}∪{(n,κ)|n,Nκ

U ∈N∧Tm ∈Tm∧κ ∈K ∧n ≤ Nκ
U}.

The tuple (n,κ) denotes the number of assets of a certain capability κ that are needed to fulfill the CTM.
α stands for the flight angle between assets.

Once a CTM is selected for each hostile asset Zi ∈ Z , the algorithm can perform a series of low-level
PTs specific to each CTM and carry out the attack procedure. Similar to CTMs, we use the notation Tp,
Tp(Zi), Tp(Ui), Tp(Ui,Zi) ∈ Tp. The difference is that we are now referring to an individual air vehicle
Ui ∈ U and not an entire set of resources. Moreover, we denote the PT suggesting the movement of an
aircraft to a new location LUi with Tp(Ui,LUi). In the case of this research, a PT represents a direct action
that an air vehicle can perform, such as shooting at a target or moving to a specific location.

Subsequently, the action space is the set containing the PTs performed by the members of the aircraft
fleet at a given time and can be formulated as the set A = {Tp|Tp ∈ Tp}.

The main reason for the integration of HTNs in our solution approach is the structured and formal
method to include domain knowledge in the planning process. Furthermore, the search space is drastically
reduced and incompatible sequences of actions are avoided. Instead of searching the entire action space,
the planner is guided by domain knowledge in solving the planning problem.

3.3.3 Transition Function

The transition between states is captured by the deterministic function γ : S ×A →S . To reach the state
S′ = γ(S,A), the set of primitive tasks A ∈ A must be applied from state S ∈ S .

3.3.4 Reward Function

The reward function is used to calculate the costs of a mission plan and is defined as

R =
1

NU
∑

Ui∈U

dUi + ḋUi + d̈Ui + ∑
U j∈U

IU(U j)+ ∑
Vk∈V

IV̄ (Vk), (1)
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having

IU(U j) =

{
1, if asset U j is used in the mission
0, otherwise

and IV̄ (Vk) =

{
−1, if threat Vk is not attacked
0, otherwise

.

The first sum of the equation (1) refers to distance and safety costs. The greater the distance flown by the
aircraft through safe airspace (d) or through potentially threatening (ḋ) or lethal (d̈) airspace, the greater
the costs associated with the mission plan. The second sum penalizes the planner when using too many
resources. Furthermore, the planner is rewarded when engaging with as less threats as possible.

The reward function aims to train the decision-maker to create mission plans that are safe for both the
human operators and their equipment while keeping costs down.

3.3.5 Goal

The final goal of the decision-maker is to create a set of mission plans P = {Pi|i ∈ N} which are Pareto-
optimal with respect to the components of the equation (1). This allows end-users to choose a final solution
based on their desirability. One may choose costly mission plans over risky ones, or vice versa.

Each mission plan is an ordered sequence that assigns available resources to execute attacks against
targets and threats, plans the strike location, and determines the order in which each enemy asset is attacked:
Pi = {(Tp(Ui),LUi)|Ui ∈U ∧Tp ∈Tp∧LUi = (xUi ,yUi)∧xUi ,yUi ∈R+}. The routing of the fleet through the
environment is not directly part of the mission plan but is necessary for calculating the reward function.

4 SOLUTION APPROACH

A detailed schematic overview of the solution approach is shown in Figure 1. It takes as input the environment
presented in Section 3, which contains information about assets, threats, targets, and practicable attack
strategies. The task manager, the scheduler, and the path planner then work together to create mission
plans. Generated plans are subsequently executed by the simulation manager and evaluated against a set
of predefined KPIs. The design of each segment is discussed extensively in Sections 4.1-4.4.

Input

Task

Manager
Scheduler

Path

Planner

Simulation Manager

Output

Environment, HTN

M
ission

plan
K

PI
s

Pareto-optimal mission plans

Figure 1: Architecture of the mission planning framework.
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4.1 Task Manager

The task manager maps CTMs to targets and threats, defining what attack strategy to use against each
member of the defense team. To solve the task allocation problem, we employ a multi-objective evolutionary
algorithm (MOEA) provided by the MOEA framework (MOEA 2023).

