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ABSTRACT 

This paper emphasizes the integration of sound tactical behavior in the generation of realistic military 
simulations, which includes the definition of combat tactics, doctrine, rules of engagement, and concepts 
of operations. Recent advances in reinforcement learning (RL) enable RL agents to generate a wide range 
of tactical actions. A multi-agent ground combat scenario is used in this paper to demonstrate how a 
machine learning (ML) application generates strategies and issues commands while following a given 
objective. Natural language is used to issue doctrines and objectives to improve communication between 

the human advisor and the ML agent. This allows us to embed objectives and existing doctrines into the 
reasoning of an artificial intelligence (AI). The research demonstrates the successful integration of natural 
language to enable an agent to achieve different objectives. This groundwork will enhance RL agents' 
ability in the future to uphold the doctrines and rules of military operations. 

1 INTRODUCTION 

In the past years, deep reinforcement learning (Sutton et al. 1998) has become a popular technique in the 

field of machine learning for solving complex tasks. Testing the usability of AI systems in a realistic 
environment has been crucial since their development. The gaming industry has a significant interest in 
utilizing AI in commercial games to attract more buyers. As games become more sophisticated and 
demanding, they also become more challenging to play, especially for a single player. Therefore, games 
have become an essential test environment to evaluate the performance of AI systems.  
 Extensive research has been conducted to achieve superhuman performance in-game environments. 

The incorporation of deep learning models into RL by Mnih et al. (2013) was a significant breakthrough in 
this field. This approach enabled AI models to play Atari games and handle high-dimensional input. Recent 
advances in training reinforcement learning agents to play classic board games like Go (Silver et al. 2016) 
and complex games such as StarCraft II (Vinyals et al. 2019) have demonstrated the success of deep RL. 
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 In parallel, RL has also been applied to the military domain in several ways. RL can be used to train 
agents to perform various tasks in military simulations and has been applied to use cases such as: 
 

• Battlefield decision-making: RL can be used to train agents to make decisions in complex military 
scenarios (Doll et al. 2021). The agents can learn to take actions that maximize a reward signal (e.g., 
completing a mission objective, minimizing casualties), based on their observations of the environment 
(e.g., enemy positions, terrain). 

• Autonomous systems / vehicle control: RL can be used to train agents to control military vehicles (e.g., 
drones, tanks) in simulations (Möbius et al. 2022). The agents can learn to navigate the vehicle in the 

environment and perform various tasks (e.g., reconnaissance, and target acquisition). 
• Logistics planning: RL can be used to optimize logistics planning in military simulations (Yan et al. 

2021). The agents can learn to allocate resources (e.g., troops, supplies) to different areas of the 
battlefield to achieve mission objectives while minimizing losses. 

• Cybersecurity: RL can be used to train agents to detect and respond to cyber-attacks in military 
simulations (Vyas et al. 2023). The agents can learn to identify and mitigate threats to military networks 

and systems. 
• Training and evaluation: RL can be used to train and evaluate military personnel in simulations (Salas 

et al. 2003). The agents can simulate different scenarios and provide feedback on the actions taken by 
the trainees. 

 
 Overall, RL can be applied to military simulations to enhance the training and evaluation of military 

personnel, optimize resource allocation and decision-making, and improve overall military effectiveness. 
However, there are several reasons why units trained with RL may not behave realistically in military 
simulations and do not completely fulfill constraints given by common tactics, techniques, and procedures 
(TTPs) or rules of engagement: 

 
• Limited training data: RL requires a large amount of training data to learn complex behaviors. However, 

in military simulations, generating enough training data to capture the full range of realistic behaviors 
that units should exhibit may be difficult. As a result, the trained agent controlling the units may exhibit 
only a subset of realistic behaviors. 

• Limited exploration: RL agents explore the environment to learn about the consequences of different 
actions. However, in military simulations, there may be constraints on the actions that units can take, 
which limits the exploration of the RL agent. As a result, the agent may not learn about all the possible 

actions that units can take, leading to suboptimal behavior. 
• Ill-defined rewards: RL agents are typically trained to maximize a reward signal, which is defined by 

the designer of the simulation. If the reward signal is oversimplified or does not capture all the relevant 
aspects of the task, the trained units may exhibit unrealistic behavior. For example, if only reward is 
assigned to units for eliminating enemies but not for avoiding casualties or completing objectives, the 
trained units may prioritize eliminating enemies over other important tasks. 

• Model bias: RL agents learn from the data that they are trained on, and if the training data is biased, the 
agent may learn to exhibit biased behavior. In military simulations, the training data may be biased 
towards certain behaviors, strategies, or capabilities, leading to unrealistic behavior in the trained units. 
 

