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ABSTRACT 

We study an order-lot pegging problem in semiconductor supply chains. The problem deals with assigning 
already released lots to orders and with planning wafer releases to fulfill orders if there are not enough lots 
in the wafer fabs. The objectives are minimizing the total tardiness of the orders and minimizing the total 
cost. We are interested in computing the set of Pareto-optimal plans. Based on a mixed-integer linear 
programming (MILP) formulation, an 𝝐 - constraint method is proposed for small-sized problem instances. 
Moreover, a non-dominated sorting genetic algorithm (NSGA)-II is designed for tackling larger problem 
instances within a reasonable amount of computing time. We perform computational experiments with the 
ε-constraint method for small-sized problem instances and with the NSGA-II scheme for small- and 
medium-sized problem instances. 

1 INTRODUCTION 

Semiconductor manufacturing belongs to the most complex existing manufacturing processes. Integrated 
circuits are manufactured on wafers, thin discs made from silicon or gallium arsenide. A single wafer fab 
contains hundreds of complicated and often extremely complex machines. The routes of the individual 
products may contain up to 800 process steps (operations) for advanced technologies. Lots are groups of 
wafers that travel together through a wafer fab. The time span between launching material and its emergence 

as final product in a wafer fab is up to 12 weeks (Mönch et al. 2013). Semiconductor manufacturing 
provides an extreme environment for production planning and control due to the sheer size of the fabrication 
facilities involved, the pervasive presence of different kinds of uncertainties, and the rapid pace of change 
(Chien et al. 2011).  

In this paper, we study a short-term planning problem for semiconductor foundries belonging to the 
demand fulfillment function in semiconductor supply chains (Mönch et al. 2018a, Mönch et al. 2018b). 

Foundries manufacture ICs for a wide range of customers in varying quantities on a common manufacturing 
process. The make-to-order (MTO) strategy is typical for the operations of foundries.  

The planning problem studied in the present paper extends the one from Mönch et al. (2020) towards a 
bi-criteria setting where minimizing variable and fixed costs is the second objective in addition to 
minimizing total tardiness (TT) of the orders. The problem deals with assigning wafer fabrication lots to 
given customer orders. The amount of wafers to be released into the wafer fabs is determined when the 

already existing lots in the wafer fabs are not enough. We refer to this assignment activity as order-lot 
pegging. A single-objective (TT), single-fab version of the order-lot pegging (OLP) problem is studied by 
Kim and Lim (2012). Several heuristics based on dispatching rules and a simulated annealing (SA) scheme 
are proposed. In the present paper, we extend the OLP problem for multiple wafer fabs and the TT 
performance measure towards a bi-criteria setting, abbreviated by BC-MF-OLP problem. We propose an 
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exact 𝝐-constraint method for small-sized problem instances and an NSGA-II scheme to tackle medium- 
and large-sized problem instances. 

The paper is organized as follows. In the next section, we describe and analyze the problem at hand and 

discuss related work. An exact approach based on the 𝜖-constraint method is established in Section 3. An 
NSGA-II scheme is proposed in Section 4. The results of computational experiments are presented and 
discussed in Section 5. Conclusions and future research directions are indicated in Section 6. 

2 PROBLEM SETTING AND DISCUSSION OF RELATED WORK 

2.1 Problem Description 

We consider 𝑚 wafer fabs with identical capabilities running in parallel. A given set of 𝑁 orders have to 

be satisfied from already released lots and newly released wafers from these wafer fabs during a planning 

horizon that consists of 𝑇 periods of the same size. Order 𝑖 has 𝑞𝑖 wafers and a due date 𝑑𝑖. The quantities 

𝐿𝑘 , 𝑘 = 1, … , 𝑚 are the number of already released lots in wafer fab 𝑘. Each lot 𝑙 of wafer fab 𝑘 has a 

remaining lead time of 𝑟𝑙𝑘 where the lead time is an estimate of the cycle time. In addition, the number of 

wafers belonging to lot 𝑙 in wafer fab 𝑘 is 𝑤𝑙𝑘. We have a total of 𝐿 lots across all wafer fabs. There are 

compatibility matrices 𝐴(𝑘) ∈ ℝ𝑁×𝐿𝑘 whose entries 𝑎𝑖𝑙
(𝑘)

 are 1 if lot 𝑙 of wafer fab 𝑘 can be used to fulfill 

order 𝑖 and zero otherwise. Variable costs 𝑣𝑖𝑘 per wafer and period are assumed for each order 𝑖 in wafer 

fab 𝑘. In this research, we assume that the variable costs for all orders that are fulfilled by lots and newly 

released wafers of the same wafer fab are identical. Moreover, we consider fixed production costs 𝑝𝑖𝑘 for 

each order 𝑖 in wafer fab 𝑘. The sum of fixed and variable costs of all orders is called total cost (TC). 

