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ABSTRACT

Dispatch rules are commonly used to schedule lots in the semiconductor industry. Previous studies have
indicated that adapting dispatch rules can improve overall factory performance. Machine learning has
proven useful in learning the relationship between manufacturing situations and dispatch rules. However,
using only snapshot data at a given point in time to generate features for these models does not account
for trends in the manufacturing situation, which can be represented as time series data. To address this
issue, the proposed method generates features from time series data and combines them with features
from snapshot data to train machine learning models for dispatch rule prediction. The results demonstrate
the effectiveness of this methodology, as the combination of features from both types of data achieves
the highest prediction accuracy. Simulation results show that this approach can adapt the dispatch rule
according to the manufacturing situation and achieve a comparable factory performance.

1 INTRODUCTION

In a complex manufacturing environment such as the semiconductor industry, scheduling is usually done using
dispatching rules (Metan and Sabuncuoglu 2005). Dispatching rules are used to assign a priority ranking to
the lot in the queue of a machine. However, it is concluded that no single dispatch rules consistently generate
better factory performance under different configurations of manufacturing environment and performance
criteria (Sabuncuoglu 1998). On the other hand, it is shown that adapting dispatch rules can improve
factory performance (Wu and Wysk 1989; Shiue et al. 2020). Simulation is commonly used to evaluate
the performance of dispatch rules in different manufacturing situations. However, the decision to change
dispatch rules is required in near real-time because manufacturing situations can change rapidly due to
equipment breakdowns or product mix changes. Recent advancements in machine learning have enabled
the development of models that adapt dispatch rules in different manufacturing situations.

Numerous studies have applied machine learning models such as supervised, unsupervised, and re-
inforcement learning for lot dispatching in semiconductor manufacturing. Shiue and Su (2003) utilized
a supervised learning model to predict the next dispatch rule. Shiue et al. (2011) used an unsupervised
learning approach to cluster different manufacturing situations and associate these clusters to predict the
next dispatch rule. Approaches to apply reinforcement learning for lot dispatching have also been proposed
(Shiue et al. 2020; Waschneck et al. 2018; Stöckermann 2022). These studies show positive improvement
in factory performance by adapting dispatching rules to different manufacturing situations. Although these
studies proposed numerous features to represent the manufacturing situation, they only represent the snap-
shot of the manufacturing situation at a given moment in time. We refer to data used to generate these
features as snapshot data.

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 2310



Chan, Gan, and Cai

Time series data is a type of data where measurements are collected over time intervals and can
be used to analyze trends and patterns (Tseng et al. 2015). Previous studies have utilized statistical
methods and control charts on time series data to identify various manufacturing situations such as WIP
congestion at a certain segment of the product line and abnormal cycle times (Hassoun and Rabinowitz
2010; Metan and Sabuncuoglu 2005). However, these methods rely on expert knowledge and identifying
specific manufacturing situations with limited features on the time series data. With the recent advancements
in machine learning models, such as LSTM, there has been increasing interest in the application of these
models for fault detection and predictive maintenance in the manufacturing domain by collecting a sequence
of equipment sensor data (Fan et al. 2020). Nevertheless, to the best of our knowledge, there is limited
research on the application of machine learning models to time series data for lot dispatching.

This work proposed a methodology to combine features generated from time series data and snapshot
data to train a supervised learning model for dispatch rule prediction. LSTM is applied to extract features
from time series data. We showed that by generating features from snapshot data and time series data, we
could improve the prediction accuracy of the next dispatch rule.

2 LITERATURE REVIEW

Recent advancements in machine learning have enabled the training of models to help decide dispatch
rules in near real-time. Earlier studies have shown the usage of machine learning to adapt dispatch rules in
different manufacturing situations. Shiue and Su (2003) used a decision tree to learn the relationship between
the manufacturing situation and the dispatch rule to be applied. Priore et al. (2018) proposes ensemble
methods for the selection of the most appropriate dispatching rule. Shiue et al. (2020) and Waschneck et al.
(2018) developed approaches to apply reinforcement learning for lot dispatching. These studies have shown
improved factory performance by adapting lot dispatching strategies in different manufacturing situations.