 It is important to carefully design the RL training process, including the reward signal, exploration 
strategies, and training data to address these issues. Additionally, it may be necessary to supplement RL 

with other techniques, such as expert knowledge or rule-based systems, to ensure that the trained units 
exhibit realistic behavior. 
 This paper demonstrates the successful integration of natural language into the process of reinforced 
learning to enable an agent to achieve different objectives. By specifying a concrete objective, we limit the 
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errors in the reward function as it can be optimized for the given goal. This groundwork will improve AI 
agents in the future to uphold the doctrines and rules of military operations. 

2 RELATED WORK 

Dynamically changing the reward function in RL based on different objectives or tasks has already been 
used in some research papers and different methodologies have been applied. 
 Reward shaping or engineering is the process of modifying the reward function to guide the RL agent 
toward a specific objective (Gupta et al. 2022). This can be useful when the original reward function does 
not directly correspond to the desired objective, or when the agent needs to learn multiple objectives 
simultaneously. One way to dynamically change the reward function is to use a composite reward function 

that includes multiple terms, each corresponding to a different objective (Hu et al. 2020). For example, 
suppose an RL agent is learning to navigate a maze and its original reward function only provides a positive 
reward for reaching the goal. If we want to encourage the agent to explore the maze more thoroughly, we 
could add a term to the reward function that gives a small reward for every new state visited. By adjusting 
the weights assigned to each term, we can switch the focus of the agent between exploration and goal-
reaching. 

 Another approach is to use meta-learning or multi-task learning techniques to learn a set of reward 
functions that correspond to different objectives (Wang et al. 2021). This can be useful when the objectives 
are distinct but related, or when the agent needs to switch between objectives frequently. The agent can 
then select the appropriate reward function based on the current task or objective. Multi-task learning 
techniques in RL refer to methods that enable an agent to simultaneously learn and accomplish multiple 
related tasks. The idea behind multi-task learning is to share knowledge across tasks so that the agent can 

learn more efficiently and generalize better to new tasks. 
 One approach to multi-task RL is to learn a single policy that can solve multiple tasks. This can be done 
by using a shared neural network architecture that processes the observations from the environment and 
outputs a set of actions. Each task has its own set of output nodes that correspond to the specific actions 
required for that task. During training, the agent learns to optimize a joint objective function that includes 
all the tasks. This approach is often referred to as multi-head learning (Kim et al. 2022). 

 If the reward function is difficult to define and we do have expert knowledge it is possible to use Inverse 
Reinforcement Learning (IRL) to learn a reward function based on expert data, therefore it would also be 
possible to learn a reward function based on different objectives. 
 Another approach is to use a hierarchical RL framework, where the agent learns a set of sub-policies 
that can be combined to solve different tasks (Jiang et al. 2019). In this approach, the sub-policies are trained 
independently to solve different tasks and then combined in a top-level policy that selects the appropriate 

sub-policy for the current task. The top-level policy can be trained using a meta-learning approach, where 
it learns to select the appropriate sub-policy based on the observed reward and state. 
 Multi-task RL can also be achieved by learning a shared representation of the state space (Vithayathil 
and Mahmoud 2020). This approach involves training a neural network to encode the state information into 
a low-dimensional vector representation that can be used for multiple tasks. The agent then learns a set of 
task-specific policies that operate on the shared state representation. Overall, multi-task RL techniques aim 

to improve the agent's learning efficiency and generalization by leveraging the shared structure and 
knowledge across multiple related tasks. 
 However, dynamically changing the reward function can be challenging. If the new objective is 
significantly different from the previous one, the agent may need to re-learn its policy from scratch, which 
can be time-consuming and computationally expensive. Additionally, switching objectives too frequently 
can make it difficult for the agent to learn a coherent policy, as it may not have enough time to explore the 

environment and learn from experience. 
 In summary, dynamically changing the reward function can be a powerful tool for guiding RL agents 
toward different objectives. However, it requires careful consideration of the trade-offs between exploration 
and exploitation, and the potential costs of switching objectives too frequently. 
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3 RELEGS – REINFORCEMENT LEARNING FOR COMPLEX COMBAT SITUATIONS 

3.1 The “ReLeGSim” Simulation Environment 

ReLeGSim is a turn-based 2D tactical game, simulating military battalion-level battles in which companies 