Due to traceability reasons, orders can only be fulfilled from lots and wafers of the same wafer fab. 

This means that if a first lot from a wafer fab is pegged to a certain order, all the remaining required lots 

and wafers have to be from this wafer fab. Only 𝑄𝑡𝑘 wafers can be launched in period 𝑡 into wafer fab 𝑘. 

The lead time for newly released wafers to fulfill order i  in wafer fab 𝑘 is 𝑠𝑖𝑘.  

The tardiness of order 𝑖 is 𝑇𝑖 ≔ max(𝐶𝑖 − 𝑑𝑖, 0), where 𝐶𝑖 is the completion time of order 𝑖. We are 

interested in minimizing the TT value of the orders which is defined by 𝑇𝑇 ≔ ∑ 𝑇𝑖
𝑁
𝑖=1 . This on-time 

delivery-related measure is important in a foundry setting. Moreover, we are interested in minimizing the 

TC. The two objectives are in conflict. Small 𝑇𝑇 values require assigning the orders to wafer fabs where 

appropriate lots with a low remaining lead exist, whereas small TC values can be obtained when appropriate 

wafer fabs are chosen. Hence, we are interested in determining the set of all Pareto-optimal plans. A plan 

𝑃 is called Pareto-optimal if there does not exist another plan 𝑃′ such that 𝑇𝑇(𝑃′) ≤ 𝑇𝑇(𝑃)  and 𝑇𝐶(𝑃′) ≤
𝑇𝐶(𝑃) and at least one of the two inequalities is strict. 

2.2 Analysis 

The notion of an order split is recalled from Kim and Lim (2012) for solutions of OLP problem instances 

for a single wafer fab. An order i  is split by order j  if two lots or new wafer releases, we refer to this as 

(wafer) resource, are used to satisfy i  with (remaining) lead times 
2

<
1

, but there is another resource 

that is used to fulfill order j  with (remaining) lead time of 
3

 , 
23

<< 
1

. In addition, the following 

second split situation is also possible. Orders i  and j  are both satisfied by two resources with (remaining) 

lead times 
2

<
1

. It is easy to see that in both situations an order split does not improve the TT value for 

the OLP problem.  

For a single wafer fab, the variable costs of the orders depend on the remaining lead times of the lots 

and new wafer releases. Next, we will show that split orders are also not beneficial for the BC-MF-OLP 

problem.  
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Proposition 1 An order split does not improve the TC value of OLP problem instances in a single wafer 

fab setting. 

Proof: We consider a solution 𝑆 in which order 𝑖 is split by order 𝑗. Another solution 𝑆′ can be constructed 

on the one hand by reassigning wafers from the resource with remaining lead time 
3

 originally assigned 

to order 𝑗 in 𝑆 to order 𝑖. On the other hand, wafers from resource with remaining lead time of 
1
 originally 

assigned to order 𝑖 in 𝑆 are assigned to order 𝑗 in 𝑆′. Due to 
23

<< 
1

the variable cost of the orders 𝑖, 𝑗 

in 𝑆′will be unchanged. The second split situation can be addressed by a similar exchange argument.          ■ 

 

The incompactness notion of a solution of an instance of the OLP problem is also introduced by Kim 

and Lim (2012). A solution of an OLP instance is incompact if there is a wafer that remains being 

unassigned to any order although it can be used to satisfy another order to which a wafer with longer 

(remaining) lead time is already assigned. It is shown by Kim and Lim (2012) that an incompact assignment 

does not improve the TT value. Next, a similar statement will be shown for the TC value in a single-fab 

setting.  

 

Proposition 2 An incompact assignment does not improve the TC value of OLP problem instances in a 

single wafer fab setting. 

Proof: We consider an incompact solution 𝑆 in which wafers in a resource 𝑘1, i.e. a lot or newly launched 

wafers, exist that are not assigned to any order. According to the incompactness definition, there is an order 

𝑖 and a resource 𝑘2 such that wafers of 𝑘2 are used to satisfy order 𝑖. A solution 𝑆′ can be obtained by 

assigning wafers in 𝑘1 not assigned to any order to order 𝑖 instead of the wafers of 𝑘2 assigned to 𝑖 in 𝑆. 