Feature engineering plays a critical role in constructing machine learning models (Guyon and Elisseeff
2003; Li and Olafsson 2005). In complex manufacturing situations such as the semiconductor manufacturing
system, snapshot data of the work-in-progress (WIP) can be represented with a conceptual data model
(Laipple et al. 2018). The snapshot data that contains WIP attributes is further processed to become features
for subsequent machine learning model (Jun and Lee 2021; Schulz et al. 2022). Statistics summary such as
minimum, maximum, summation, mean, and standard deviation of the WIP attributes can then be calculated
from the snapshot data at a given moment of time (Chan et al. 2020; Shiue et al. 2020).

On the other hand, time series data is also important in semiconductor manufacturing, such as fault
detection (Fan et al. 2020). Different approaches can be used to generate features from time series data
for machine learning tasks. Time spatialization technique could be used to splitting time series data with
a fixed number of time steps, with each time step representing a feature (Leontjeva and Kuzovkin 2016).
Data represented in such a form could be used to train a decision tree model. However, it would suffer
from the curse of dimensionality, making them difficult to use for large datasets (Leontjeva and Kuzovkin
2016). Another approach is using statistics calculation to extract features from the time series data (Guo
et al. 2020). By reducing the number of features to a fixed size, this approach can help to alleviate the
curse of dimensionality. Still, this technique has limited ability to learn the temporal relationship within
the time series data.

Long Short-Term Memory (LSTM) is a type of recurrent neural network to learn temporal relationships
within time series data (Hochreiter and Schmidhuber 1997). LSTM models are made up of memory
blocks connected through gates. These gates can be opened or closed, allowing the model to remember or
forget information selectively. The model can better capture long-term dependencies in time series data
by selectively remembering or forgetting information. LSTM has shown promising results in classification
tasks in the medical and financial domain (Borovkova and Tsiamas 2019; Saadatnejad et al. 2020). As
LSTM can learn the temporal relationship of time series data, the learned network could also be used as
feature generation for medical and video images for other classification algorithms (Leontjeva and Kuzovkin
2016).
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Snapshot data and time series data are shown to be useful for training machine learning models. Thus,
in this paper, we proposed a method of combining features from snapshot data and time series data to train
a machine learning model and compare its performance with a machine learning model trained only with
snapshot data.

3 METHODOLOGY

The proposed evaluation methodology comprises three stages: data collection and separation, feature
generation for the prediction model, and feeding these features as input to a classification model. The flow
chart of the methodology is shown in Figure 1 to provide an overview of the process.

The first stage is data collection and separation. This stage involves using a training data generation
mechanism described in Section 3.1 to generate data for the machine learning model. The generated data
is then separated into time series data and snapshot data. Time series data is generated from continuous
measurements over time, while snapshot data is generated at a fixed point in time. The separation of these
data types is necessary as they require different feature generation methods.

The second stage is feature generation for the prediction model. Different feature generation modules
are used in this stage for time series and snapshot data. For time series data, the proposed methodology
extracts feature from the activation layers of a Long Short-Term Memory (LSTM) neural network, which
is described in Section 3.2. For snapshot data, the proposed methodology extracts feature that captures
work-in-progress attribute about the manufacturing process, such as the number of lots currently queuing
at the equipment when the dispatch decision is required.

The third stage is to feed these features as input to a classification algorithm. The proposed methodology
uses supervised learning to train a machine learning model for the features from snapshot data and features
from a combination of time series data and snapshot data. The machine learning model is trained using
the training data generated in the first stage, and its performance is evaluated using the test data.

Finally, a comparison is made towards the performance of the classification accuracy by using features
generated from snapshot data, and the combination of time series data and snapshot data.

Figure 1: Flow chart of performance evaluation of combining features from time series and snapshot data.
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3.1 Data Collection via Multi-Pass Simulation

The multi-pass simulation technique simulates and compares candidate dispatch rules within the same
scheduling period (Wu and Wysk 1989). In Figure 2, an illustration of the multi-pass simulation is
depicted, featuring two candidate dispatch rules (d1, d2) and two multi-pass periods with a constant
scheduling period δ t. Each pass of the simulation begins at the start of a scheduling period with the same
initial manufacturing situation and a candidate dispatch rule is applied for lot dispatching. Once the multi-
pass simulation is completed, the target factory performance is evaluated to determine the most optimal
simulation path. The dispatching rule utilized for each scheduling period within the chosen simulation path
is then extracted and assigned as the corresponding label.