(aggregated entities) are led by an RL agent. The simulation was first introduced by (Doll et al. 2021) and 
supports the deployment of up to 10 companies per player. Thereby 8 combat companies and 2 
reconnaissance units are usually provided. Combat units consist of different kinds of tanks. Reconnaissance 
units can be ground or air forces. ReLeGSim is specifically designed to train an AI using reinforcement 
learning. But equally, the control by a human is intended, to be able to play against a trained AI-Agent. 
ReLeGSim was introduced with an OpenAI Gym Interface (Brockman et al. 2016) but after its ended 

support we switched to the successor “gymnasium”. 
 In the first version of ReLeGSim an attack scenario BLUE against RED is represented as a turn-based 
game. Here, two players (AI and or human) compete against each other with their companies to fulfill their 
respective objectives. One player takes the role of the attacker, who must try to take a certain target area 
from the enemy. The other player is the defender of the area, which he must hold for the entire duration of 
the game. Players have different companies with different capabilities at their disposal. A company consists 

of several platoons, which in turn consist of individual units and their capabilities. Players must be able to 
put themselves in the enemy's shoes during the game, know the abilities of the different companies and 
master the characteristics of the terrain to win the wargame. In particular, the attacker must use his 
companies and combat support synchronized in space and time to win against the defender. 

To simulate the use cases, a 3D terrain base of a defined delimited area can be generated from vector, 
elevation, and satellite data. An example is shown in Figure 1. A specific 3D terrain, e.g., of a real military 

training area, is generated using a database. The generated 3D terrain is rasterized for the AI and a fixed 
field type (e.g., forest, road...) is assigned to each raster. This rasterized information is used for AI planning 
within ReLeGSim. 

 

 In the future, AI should not act on its own but work together with a military operator. For this concept, 
an Interface between the human and the AI-agent must be designed. In this paper, we propose a natural 
langue interface, which will be fed into the AIs observation. 

3.2 ReLeGs AI Architecture Overview 

The AI architecture is based on (Doll et al. 2021) and written with the TensorFlow 2.12 API and designed 
to support multiple use-cases. Therefore the model is split into different parts, like the visual input 
processing module, the scalar processing unit, the objective, the core network, and the action generation. 

Figure 1: ReLeGSim map. 
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As needed we can exchange parts of the Modelto compare the usage of MobileNetV3 (Howard et al. 2019) 
and VisionTransformer (Dosovitskiy et al. 2021) as a visual input encoders, or to experiment with a 
different core network, as the LSTM (Hochreiter et al. 1997) is getting outdated, for example. 

In addition to the optimization of the network (see Figure 2), however, the main test object in this paper 
is to allow the operator to intervene in the reasoning of the AI. For this purpose, special reward functions, 
action space, and observation space have to be defined. The structures, options for action, and principles of 
operation should reflect the current conditions within the military. 

 It is necessary to investigate how the decisions of the operator can be integrated into the machine 
learning models. There are several ways to do this. First, the AI must be informed of the operator's 
command. This should be done in natural language. The idea to use natural language is based on (Eloff et 
al. 2021). On the one hand , to teach the agent to follow commands, the reward can be controlled. On the 
other hand, there is also the possibility to pre-train such principles through supervised learning. Changes to 
the simulation can also be helpful to intervene harder in the behavior. This is especially necessary when 

changes are made to fixed boundaries in the simulation, like no-go areas. A combination of the various 
options was tested and is likely the best solution to achieve a generic interface. 

3.3 Action Space 

The agent’s action space is set up using natural langue and is strongly based on real-world commands. The 
action space was first tested by (Möbius et al. 2022) and extended in this work. In our experiment, a special 
vocabulary for the natural language interface is defined. We observed in our initial trials that a large space 

of unused vocabulary is disadvantageous  and results in really slow training. 
Therefore we use a small, but effective vocabulary. The vocabulary contains only the following tokens:  

Figure 2: AI-Model architecture. 
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"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "attack", "move", "observe", "x", 

"y", "own_entity", "enemy_entity", "artillery", "attack_helicopter", 

"close_air_support", ";" and ",". 

 

 The token ";" splits the whole resulting text into multiple actions, while the "." token is used to end or 
pad the results. The reduction of tokens and the optimization was done manually and corresponds directly 
to the execution of the resulting behavior in the simulation. To tokenize the actions, we use one-hot 
encoding, as this allows us to use stochastic sampling over the given actions and can be easily integrated 
into any given RL framework through a multi-discrete representation. 

 Another setting we can define is the maximum length of the text. In our initial experiments, we used a 
maximum length of ten tokens. However, to support multiple actions in one text we need to increase it to 
around forty tokens. 

3.4 Execution of Natural Langue Commands 

The generated commands in natural langue are processed via a language parser inside the simulation. The 
parsed actions are passed through a generic factory to the corresponding rule-based implementation to 

execute the given command. The implementation of the execution of actions is crucial for the AI training 
process and links directly to the quality of the agents. Therefore these executors need to be carefully written 
with expert knowledge about the simulation and military operations. 