Since we have 
21k k

< due to the definition of an incompact solution and the fact that the variable costs 

only depend on the remaining lead time, we obtain 𝑇𝐶(𝑆′) < 𝑇𝐶(𝑆).              ■ 

 

The so-called compact pegging method proposed by Kim and Lim (2012) starts from a given order 

sequence and assigns in this sequence first compatible lots with the smallest remaining lead time and then 

wafers with the smallest lead time to each order. It is shown by Kim and Lim (2012) that there exits an 

optimal order sequence that can be used to determine an optimal solution of the OLP problem by the 

compact pegging method. The compact pegging method computes solutions that are compact and at the 

same time they do not contain split orders. Since the variable costs are identical for all orders per wafer fab, 

the assignment of orders to wafer fabs fully determines the TC. For a given order assignment to wafer fabs, 

a solution with the smallest TT value is a candidate for a Pareto-optimal solution. Such a solution can be 

determined by the compact pegging method. The nondominated solutions of the set of Pareto-optimal 

candidates provide the set of Pareto-optimal solutions. Note that for order- and wafer fab-dependent 

variable cost the compact pegging method applied to the orders of each wafer fab in general will not work 

anymore.  

It is shown by Kim and Lim (2012) that even the single-fab OLP problem with TT objective function 
is NP-hard. Based on the fact that the generalized assignment problem is NP-hard (cf. Kellerer et al. 2004), 
it can be shown that the OLP problem with at least two wafer fabs and with TC performance measure is 

NP-hard. Hence, determining the set of Pareto-optimal plans for the BC-MF-OLP problem is NP-hard too 
(Ehrgott 2010). Hence, we have to look for efficient heuristics for large-sized problem instances in the 
present paper. 

2.3 Discussion of Related Work 

The problem of assigning lots to customer orders in semiconductor manufacturing is rarely discussed in the 
literature. There are two streams of research in this area. The first one deals with the make-to-stock (MTS) 

production strategy. The second one is related to the MTO production strategy. We start by the first stream. 
Knutson et al. (1999) study the problem of assigning lots of different sizes to customer orders in an assembly 
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facility. Maximizing the number of integrated circuits that are sent to customers and the number of orders 
delivered on time and minimizing the excess inventory are the goals. Bin-packing inspired heuristics are 
designed. Fowler et al. (2000) and Carlyle et al. (2001) investigate similar problems and propose more 

heuristics. Boushell et al. (2008) consider a lot-to-order matching problem for multiple product classes 
resulting from binning. A somewhat related problem that considers under- or overfilling of customer orders 
when lot sizes are uncertain is tackled by Ng et al. (2010) using robust optimization. Sun et al. (2011) 
generalized this problem by allowing downward product substitution when demand exceeds supply. All the 
studied lot-to-order matching problems often do not consider due dates. Moreover, multiple facilities are 
not taken into account. Next, we look at the second stream. Bang et al. (2005) and Kim et al. (2008) study 

hard and soft pegging strategies. Hard pegging refers to the situation that a lot is assigned to a single 
customer order and cannot be reassigned. Soft pegging allows for event-driven repegging in the face of 
uncertainty. It is shown by using discrete simulation that soft pegging strategies are able to significantly 
improve hard pegging ones under several experimental conditions. However, only a single wafer fab and a 
single performance measure are considered in these papers.  

The problem in the present paper extends the OLP problem of Kim et al. (2010). An MILP is established 

there. Several simple and fast heuristics based on the Earliest Due Date dispatching rule are proposed. 
Additional dispatching rules for this problem are studied by Kim et al. (2015). More efficient solution 
approaches for this problem are proposed by Kim and Lim (2012). Mönch et al. (2020) consider a multi-
fab version of the OLP problem of Kim et al. (2010). They propose a biased random key GA. This paper is 
the most pertinent related work. But only a single criterion, namely minimizing TT, is considered. However, 
in real-world settings additional measures are of interest, especially when wafer fabs with different cost 

structure are considered. This situation is assumed in the present paper. 