Assuming the set of completed lots within the time period t is CompleteLott , the tardiness of a lot a
is Tardinessa using equation (1), average tardiness is calculated using equation (2). Table 1 shows the list
of candidate dispatch rules. Snapshot data of lot attributes will be collected as shown in Table 2. Features
for snapshot data are generated using summary statistics (e.g., OprT St in Table 3). For each statistics
feature, five summary statistics (St) are calculated. They are minimum (Mi), maximum (Ma), summation
(Sum), average (Me), and standard deviation (Sd) (that is, St ∈ {Mi,Ma,Sum,Me,Sd}). Table 3 shows the
statistics features generated from the snapshot data of lot attributes.

Time series data are generated by observing a sequence of a particular feature (Tseng et al. 2015).
In our approach, we use the sequence of statistics features generated from the snapshot data collected at
regular intervals to generate time series data. To focus on the historical trend of manufacturing situations,
the generation of time series data excludes the snapshot data at the start of the next scheduling period. The
decision on the length of the interval time for snapshot data would affect the number of time series data
generated. If the interval time is the same as the scheduling period, there would be only one data point
within a scheduling period. In order to capture the temporal patterns present in the data, it is necessary to
collect sufficient time series data using an interval time that is shorter than the scheduling period. However,
the specific length of this interval depends upon the factory’s characteristics and the scheduling period.

Data segmentation involves dividing a continuous data stream into discrete segments, each with a fixed
duration. In our approach, we divide a scheduling period from the multi-pass simulation as one segment
of time series data. This is achieved by defining the start and end time of the scheduling period in the
multi-pass simulation. The resulting time series data can then be used as input for machine learning models.
By segmenting the data into fixed time windows in accordance with the multi-pass simulation scheduling
period, the temporal relationship from the time series data is associated with the best dispatch rule for the
next scheduling period used in the multi-pass simulation.

Figure 2: Multi-pass simulation.

Tardinessa = Max(0,CompletiontTimea −DueDatea) (1)

AvgTardiness =
∑a∈CompleteLott Tardinessa

|CompleteLott |
(2)
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Table 1: Candidate dispatch rules in the study.

Dispatch Rule Description
SRPT Select the lot with the shortest remaining process time.
EDD Select the lot with the earliest due date.
FIFO Select the lot with the earliest arrival time.

Table 2: Lot attribute.

Lot Attribute Description
OprTi Current operation processing time of lot i.
ProTi Total processing time of lot i.
RemTi Remaining processing time of lot i.
SlkTi Slack time of lot i.
LtnAi Lateness of lot i.
QueTi Queue time of lot i.
RmdDi Remaining due time of lot i.

Table 3: Feature generated by using statistic summary on lot attributes.

Feature Description
OprT St Statistic summary of current operation processing time of all lots in the

factory.
ProT St Statistic summary of total processing time of all lots in the factory.
RemT St Statistic summary of remaining processing time of all lots in the factory.
SlkT St Statistic summary of slack time of all lots in the factory.
LtnASt Statistic summary lateness of all lots in the factory.
QueT St Statistic summary of queue time of all lots in the factory.
RmdDSt Statistic summary of remaining due time of all lots in the factory.

3.2 Feature Generation for Time Series Data

In LSTM, the input sequence is fed into the model one-time step at a time. The LSTM unit then processes
the input and updates its hidden state. This hidden state can then be used to make a prediction for the next
time step in the sequence. The process of generating features from time series data with LSTM involves
training the model on a labeled dataset, where each input sequence is paired with a corresponding label.
The model adjusts its parameters during training to minimize the error between its predicted and true labels
in the training data. Once trained, the model’s parameters can be used to generate features by making
predictions on new input sequences.