3.5 Masking with complex NLP Action Space 

This flexible action space allows many invalid sentences, which need to be learned by the AI and can slow 
down the initial training of the AI. To reduce the number of errors we introduced action masking. Masking 

the NLP action space is not as straightforward as it is with a typical multi-discrete action space, where every 
value maps to a single action that can be masked. With the NLP action space, every value can have multiple 
different meanings in the sentence. For example, a number can be used in many ways. This results in a tree-
like structure. Our novel idea is based on the tree-based masking in RL of Bamford et al. (2021). 
 Our first step was to implement masking purely based on the semantics of the vocabulary, by creating 
a mask for every word based on the previous word. This would prevent e.g., two tasks (attack, move, and 

observe) right behind each other, or ensure that an entity must be followed by a number. Whilst this already 
greatly reduced possible errors, the AI could still produce a lot of sentences that, while being semantically 
correct, did not reflect the status of the simulation. For example, it could try to task units that were already 
destroyed or not part of the simulation to begin with. Thus, the masking was extended to also exclude 
unavailable resources. 

3.6 Observation-Space 

The agent’s observation space consists of eight distinct components. There are three different ways to 
process the observations based on their input format. 

prev_action: Box(0.0, 1.0, (10, 75), float32) 

image: Box(0.0, 1.0, (64, 64, 3), float32) 

core_information: Box(0.0, 1.0, (6,), float32) 

own_forces_table: Box(0.0, 1.0, (10, 50), float32) 

enemy_forces_table: Box(0.0, 1.0, (10, 50), float32) 

combat_support_table: Box(0.0, 1.0, (4, 10), float32) 

objective: Box(0.0, 1.0, (10, 75), float32) 

action_mask: Box(0.0, 1.0, (76, 75), float32) 

 
 Where the first two entries represent the normalization range, while the third represents the 

observation’s dimension. On the one hand, a graphical image will depict the location and terrain properties. 
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The image is processed via ViT (Dosovitskiy et al. 2021)  and a custom CNN architecture. On the other 
hand, scalar values like the own_forces_table are used to provide accurate information on friendly forces 
positions. These scalar inputs are processed by a custom entity encoder transformer network. Other inputs 

like enemy_forces_table, combat_support_table and core_information are processed the same way. 
In addition to these inputs, the current command of the operator is given via natural language allowing it to 
fully comprehend the intent of the operator's instructions. All the extracted features are concatenated to an 
internal state representation and fed into the core network. 

3.7 Reward 

The given reward is based on the current objective of the agent. Therefore, the reward design will change 

depending on the current task. This leads to better exploration but can also lead to an increase in initial 
training time. To compensate this, we propose the use of curriculum learning. In the early stages of the 
training, a static objective is given and some helping rewards are added. Late in the training multiple 
objectives are sampled randomly and used for the reward generation. To support multiple objectives at the 
same time the individual rewards from the objectives are weighted. To boost the initial training of the 
natural language generation, we use a sentence-based reward. This reward guides the agent to produce 

meaningful sentences. 

 

4 EXPERIMENTS & RESULTS 

4.1 Experiment Setup 

To enable human intervention in the prioritization of the AI-agent, the human-made command must be 

understood and learned by the AI. This cannot be retrofitted without changing the AI. For this reason, this 
capability is deeply integrated into our AI-model. Figure 2 shows our AI-Model with the added objective 
as task information in the observation space. Therefore, it is possible to change the current objective at any 
given time. It is possible to start into a scenario with an objective like “move hidden to a certain area” and 
if an enemy interaction occurs, the operator can change the prioritization to destroy all enemy forces. 

To train this complex behavior we integrated a curriculum learning strategy. This involves adding 

different priorities to the training and combining them randomly as input to the AI. To keep the priorities 
human-readable, they are expressed via natural language and given to the AI from the graphical user 
interface. For each priority, a reward is created that teaches the AI to adhere to the corresponding rule. 

To run the experiments, we use a server with an AMD Threadripper (64 CPU-Cores) and two Nvidia 

RTX 4090 GPUs which allows us to train a model within 7 days (1 billion simulation steps with 24.000 

training iterations). The model is implemented in PyTorch and TensorFlow. For the training we use RLlib 

to distribute workloads across the available hardware. As training algorithm, we use an asynchronous 

implementation of PPO. 