3 EXACT APPROACH 

3.1 MILP 

The MILP formulation for minimizing the TC and the TT values is presented next. It extends the 
formulation provided by Mönch et al. (2020) to the bi-criteria setting. The following indices and sets are 
applied: 

i : order index, N,,=i 1  

l : lot index, 
k

L,,=l 1 , m,,=k 1  

k : wafer fab index, m,,=k 1  

t : period index, .1 T,,=t   

 
The formulation is based on the following parameters: 

N : number of orders 

k
L : number of lots in wafer fab k  

m : number of wafer fabs 

𝑝𝑖𝑘 : fixed production cost for order 𝑖 in wafer fab 𝑘 

𝑣𝑖𝑘 : variable cost for order 𝑖 in wafer fab 𝑘 

𝑇 : length of the planning horizon  

i
q : quantity of order i  (in wafers) 

lk
w : number of wafers in lot l  in wafer fab k  

i
d : due date of order i  

lk
r : remaining lead time of lot l  in wafer fab k  (in periods) 

ik
s : lead time of newly released wafers for order i  into wafer fab k (in periods) 
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tk
Q : maximum number of wafers that can be released in period t  in wafer fab k  

 k

il
a : 1, if lot l  of wafer fab k  can be used to satisfy order i , 0, otherwise. 

The following decision variables are used in the model: 

ilk
x : number of wafers of lot l  of wafer fab k   assigned to order i  

itk
y : number of wafers to be released in period t  in wafer fab k  to fulfill order i  

ilk
z : 1, if lot l  of wafer fab k  is used to satisfy order i , 0, otherwise 

i
C : completion time of order i  

i
T : tardiness of order i  

itk
u : 1, if wafers are released in period t  in wafer fab k  to satisfy order i , 0, otherwise 

ik
f : 1, if lots and/or wafers of wafer fab k  are used to satisfy order i , 0, otherwise. 

The model itself can be formulated as follows: 

min (
N

=i

i
T

1

, ∑ ∑ (𝑝𝑖𝑘𝑓𝑖𝑘 + 𝑣𝑖𝑘 {∑ 𝑟𝑙𝑘𝑥𝑖𝑙𝑘

𝐿𝑘

𝑙=1

+ ∑(𝑡 + 𝑠𝑖𝑘)𝑦𝑖𝑡𝑘

𝑇

𝑡=1

})

𝑁

𝑖=1

𝑚

𝑘=1

) 

(1) 

subject to 


m

=k

ik
=f

1

1  N,,=i 1  (2) 

i

m

=k

kL

=l

T

=t

itkilk
q=y+x   














1 1 1

 
N,,=i 1  (3) 

 
N

=i

lkilk
wx

1

 
m,,=k 1 , k

L,,=l 1  (4) 

 
N

=i

tkitk
Qy

1

 
T,,=t 1 , m,,=k 1  (5) 

ilklkilk
zwx   m,,=k 1 , k

L,,=l 1 , N,,=i 1  (6) 

itktkitk
uQy   m,,=k 1 , N,,=i 1 , T,,=t 1  (7) 

ikitk
fu   N,,=i 1 , T,,=t 1 , m,,=k 1  (8) 

ikilk fz   N,,i 1 , m,,k 1 , k
L,,l 1  (9) 

 k

ililk
az   N,,i 1 , m,,k 1 , k

L,,l 1  (10) 

iilklk
Czr   N,,i 1 , m,,k 1 , k

L,,l 1  (11) 

 
iitkik

Cus+t   N,,=i 1 , m,,=k 1 , T,,=t 1  (12) 

iii
TdC   N,,=i 1  (13) 

i
T0 , 

i
C0 , ilk

x0 , itk
y0  N,,=i 1 , m,,=k 1 , k

L,,=l 1  (14) 
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 0,1∈
ilk

z ,  0,1∈
itk

u ,  0,1∈
ik

f  N,,=i 1 , m,,=k 1 , k
L,,=l 1 .T,,=t 1  (15) 

The first component of the objective function (1) is the TT value of all orders, the second one is the 
corresponding TC value. Constraint set (2) models that each order is assigned to exactly one wafer fab 
whereas constraint set (3) expresses that an order is satisfied with wafers from already launched lots and 
eventually with newly released wafers. Constraint set (4) indicates that the number of wafers belonging to 
each lot is respected during the pegging process. Constraints (5) ensure that the total number of wafers to 
be released into a wafer fab does not exceed the maximum number of wafers that can be released in a given 

period. Constraint set (6) models that a lot is pegged to an order if at least a single wafer of this lot is 
assigned to that order. The same fact is expressed for newly released wafers in a period by constraint set 
(7). The constraints (2), (8), and (9) ensure that only already released lots and newly released wafers of the 
same wafer fab can be used to fulfill an order. The lot compatibility to orders is modeled by (10). The 
tardiness of individual orders is calculated by the constraint sets (11), (12), and (13). The range of the 
decision variables is modeled by the constraint sets (14) and (15). 