Once the time series data is created as described in Section 3.1, it can be partitioned into training
and testing datasets. The best dispatch rule is assigned as the label for each segment of time series data.
The input to the LSTM layer is time series data, represented in three dimensions: the number of data,
the number of time steps, and the number of features for each time step. The LSTM layer processes this
input and passes the output to the Output layer. The Output layer produces an output representing the
probability of the time series data being associated with a label (Farzad et al. 2019). We use the Output
layer’s output as a feature representation of the time series data. This feature representation results from
associating temporal relationships in the time series data with the dispatch rule.
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3.3 Classification Model

We use Random Forest (RF) as the classification algorithm for our machine learning model. RF is an
ensemble algorithm combining multiple decision tree predictions to improve accuracy and reduce overfitting
(Denil et al. 2014). Furthermore, it could also handle large datasets with high-dimensional feature space.
The Scikit-learn implementation of RF was used in our experiments (Pedregosa et al. 2012). The prediction
output of the random forest is the label representing the dispatch rule with the highest prediction probability
(Boström 2008).

To train RF using snapshot data only, the snapshot data is partitioned into the training and testing
dataset. Features for the training dataset are calculated using summary statistics as described in Section
3.1. A triplet of {P,S,D} is used to represent the training data (Shiue and Su 2003). P represents the
user-defined performance; S represents the features; D represents the best dispatch rules under the current
system attribute and user-defined performance. AvgTardiness described in Section 3.1 is used as the factory
performance.

RF is also used to train with the combination of time series and snapshot data. This enables fair
comparison with RF trained with snapshot data only, as both use the same classification algorithm. Time
series data and snapshot data are generated from each scheduling period. These data are separated into the
training dataset and the testing dataset. In the first stage of training, the time series data from the training
dataset is used to train the LSTM to generate LSTM encoded features. In the second stage of training,
the snapshot data from the same scheduling period as the time series data is combined with the LSTM
encoded features to train the RF. The two-stage training for the combination of time series and snapshot
data is shown in Figure 3.

Figure 3: Training RF with time series data and snapshot data.

4 EXPERIMENT AND RESULTS

4.1 Mini-Fab Model

The Mini-Fab model is a collaborative effort between Arizona State University and Inter Research (Spier
and Kempf 1995; El-Khouly et al. 2009). It consists of one route that is shared between the three products.
The route has six re-entrant steps, three work centers, and five pieces of equipment, as shown in Figure 4.
On average, 84 lots are started each week, with 51 lots for Product_1, 30 lots for Product_2, and 3 lots
for Product_3. The due date of a lot is uniformly distributed at between 2.1 to 2.5 times the product’s
total process time. The "Diff" work center serves steps 1 and 5, and equipment from this work center
batches three lots at a time, with the constraint of not batching lots from different steps together. The
work center has 75 minutes of preventive maintenance every 24 hours. The "Imp" work center has two
pieces of equipment, and preventive maintenance is carried out for 120 minutes every 12 hours. Emergency
maintenance happens randomly every 24 and 76 hours; repair takes 6 to 8 hours. The "Lith" work center
has only one piece of equipment, and preventive maintenance takes 30 minutes every 12 hours. This work
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center has setup time for processing the next lot from a different product or operation. Ten minutes of
setup time for the next lot from the same product but a different step, five minutes for the same step but a
different product, and twelve minutes for different products and different steps. Table 4 summarized the
parameters for the Mini-Fab model.

Figure 4: The Mini-Fab Model.

Table 4: Summary descriptions of the model.

Work Centre Equipment Step Process Time (min) Characteristic
Diff A / B 1 285 Batching

5 315
Imp C / D 2 60 Emergency Maintenance

4 80
Lith E 3 75 Setup Changes

6 30

4.2 Data Generation

The study uses the D-SIMCON simulator to model Mini-Fab (D-SIMLAB 2023). The data is generated
through multi-pass simulation as described in Section 3.1. EDD and SRPT dispatching rules are considered
in the multi-pass simulation. 35 features as shown in Table 3 are generated from the snapshot data. Although
more features will improve the discriminating power of the classifier, it also increases the risk of overfitting
(Lee and Landgrebe 1993; Shiue and Su 2003). As the selected dispatching rules only consider lot attributes
RemTi and RemDi, we selected a total of 10 summary statistics features (RemT St and RemDSt) that are
generated from these lot attributes. In the future, more features should be included when other dispatch
rules are considered.