4.2 Results 

We can show the first implementation of an AI model with several priorities. The user can set the selected 

priority and the AI adjusts its behavior accordingly. Figure 3 shows an example from the ReLeGSim 
visualization dashboard to showcase a battalion given two different priorities. Figure 3 shows two different 
objectives executed with the same policy. Depending on the given objective the AI-Agent changes its 
behavior. On the left side (a), the AI tries to attack as fast as possible, but still tries to win the battle. On the 
right side (b) the AI tries to minimize own losses, which in most cases is the better strategy. These 
screenshots show our decision support tool (based on the idea of Horne et al. 2014) that can run a given 

scenario multiple times, with different objectives or combat support units. The results of multiple episodes 
are aggregated and automatically analyzed. This enables the operator to simulate, validate and optimize 
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tactics before conducting the mission. Another use-case of our decision support tool is in the evaluation of 
AI-models. It can be used to compare different AI-models and validate the used tactics (Möbius et al. 2022). 

 

 

 Another advantage of this approach is the increased level of exploration achieved by the AI agent. With 
varying goals and priorities, the agent is encouraged to experiment with multiple strategies to determine the 

most effective course of action, thereby facilitating faster and more comprehensive training. This approach 
encourages the agent to develop a broad repertoire of skills, enabling it to excel in diverse scenarios and 
adapt to unforeseen circumstances. By promoting versatile and adaptive decision-making, the agent is better 
equipped to optimize its performance and achieve its objectives efficiently. 

Figure 4 shows a clear difference in AI training performance between training with only one priority 
and training with three different priorities. Adding the three different priorities initially shows an increased 

need for training time in the beginning, after a certain point the increased exploration shows beneficial. 

(a) Attack as quickly as possible. (b) As few own losses as possible. 

Figure 3: Comparing company movements based on the given priority (a) and (b). 

Figure 4: Curriculum learning in level 5 to 77% chance of destroying all enemies  
(Scenario win rate over number of simulation steps). 

Green: one priority 

Red: three priorities 

Simulation-Steps 

Win rate in % 
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These successful explorations will be adapted and extended to a drone use case to give the operator the 
possibility to intervene in the priorities of the AI at runtime. 

Another function, which has already been successfully demonstrated with UAS (see Figure 5), is that 

individual UAS can be detached from the composite and controlled individually by the operator. In doing 
so, the AI optimizes itself to continue executing its mission in the best possible way without the extracted 
UAS. This feature could be also very interesting for human training and tactics evaluation. Overall, the 
ability to detach and control individual units represents a significant advancement in controlling AI agents 
and holds potential for both training and operational use. 

 

 

 

5 CONCLUSION 

This paper presents a novel approach to embedding objectives and doctrines into a military AI agent trained 
with reinforcement learning. It allows a human operator to change the behavior of the AI agent according 
to current needs. Simultaneously, the goal is to integrate an understandable interface for the AI forces to 

allow a comprehensive understanding of the AI’s decisions. The AI’s decision based on the given objects 
are easier to understand and allow a human to judge given commands. Although this approach is still in the 
research stage, we anticipate that it holds great potential for real-world military applications. The language-
based action space is straightforward to understand and can be extended to support different needs and can 
be tailored to meet different requirements. 

The decision support tool (shown in Figure 3) is successfully designed and implemented through an 

interactive application and dashboard. It has been shown that this application significantly improves the 
ability to understand agent strategies and the performance of various combinations of capabilities. This 
process has helped identify weaknesses and possible areas of improvement for the simulation model by 
visualizing agent behavior that was not previously observed or understood. 

This approach provides a comprehensive understanding of the AI's decision-making process, allowing 
humans to assess and judge the given commands. As such, this research can serve as a foundation for the 

development of effective and efficient military AI agents that can operate alongside human counterparts in 
complex environments for decision support. 

6 THE WAY FORWARD 

Research on natural language-based military decision support is still ongoing and far from reaching its 
limits. While we are currently working with scripted subordinates, we want to introduce hierarchical multi-
agent training to increase the capabilities of the agents. This will push the strategies to the next level. The 

Figure 5: ReLeGSim GUI to detach UAS from composite. 
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other open topic is the limited vocabulary. In future iterations, the vocabulary should be increased to enable 
more flexibility in the command and objective structure. This imposes new challenges with scripted 
behavior, rewards, and the planned hierarchical multi-agent training. 

 The given objectives are currently used for this proof-of-concept evaluation. After the current 
evaluation of the training, we will add more different and flexible objectives to increase the potential of this 
approach. Furthermore, future work will also focus on extending this approach to various military scenarios 
and developing a robust model that can address different objectives and goals. Additionally, the application 
of this method to other domains, such as autonomous UAS systems, can further enhance the utility of 
reinforcement learning-based AI systems. 
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