3.2 ε - Constraint Method 

The  - constraint method is an approach that allows to compute a Pareto frontier (Ehrgott 2010). Instead 

of combining the different objectives into an integrated objective function, a single objective function is 

optimized in a certain step while the remaining objectives are transformed into constraints. An  -constraint 

problem with two objectives 2,1, kf k  to be minimized is provided by: 

           
k

fmin               

subject to 

          kjjf
jj

 ,2,1, ,           

where ε ∈ ℝ2 is given. The application of the  -constraint method to the MILP formulation (1)-(15) is 
shown next:  

min (𝐸𝑇𝑇 ∑ 𝑇𝑖

𝑁

𝑖=1

+ 𝐸𝑇𝐶 ∑ ∑ (𝑝𝑖𝑘𝑓𝑖𝑘 + 𝑣𝑖𝑘 {∑ 𝑟𝑙𝑘𝑥𝑖𝑙𝑘

𝐿𝑘

𝑙=1

+ ∑(𝑡 + 𝑠𝑖𝑘)𝑦𝑖𝑡𝑘

𝑇

𝑡=1

})

𝑁

𝑖=1

𝑚

𝑘=1

) 

(16) 

subject to   

(2)-(15)   

  .1
1

TT

N

=i

iTT
TE    

 (17) 

(1 − 𝐸𝑇𝐶) ∑ ∑ (𝑝𝑖𝑘𝑓𝑖𝑘 + 𝑣𝑖𝑘 {∑ 𝑟𝑙𝑘𝑥𝑖𝑙𝑘

𝐿𝑘

𝑙=1

+ ∑(𝑡 + 𝑠𝑖𝑘)𝑦𝑖𝑡𝑘

𝑇

𝑡=1

}) ≤

𝑁

𝑖=1

𝑚

𝑘=1

𝜀𝑇𝐶 . 

 

(18) 

The MILP has the parameters  1,0, 
TCTT

EE , ,1
TCTT

EE and 𝜀𝑇𝑇 , 𝜀𝑇𝐶 ∈ ℝ. For 1
TT

E  and 0
TC

E  

the model pursues a TT minimization whereas the TC value is restricted to 
TC
 . In the case of 0

TT
E  and

1
TC

E , the model strives for a minimization of the TC value. In this situation, the TT value of the plan is 

restricted to 
TT
 . 

The model (16)-(18) and (2)-(15) is iteratively solved to obtain the set of Pareto-optimal plans. It is 

assumed that all parameter values are integer. The first iteration starts with 0,0,1 
TTTCTT

EE  , and 

M
TC
  where M is a sufficient large number. The solution is a plan 𝑃 with objective function value 

 PTT  where the TC value is restricted to M . Afterwards, the MILP is solved a second time with 
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 PTTEE
TTTCTCTT
  ,0,1,0  leading to a Pareto optimal schedule. The next iteration starts by 

0,1,0 
TCTCTT

EE  , and   1 PTT
TT
 . The TT and TC values are always integers due to the choice 

of the parameter values of the instances. Therefore, choosing   1 PTT
TT
  is reasonable. This procedure 

is repeated until the MILP becomes infeasible for the parameters 
TC
  and 

TT
 . The set of all Pareto-optimal 

plans is obtained for instances with parameter values selected as described before. Note that the ε-constraint 

method will work only for small-sized instances using a reasonable amount of computing time since the 

BC-MF-OLP problem is an NP-hard combinatorial optimization problem. 

4 METAHEURISTIC APPROACH 

4.1 Overall Approach 

A GA maintains a set of solutions where we refer to this set as population. GAs are iterative algorithms. A 

single iteration corresponds to a generation. Reproduction and mutation procedures are used to change the 

individuals of the current generation to form a new generation. It is likely that only the fittest individuals 

are selected for the new generation. In the present paper, we apply a NSGA-II procedure to tackle larger 

problem instances of the BC-MF-OLP problem. The NSGA-II approach proposed by Deb et al. (2002) is a 

GA tailored towards multi-criteria combinatorial optimization problems (Coello Coello and Lamont 2004). 