A genotype used in the algorithm’s genetic code is organized as an acyclic graph and consists of NZ
nodes, each representing a target or threat Zi ∈Z . Every node is characterized by multiple components. The
first component of the node constitutes the CTM Tm(Zi) ∈ Tm used for the attack. The second component
contains a list of parameters ρTm specific to each CTM, such as the bearing angle between an aircraft and a
member of the defense side. Finally, a node can be formulated as (Tm(Zi),ρTm), i ∈N. To allow for genetic
diversity in the population, a genotype can undergo a mutation that randomly changes the selected CTM,
modifies the bearing parameter, or alters the order of attacks by changing the order of CTMs in the graph.

The generated solution candidates are developed into a complete mission plan by being progressively
passed to the scheduler and path planner, which are covered in Sections 4.2 and 4.3. Finally, the simulation
manager evaluates the fitness of the candidate based on a set of KPIs, as described in Section 4.4.

4.2 Scheduler

The purpose of the scheduler is to find the best subset of resources to execute the CTMs previously planned
by the task manager. The selection is based on capability, availability, and distance to the target or threat.
The closest resources of the right type, which are not intended to attack other enemy positions at the same
time, are chosen to conduct the CTM. To solve the scheduling problem, the greedy algorithm shown in
Figure 2 was developed. The current implementation leads to near-optimal solutions in a reasonable amount
of time and with low computational effort.

1: Get set M = {Tm(Zi)|Tm ∈ Tm ∧Zi ∈ Z } defined by the task manager, which assigns one CTM to
every target or threat Zi.

2: while there exist unplanned Tm(Zi) in M do
3: for all unplanned Tm(Zi) ∈ M do
4: Get the constraint set CTm = {α}∪{(n,κ)|n ∈ N∧κ ∈ K } of the CTM Tm and the location

LZi = (xZi ,yZi) of target or threat Zi.
5: for all capabilities κ in the constraint set CTm do
6: Create set Uκ containing all unplanned assets of type κ .
7: if size of Uκ < n, meaning there are not enough assets available to plan the CTM then
8: Mark Tm(Zi) as unplanned.
9: continue

10: for all Ui ∈Uκ do
11: Get location LUi = (xUi ,yUi) of aircraft Ui.
12: Calculate Euclidean distance dist(LUi ,LZi) between aircraft and enemy asset.

13: Plan the n-closest assets of capability κ to perform Tm(Zi).
14: Mark Tm(Zi) as planned.

Figure 2: Algorithm run by the scheduler to allocate resources to CTMs.
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4.3 Path Planner

The path planner determines trajectories between two locations (e.g. the take-off position of an aircraft and
the location of a threat). Once more, MOEA framework (MOEA 2023) is used to solve the optimization
problem.

A path is modeled as a sequence of waypoints, characterized by coordinate tuples in two-dimensional
space. Accordingly, an individual’s genotype is formulated as (L0

Ui
, ...,L f

Ui
), where L0

Ui
and L f

Ui
represent the

start and destination locations of a specific aircraft Ui ∈ U . In the search of optimal trajectories, mutation
operators add, remove, or relocate waypoints. Once solution candidates are generated, paths between these
nodes are approximated using straight lines. Consequently, KPIs such as path length and trajectory risk
are calculated and used by the simulation manager in the evaluation process.

4.4 Simulation Manager

The simulation manager is responsible for executing generated mission plans, observing the behavior of
both offense and defense sides, and evaluating each plan against a set of predefined KPIs. These indicators
are aimed to minimize costs in terms of the number of resources used and the length of the flight routes.
Additionally, they are used to control risk by rewarding decision-makers for engaging with a small number
of hostile assets and flying safe routes. The reward function used for performance evaluation is shown in
equation (1).