To generate enough data, 500 random seeds are used to generate different product arrival patterns, lot
due dates, and equipment maintenance. The simulation runs for a total of 42 days, including a 30-day
warm-up period followed by 12 multi-pass scheduling periods, where each scheduling period lasts for 24
hours. Time series data is collected from the start of the previous scheduling period to the time step before
the start of the current scheduling period. A regular time step interval of 1 hour is used, resulting in 24
data within each scheduling period. This provides one sequence of time series data per scheduling period,
and each random seed run generates 12 sequences of time series data. On the other hand, snapshot data is
collected at the start of each scheduling period, and each random seed generates 12 snapshot data.

Figure 5 shows time series data and snapshot data for two features for one scheduling period. The
generated data train the machine learning model to predict the dispatching rule for the next scheduling
period. The aim of this approach is to consider both time series and snapshot data to generate a combination
of features that can effectively predict the dispatching rule with high accuracy. Table 5 summarizes the
total amount of data generated per random seed for snapshot data and time series data.
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Figure 5: Generation of snapshot data and time series data at the start of the next scheduling period.

Table 5: Data generation summary.

Snapshot Data Time Series Data
Number of Features 10 10
Total Number of Scheduling Period per Multi-Pass Simulation 12 12
Total Amount of Data per feature per Scheduling Period 1 24
Total Amount of Data per Random Seed 120 2880

Table 6: Average accuracy of 10-fold cross-validation across different features from snapshot data and
combination of time series and snapshot data.

Data Type 10-fold Prediction Accuracy
Snapshot Data Only 65%
Snapshot Data and Time Series Data 78%

4.3 Validation of Machine Learning Model

In this study, our aim is to enhance the class separability between the features generated from snapshot
data and the combination of snapshot and time series data. We first visualize the features obtained from
different data types using t-Distributed Stochastic Neighbor Embedding (t-SNE), a technique that reduces
high-dimensional data points into low-dimensional space while maintaining the inter-point relationships
(van der Maaten and Hinton 2008). Figure 6 depicts the resulting two-dimensional projection, where the
axes do not directly correspond to a specific feature and different colors represent dispatch rule labels. It
shows that combining snapshot and time series data can lead to better class separation with fewer overlapping
data points than using snapshot data alone.

To validate the RF model, we employ 10-fold cross-validation, where the data is randomly divided into
10 partitions, and 10 iterations of training and testing are performed. During each validation iteration, 9
partitions of data are retained for training, and 1 partition is used for testing. The number of exact matches
between the predictions label and the testing label measures the accuracy of the evaluation. Table 6 shows
that the machine learning model with a combination of snapshot data and time series data achieves the
highest prediction accuracy.
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Figure 6: Data visualization of snapshot data (left) and combination of snapshot data and time series data
(right).

4.4 Evaluation of Learned Models for Situation Aware Dispatching

The performance evaluation of the trained machine learning model is conducted using the D-SIMCON
Python Interface and D-SIMCON Simulator (D-SIMLAB 2023). The objective is to assess the model’s
ability to adapt dispatch rules to different manufacturing situations. To achieve this, we use 100 different
random seeds to generate scenarios with different lot arrival patterns, due date patterns, and machine down
patterns. We simulate the EDD, SRPT, and FIFO dispatch rules separately on these scenarios to provide a
baseline for comparison.

We divide the 100 scenarios into two groups based on the dispatch rule’s performance: (i) the group of
scenarios where SRPT outperforms EDD; (ii) the group of scenarios where EDD outperforms SRPT. We
train two different machine learning models to adapt dispatch rules: the TS+SN scheduling strategy using
a model trained with the combination of time series and snapshot data, and the SN scheduling strategy
using a model trained with snapshot data only. RANDOM scheduling strategy uses a uniformly distributed
random variable to select a dispatch rule from the baseline dispatch rules. The MULTI_PASS simulation
provides the lower bound for factory performance.