It ensures diversity of the population by exploiting information of solutions from the entire population. To 

do so, the set of solutions belonging to a population is sorted into distinct fronts of different domination 

levels within each GA iteration. The first front contains all solutions not dominated by any other solution. 

The second front contains those which are only dominated by solutions from the first front. This principle 

is repeated. The fitness value of an individual is determined by the front its solution belongs to. For solutions 

of the same front a crowded comparison operator is applied that assigns a higher fitness value to solutions 

in less crowded regions of the solution space. Two individuals of a population are randomly chosen and the 

one with higher fitness is chosen for crossover purposes (Michalewicz 1996), i.e., binary tournament 

selection is applied. Offspring are generated by recombination until the population size is doubled. An elitist 

strategy is used within the NSGA-II scheme. Individuals are inserted into the new population by non-

increasing fitness values, i.e., solutions are accepted starting from the first front until the original population 

size is reached. Solutions from the least crowded regions of the solution space are preferred from the last 

front to be accepted. It is well-known (Deb and Goel 2001) that the performance of NSGA-II approaches 

can be improved by including local search to move the obtained Pareto frontier closer to the true Pareto 

front. In the next subsection, we will describe the encoding and decoding procedures for the NSGA-II 

scheme. 

4.2 Tailored NSGA-II Scheme 

GAs based on the random key representation are proposed by Bean (1994). These random-key GAs 

(RKGAs) are appropriate to support sequencing and assignment decisions. Chromosomes are represented 

as vectors of randomly generated real numbers from (0,1). Problem-specific decoders must be designed to 

associate a chromosome with a solution of the optimization problem at hand. Sorting the random keys is 

required to compute a sequence. Starting from a randomly chosen population of random-key vectors, the 

fitness of the chromosomes is computed by a decoder that implements the objective function of the 

optimization problem. The population consists of a small set of elite individuals and a set of nonelite 

individuals. Individuals that belong to the elite set have small objective function values in the case of a 

minimization problem. The elite individuals are taken over unchanged into the next generation. A certain 

fraction of randomly generated mutants are placed into the population. The remaining individuals of the 

population of the next generation are found by crossover. Two individuals are randomly chosen from the 

population in a RKGA for crossover purposes. A parameterized uniform crossover is applied. A biased coin 

is tossed for each gene to determine which parent will contribute to the allele. The probability of choosing 
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the parent from the first chromosome is 0.5ρ . The random-key representation is appropriate for the BC-

MF-OLP problem since after an assignment of the orders to wafer fabs starting from an order sequence, it 

is enough to apply the compact pegging method from Kim and Lim (2012) as shown in Subsection 2.2. 

The following encoding and decoding is therefore appropriate for the problem at hand. We have to 

assign N  orders to m  wafer fabs and must determine sequences of the orders for each single wafer fab to 

apply the compact pegging method which requires a sorted list of orders. A chromosome is given by the 

following random-key vector  
N1

rk,,rk=RK   of real numbers, where   Nirk
i

1  ,0,1∈ , and gene

i
rk  represents order i . The decoder works as follows. Each random key is multiplied by the integer m  to 

assign each order to a wafer fab. The integer part determines the wafer fab. The sequence of the orders 

assigned to wafer fab 1 ≤ 𝑘 ≤ 𝑚 is obtained by sorting the quantities  ii
rkmrkm   in non-decreasing 

order. The compact pegging method is applied to the order sequence of each wafer fab to compute the TT 

and TC values of a chromosome. To avoid infeasibilities due to a large number of order assignments to a 

single wafer fab in chromosomes, an artificial period 1+T  with infinite capacity and huge 1+Ti,
s  values is 

added to penalize the resulting solutions. Next, we describe the applied local search procedure within the 

NSGA-II approach. An integrated objective function is used for a given plan P  as follows: 

 

        SSSS wwPTCwPTTwPF
2121

:  ,       (19) 

 

with weights 
 
minmax

max

1
:

TTTT

PTTTT
w S




  and 

 
minmax

max

2
:

TCTC

PTCTC
wS




 . 

maxf  and 
minf  are the maximum and 

minimum value of an objective function values f  for the entire population. The local search (LS) 

procedure for 𝑚 = 2 wafer fabs is based on the following two neighborhood structures: 

 

LS procedure: 

1. Swap: Randomly choose two different orders and exchange their position in the order sequence, i.e. 

exchange the corresponding random keys. 