5 SIMULATION RESULTS

5.1 Experimental Setup

The presented solution has been implemented and tested in Java 17.0.2 on a standard PC running Windows
11 with 11th generation Intel Core i7-11370H 3.30 GHz CPU and 16 GB RAM.

We evaluated the feasibility and performance of the solution approach using 350×350 2-dimensional
environments. 20 aircraft of three different types take part in the combat mission: 5 × F-16, 3 × F-35,
and 12 × remote carriers (RCs). Each vehicle has type-specific features which are described in Table 1.

Table 1: Aircraft characteristics.

Type Ability Speed Weapon release point
F-16 Fight and jam 1100 km/h 35 km
F-35 Fight 1500 km/h 33 km
RC Fight 277 km/h 15 km

The solution includes domain knowledge in form of an HTN, as presented in Section 3.3.2. All tactical
doctrines available for the interaction with hostile assets are illustrated in Figure 3. When it comes to CTMs,
three methods are implemented: Tm = {Disengage(Vi), AttackWithJamming(Zi), AttackWithRC(Zi)|Vi ∈
V ∧Zi ∈Z }. The planner can either disengage from enemy installations or attack them. While the striking
team can disengage from threats, targets always need to be attacked. The method AttackWithJamming(Zi)
pairs two aircraft, one carrying striking ammunition (fighter) and the other possessing a jamming device
(jammer), to fight against enemy Zi ∈Z . On the other hand, manned-unmanned teaming can be performed
using the AttackWithRC(Zi) method, in which four RCs help a fighting aircraft to engage a target or threat.
Both methods require an angle of 90◦ between assets. Each CTM breaks down into a sequence of PTs from the
set Tp = {MoveTo(Ui,LUi), Shoot(Ui,Zi), Jam(Ui,Zi)|Ui ∈U ∧Zi ∈Z ∧LUi = (xUi ,yUi)∧xUi ,yUi ∈R+}.
Changing the position in the environment, shooting, or jamming are the actions that can be performed by
the members of the aircraft fleet.
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GT
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CTM
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CTM
AttackWithJamming

Target

Fighter Jammer

90◦ PT

MoveTo ShootFighter

PT

MoveTo Jam
Jammer

CTM
AttackWithRC Target

RC

RC

Fighter, RC

RC
90◦

PT

MoveTo ShootFighter

PT

MoveTo Shoot
4 × RC

Figure 3: HTN containing tactical doctrines in form of GTs, CTs, and CTMs (levels 1-3). Level 4 constitutes
a visual representation of both AttackWithJamming and AttackWithRC CTMs and their constraints. Level
5 represents the decomposition into PTs.

5.2 Results

Two series of experiments were performed in small and middle-sized environments to demonstrate the
feasibility of the solution approach. The first test case consists of a fleet of aircraft trying to break through
a small defense team that includes 4 surface-to-air missiles (SAMs) as threats and one target. The threats
are organized in a way that protects the target from the attacks. The threat and lethal ranges of the SAMs
vary from 16 to 40 km and from 11 to 29 km, respectively. All aircraft are assumed to have the same
starting position.

The framework proposes a set of 5 plans as output after creating, simulating, and evaluating more
than 500 plans. It takes about 16 minutes for the decision-maker to explore the environment and learn the
best solutions for this particular optimization problem. Compared to the beginning of the learning process,
the costs of the mission plans calculated according to equation (1) decreased by a factor of 4 on average
after the training. This behavior can be seen in Figure 4. It can be noted that the total cost of the plans
proposed by the framework varies widely, from about 185 to 1130. This can be argued by the fact that the
framework focuses on creating Pareto-efficient plans and not on reducing the total cost function. When
closely analyzing the key components of the cost function, namely distance and risk, mission plans with
longer flights are preferred to risky trajectories, as presented in Figure 5.

Figure 4: Overall cost per timestep, recorded
over 502 timesteps in the basic environment.