It is important to note that high prediction accuracy in machine learning models does not necessarily
indicate high prediction probability (Boström 2008). A high prediction probability indicates the learned
model is confident in the prediction. However, the baseline shows that EDD and SRPT can positively impact
certain manufacturing situations. To avoid wrong predictions that result in good factory performance, a
high prediction probability threshold of 0.8 was set in our evaluation. However, retaining the previous
dispatch rule and not adapting the predicted dispatch rule if the threshold is not met would also have
minimal impact on factory performance in certain manufacturing situations. Hence, during the evaluation
process, we choose the FIFO rule if the prediction probability does not exceed the threshold to show the
impact on factory performance. The decision to use FIFO is because it had the worst performance among
the baseline of dispatch rules and would negatively impact the factory’s performance. This strategy will
also impact the factory performance of the right prediction with low confidence. Nonetheless, we could
compare the trained models by measuring the number of high-confidence predictions.

Figure 7a shows the average of AvgTardiness across the scenarios from the group (i). Figure 7b shows
the average of AvgTardiness across the scenarios from the group (ii). In both groups of scenarios, it shows
that TS+SN was able to adapt dispatch rules better than SN. Table 7 shows the percentage of a scheduling
period instance where the probability threshold is met. SN performance was worse than RANDOM because
of the high number of predictions that do not meet the threshold, and we chose the FIFO rule for these
predictions. This also shows that TS+SN performs better than SN in making highly confident predictions.
This shows that the machine learning model trained with the combination of time series and snapshot data
achieves a higher prediction accuracy and higher prediction probability.

On the other hand, TS+SN is also shown to adapt dispatch rules in different groups of scenarios
compared to the baseline dispatch rules. Figure 7a shows the result for group (i) scenarios and TS+SN

2318



Chan, Gan, and Cai

Table 7: Percentage of scheduling period where prediction probability is more than the threshold of 0.8.

Scheduling Strategy Percentage
TS+SN 89%
SN 22%

is shown to perform better than the EDD rule. Figure 7b shows the result for group (ii) scenarios, and
TS+SN is shown to perform better than the SRPT rule. However, in both groups of scenarios, TS+SN did
not perform better than the best dispatch rule. This is the impact of setting a high prediction probability
threshold that penalizes the right prediction with low confidence. Furthermore, there is still a performance
gap between the best dispatch rule and MULTI_PASS, indicating potential in adapting dispatch rules. It
is also possible that TS+SN did not outperform the best baseline dispatch rule due to the factory model
used. The average performance difference between MULTI_PASS and the best baseline dispatch rule was
less than 5% for group (i) and 11% for group (ii), and more analysis is required. In the future, it will be
interesting to evaluate the approach of combining time series and snapshot data with other factory models
with high-mix low volume, such as the SMT2020 (Hassoun et al. 2019).

(a) Group (i) scenarios. (b) Group (ii) scenarios.

Figure 7: Average tardiness comparison across different scheduling strategies.

5 CONCLUSIONS AND FUTURE WORK

In conclusion, selecting the appropriate dispatch rule is crucial for improving factory performance in a
situation aware dispatching system. This study has analyzed the impact of combining time series data
and snapshot data in improving the prediction accuracy of the machine learning model for dispatch rule
adaptation.

The results showed that the model with a combination of time series and snapshot data outperformed the
model trained using snapshot data alone. Furthermore, the approach also shows the ability of the machine
learning model to adapt dispatch rules under different manufacturing situations where the best baseline
dispatch rule was different. However, a performance gap remains compared to the multi-pass simulation
results, indicating room for further refinement in the machine learning model. More studies are needed
to analyze features specific to time series and snapshot data to enhance the machine learning model that
could further improve factory performance. Future work should consider a broader range of dispatch rules
and a weighted combination of dispatch rules to make the model more realistic.
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One limitation of the current approach that utilizes LSTM for encoding time series data is its reliance
on labeled data, which results in a supervised learning approach. In the future, an unsupervised learning
approach, such as the use of autoencoders with LSTM, could be explored to extract time series data features
without the need for labeled data. Additionally, the current approach of combining time series and snapshot
data could be extended to other machine learning models, including reinforcement learning. Given the
goal of improving factory performance through situation aware dispatching, training a policy for adapting
dispatch rules using reinforcement learning that relies on feedback from factory performance could be more
effective than supervised learning, which primarily focuses on improving prediction accuracy.
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