2. Shift: Randomly choose an order 𝑖 . If 0 < 𝑟𝑘𝑖 ≤ 1 2⁄  then use the random key 2(𝑟𝑘𝑖 + 1 2⁄ ) , 

otherwise, use 2(𝑟𝑘𝑖 − 1 2⁄ ). 

 

Swap and Shift moves are executed in a consecutive manner. Each move is evaluated with respect to the 

integrated objective function F  (19) instead of using the TT  and the TC  measures separately. The LS 

procedure terminates after five moves do not lead to an improved value of the integrated objective function. 

The resulting NSGA-II scheme equipped with the LS is abbreviated by LS-NSGA-II in the rest of the paper. 

5 COMPUTATIONAL EXPERIMENTS 

5.1 Design of Experiments 

We expect that the performance of the 𝜖-constraint method and of the NSGA-II scheme depends on the 

number of orders 𝑁 and the number of wafer fabs m. We reuse the instances provided by Kim and Lim 

(2012) for the single-fab case. Similar to Mönch et al. (2020), instances for 2=m  are generated for each 

of the single-fab instances by assigning each lot with equal probability to one of the two wafer fabs. Variable 

costs are set as 𝑣𝑖𝑘 ≡ 𝑘 for 𝑖 = 1, … , 𝑁, 𝑘 ∈ {1,2}  whereas the fixed costs are taken from a discrete uniform 

distribution 𝑝𝑖𝑘~𝐷𝑈[100, 200, 300, 400, 500]. The design of experiments is summarized in Table 1. 

Overall, we consider 20 problem instances in preliminary computational experiments. 

In the first experiment, we are interested in assessing the computational tractability of the 𝜖-constraint 

method. Here, we measure the computing time per problem instance. In a second experiment, we are interes- 
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Table 1: Design of experiments. 

Factor Level Count 

# of orders  N  25, 50 2 

# of wafer fabs  m  2 1 

Independent replications  10 for 25N  

10 for 50N  

Total number of problem instances  20 

 

ted in the performance of the NSGA-II approach, especially when the LS scheme is used. The proposed 

NSGA-II variants determine an approximation of the Pareto frontier. Instead of comparing the algorithms 

based on objective function values, quality measures are computed from the approximation sets (Van 

Veldhuizen 1999, Zitzler et al. 2003). Let 
H

Y  be the set of solutions obtained by the heuristic 𝐻 and 
true

Y  

be the related set of true Pareto-optimal solutions. The overall non-dominated vector generation (ONVG) 

measure is given by 

 

             
HH

YYONVG : , 

 

i.e., it is the number of non-dominated solutions obtained by H . In addition, we measure the number of 

solutions that 
H

Y and 
true

Y have in common. This measure is called the overall true nondominated vector 

generation (OTNVG)), given by 

 

𝑂𝑇𝑁𝑉𝐺 ≔ |{𝑦|𝑦 ∈ 𝑌𝐻 ∩ 𝑌𝑡𝑟𝑢𝑒}|. 
 

The overall non-dominated vector generation ratio (ONVGR) measure is obtained by: 

 

     trueHtrueH YONVGYONVGY,YONVGR : . 

 

Moreover, the ratio of solutions in 
H

Y  that are not in 
true

Y , is defined by 

𝐸𝑟𝑟𝑜𝑟 ≔ (𝑂𝑁𝑉𝐺(
H

Y ) − 𝑂𝑇𝑁𝑉𝐺) 𝑂𝑁𝑉𝐺(
H

Y )⁄ . 

A distance measure proposed by Jaszkiewicz (2004) is applied that computes the mean distance of solutions 

provided by H  to the nearest solution of the true Pareto front. Therefore, we introduce the quantity: 

 

                 212minmax22minmax2
ˆˆ:ˆ, TCTCyTCyTCTTTTyTTyTTyyd   

 

for HYy  and 
trueYŷ  where 

max

kf  and 
min

kf  are the maximum and minimum of the k-th objective 

function component found among the solutions from HY  and trueY . The average distance of a solution from 

HY  to the closest solution in trueY  is obtained by: 

 

     
HYy Yy

trueH
YONVGyydYYdist

H true
  








2

ˆ
ˆ,min:, . 