Figure 5: Average distance in safe (d) vs. risky
(ḋ + d̈) airspace for all 502 plans evaluated.
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The overall most cost-effective plan is illustrated in the Figure 6. It brings two air vehicles together to
perform the AttackWithJamming CTM. An F-35 aircraft takes on the role of jammer, while an F-16 aircraft
fires at the target. The planner learns to minimize its costs by disengaging all threats and positioning both
attackers as close to the target as possible without exposing the aircraft to great danger. An approximated
trajectory connects the starting point and the waypoints. All other plans in the output set are similar
variations of this mission plan. Each plan uses the same attack strategy, but places the waypoints in
different locations.

Figure 6: Most cost-effective plan calculated by the framework for the basic scenario. The CTM used is
AttackWithJamming. The waypoints are positioned in reduced-risk airspace.

The second test case aims to prove the flexibility of the framework to calculate viable mission plans
in more complex environments. The fleet of 20 aircraft must hit 7 targets while avoiding 13 threats. The
experiment results in a 96-minute training process to output a set of 8 Pareto-efficient plans. The plan with
the lowest overall cost is illustrated in Figure 7. The plan’s strategy is to breach the lower SAM-belt on
the right side by only hitting SAMs with longer lethal and threat ranges (W6, W7, and W8). Short-ranged
SAMs, like the W10, W11, and W12, are unable to detect and provide destruction to high-speed air
vehicles. This behavior is learned by the decision-maker, who chooses not to shoot at these SAMs even
when multiple trajectories pass overhead. The attack sequence is as follows: the first enemy resources
attacked are those on the right side of the environment, followed by those in the center, and finally the top
left. Hitting the target W6 could have been omitted, as it happens too late in the attack sequence and adds
costs without improving the mission plan.

A total of 14 assets are used for the attack in this particular plan. Only 4 assets (1 × F-16 and
3 × RC) contribute to one attack only, the rest are utilized in multiple strikes. 7 out of 10 offensive
measures are carried out with the AttackWithJamming CTM. This behavior is to be expected since the
CTM AttackWithRC incurs more costs. The total cost caused by this plan is around 1900.
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Figure 7: Most cost-effective plan calculated by the framework for the medium scenario. The environment
includes 13 threats (W) and 7 targets (V). For the sake of visibility, the labels of the waypoints are not
shown. 10 attacks were performed using both AttackWithJamming and AttackWithRC CTMs. The circled
numbers represent the sequence of attacks carried out by the aircraft fleet.

6 CONCLUSION AND OUTLOOK

The importance of a well-planned military mission cannot be overstated as it can significantly impact the
success or failure of an operation. However, this involves coordinating a large fleet of diverse vehicles.
Often these assets operate from different locations, fly at different speeds or altitudes, and assume various
roles, increasing the tactical diversity of a military operation.

This paper proposes an automated mission planning framework that aims to assist the human decision-
maker in planning a SEAD or DEAD military operation by providing a set of Pareto-efficient solutions to
three coupled problems: task assignment, scheduling, and route planning. These sub-problems are tackled
with strongly interrelated heuristics based on either greedy approaches or on genetic algorithms. In addition,
domain knowledge organized as an HTN helps accelerate the learning process. The results show that the
framework is able to generate feasible solutions to the three optimization problems within a short period
of time, especially in small to medium-sized environments.

Nevertheless, further improvements can be added to the solution approach. The subsequent research
must refine the evaluation function and the KPIs in cooperation with a subject matter expert (SME).
Whether these indicators lead to valid military mission plans has not yet been investigated. It must be
analyzed what adjustments need to be made to configuration parameters or performance measures to meet
the needs of SMEs. Therefore, extensive experiments have to be performed. Moreover, a more realistic
assessment of missions is possible by expanding the simulation environment to a 3-dimensional scenario.
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The incorporation of factors such as fuel consumption, flight altitudes, or weather conditions could further
increase the realism of the environment. To achieve this, we intend to incorporate external combat simulation
software such as CPE (MatrixGames 2023) or FLAMES (Ternion 2023) into the solution.

Although improvements need to be addressed, this study represents an initial step towards developing
more efficient and effective mission planning processes.
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