 
All the computational experiments are carried out on a Intel® Core™ i7-7700 CPU 3.60GHz PC with 

16GB RAM. The pure NSGA-II and the LS-NSGA-II are performed using a computing time of 30 and 60 

minutes per instance for 𝑁 = 25 and 𝑁 = 50, respectively. 
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5.2 Parameter Setting and Implementation Issues 

Some preliminary computational experimentation is carried out to set appropriate parameter values. A 
population size of 300 is used in the NSGA-II-type approaches. Moreover, 20% of the population are 

replaced by randomly chosen new elements as suggested by Bean (1994) for RKGAs. We use 7.0ρ  for 
the uniform crossover. The NSGA-II approach is coded using the MOMHLIB++ (Jaszkiewicz 2023), a 
framework for multi-criteria evolutionary optimization written in the C++ programming language. The 𝜖-
constraint method is coded using again the C++ programming language and IBM CPLEX 12.7.1. 

5.3 Results 

The computing time per instance for the 𝜖-constraint method ranges from 1 until 78 minutes for 𝑁 = 25. 

Its average value is 7 minutes. Due to the high computational burden, only experiments for 𝑁 = 25 are 
conducted. Even a computing time of several hours per instance is not sufficient to solve the instances for 
𝑁 = 50. Next, computational results for small-sized instances of the BC-MF-OLP problem for the NSGA-
II variants are presented. This allows us to compare the heuristics with the true Pareto frontier 
𝑌𝑡𝑟𝑢𝑒 obtained by the  -constraint method. All heuristics are performed five times with different seeds for 
each instance since the NSGA-II variants contain stochastic elements. The set of solutions is then formed 

by these five replications where dominated solutions are removed. The results are shown in Table 2 where 
best results among comparable results are marked bold. Instead of reporting individually the performance 
measure values for all instances, we show the average values across the ten instances and the best and worst 
ONVGR and Error values. 

Table 2: Computational results for 𝑵 = 𝟐𝟓. 

Instance ONVG OTNVG ONVGR Error dist 

NSGA-II  

best - - 0.850   0.567  0.0071   

worst - - 0.374 0.887 0.0543 

average 9.58  2.18  0.635  0.730  0.0267  

LS-NSGA-II  

best - - 1.000 0.020  0.0001   

worst - - 0.730   0.349  0.0045   

average 14.14  12.54  0.916  0.110  0.0023  

 
We observe from Table 2 that the LS-NSGA-II outperforms the pure NSGA-II for all performance 

measures. However, even the LS-NSGA-II is not able to find the entire true Pareto front. This behavior can 
be also observed in Figure 1 where the true Pareto front and the one obtained by the LS-NSGA-II are 
visualized. Next, we show the computational results for the instances with for 𝑁 = 50 in Table 3. The true 
Pareto front is formed by all known solutions for this problem instance where dominated solutions have 

been removed. We observe again from Table 3 that the LS-NSGA-II outperforms the pure NSGA-II for all 
performance measures. Again even the LS-NSGA-II is not able to determine the entire true Pareto front. 
However, the values of the distance measure are fairly small. 

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

In this paper, we introduced and discussed a bi-criteria order-lot pegging problem arising in semiconductor 
supply chains. The 𝜀 − constraint method was used for small-sized instances to compute the Pareto frontier 

where we assume that all problem data is integer. Moreover, a NSGA-II approach hybridized with local 
search based on the random-key representation proposed by Mönch et al. (2020) for the single-criterion 
version of the problem with the TT measure was designed. The NSGA-II approach only works for the 
special case that the variable cost only depends on the wafer fab but not on the order. 
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Figure 1: Pareto frontiers for a single problem instance. 

Table 3: Computational results for 𝑵 = 𝟓𝟎. 

Instance ONVG OTNVG ONVGR Error dist 

NSGA-II  

best - - 1.000  0.983  0.0304  

worst - - 0.600  1.000 0.1561  

average 12  0.02  0.824  0.998  0.0845  

LS-NSGA-II  

best - - 0.930  0.483  0.0097  

worst - - 0.615  0.779  0.0283  

average 10.72 3.14 0.716 0.660 0.0173 

 
There are several directions for future research. First of all, we are interested in improving the proposed 

NSGA-II approach by designing a more appropriate local search procedure. More computational 
experiments with larger problem instances must be carried out to get a full picture of the performance of 

the proposed NSGA-II approach. Moreover, it is planned to extend the NSGA-II approach to the situation 
that the variable cost depends on the order and the wafer fab. We know from preliminary computational 
experiments with the 𝝐-constraint method that solutions are possible that contain split orders, i.e., the 
compact pegging method and the representation method proposed in this paper will not work anymore. 
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