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ABSTRACT 

This paper presents a methodology for predicting queue times in semiconductor fabrication, where 
numerous complex and costly pieces of equipment are utilized. Queue time, occurring between continuous 
single or multi-processes, is a crucial factor affecting the quality of wafers, which can significantly impact 

costs. While most semiconductor fabrications use queue time limits as a key dispatching factor, some wafers 
may still be scrapped or reworked. By predicting queue times, we can reduce unnecessary waste by blocking 
or re-dispatching wafers. Two approximations are proposed and compared based on accuracy and 
prediction time: a machine learning model trained using experimental results and a multi-resolution 
simulation model with varying fidelity levels. The simulation model is validated using the SMAT2022 data 
set. 

1 INTRODUCTION 

A semiconductor FAB, a manufacturing system consisting of hundreds of complex and expensive 
equipment, has become increasingly larger in scale compared to the past. As a result, the automated material 
handling systems (AMHS) for transporting wafers inside the FAB, such as overhead hoist transport (OHT), 
track, buffer, and stocker, have become more complex. Therefore, modeling such semiconductor FAB can 
be performed by considering various technical constraints, hundreds of unit processes and reworks, and 

complex characteristics (Kopp et al. 2020). For example, some processes restrict the start time of the 
following process within a specified time to prevent oxidation or contamination on the surface of wafers 
(Scholl and Domaschke 1994). Accordingly, it is crucial to meet the queue time, the restricted time between 
such specific processes. Exceeding the queue time can result in wafers being reworked or scrapped, which 
can have negative impacts on production volume and cost efficiency (Tu et al. 2010). Queue time is 
generally defined as the period between the end time of the previous process and the start time of the 

following process. Moreover, there may exist single or multi processes between the two processes, which 
subject to queue time constraints. In most cases, constraints regarding queue time are incorporated into 
equipment dispatching rules. However, even between single processes, there may be pre-processing tasks 
such as measurement, batch size configuration, and preventive maintenance (PM) that must be performed, 
resulting in a violation of queue time constraints. If the queue time can be predicted in advance, it would 
be possible to prevent the violation by blocking wafers entering equipment or re-dispatching to other 

equipment.  
However, the constraint of queue time makes production scheduling more difficult and complex 

(Klemmt et al. 2012). As a result, predicting queue time in semiconductor FABs with such complex 
production environments is very challenging. For this reason, most research on queue time in 
semiconductor FABs has focused on the constraint of queue time and scheduling methodologies. Robinson 
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and Giglio (1999) proposed a methodology for selecting inter-process time constraints and predicting the 
probability of rework in the process. Yu et al. (2013) proposed a lot scheduling methodology using time 
constraints between two processes. Sadeghi et al. (2015) proposed an approach using a disjunctive graph 

model and a list scheduling algorithm to estimate the probability of satisfying inter-process time constraints. 
However, there are only a few papers that address predicting queue time. Lee et al. (2020) collected 
predictive variables that are believed to influence waiting times based on information on work-in-process 
(WIP) at the start of the process and dispatching rule information. He used them to create a deep learning-
based prediction model to forecast the waiting times of wafer lots with time constraints between processes. 
However, challenging to construct a robust predictive model for queue time in a complex FAB system using 

only WIP and dispatching information.  
The objective of this study is to propose a new prediction methodology for queue time in a 

semiconductor FAB. Two approximations are proposed to predict the queue time and compared in terms 
of accuracy and prediction time. Section 2 explains two methodologies and compares their respective 
strengths and weaknesses. Section 3 evaluates how well each methodology can predict queue times through 
the experiments. Conclusions and future research directions are presented in Section 4. 

2 METHODOLOGY FOR QUEUE TIME PREDICTION  

2.1 Artificial Intelligence Model 

The artificial intelligence (AI) model used in this paper is a data-driven machine learning prediction model 
that trains and creates a model using explanatory and response variables and predicts the target using the 
generated model. The biggest characteristic of AI-based prediction models is that they are heavily 
influenced by data. Therefore, the accuracy of the model can vary significantly depending on the quantity 

and quality of the data used as explanatory variables. However, once the prediction model is created, the 
time required for making predictions is very short, and the performance of the model can be improved by 
using additional data. 

2.2 Multi-Resolution Simulation Model 

Multi-resolution modeling refers to representing a target system using models of different resolutions that 
are at different abstraction levels, depending on the objectives of the modeling. And each model at different 

resolutions represents a single target system in a complete form. Unlike AI prediction models, whose 
accuracy can vary significantly depending on the quantity and quality of the collected data, simulation-
based prediction models can have significantly different prediction times depending on the level of 
resolution. Multi-resolution modeling allows simulations to be conducted at various resolutions as needed. 
In this approach, the objective can be achieved by performing additional modeling on the existing model 
(Hong 2014; Song et al. 2022).   

Figure 1: Multi-resolution modeling. 
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Figure 1 is a diagram that classifies the multi-resolution simulation model according to resolution levels. 
As the resolution level increases, simulation models require more data and can achieve higher accuracy, 
but there is a possibility of slower simulation performance. On the other hand, as the resolution level 

decreases, simulation models require fewer data, and although the model's accuracy is relatively lower, 
simulation performance may be faster due to the higher simulation acceleration.  

3 EXPERIMENTS FOR PREDICTION METHODOLOGIES 

3.1 SMT2020 Data Set 

To validate the two queue time prediction methodologies proposed in this paper, a simulation model 
combining an automated material handling system (AMHS) and a FAB layout was used based on the 

SMT2020 dataset (Kopp et al. 2020). The SMT2020 dataset is classified into four types of datasets, as 
shown in Table 1, to provide a realistic experimental environment for discrete-event simulation researchers 
in the semiconductor manufacturing industry. 

Table 1: Classification of SMT2020 data set. 

Set Feature High volume 

Low Mix 

Set Low volume 

High Mix 

1 

Plan Type Make to stock (Push) 

2 

Make to order (Pull) 

App. Target Logic device Logic or memory device 

Number of products 2 products 10 products 

Due date No due date Required 

Engineering Lot Not contain Not contain 

3 

Plan Type Make to stock (Push) 

4 

Make to order (Pull) 

App. Target Logic device Logic or memory device 

Number of products 2 products 10 products 

Due date No due date Required 

Engineering Lot Contain Contain 

 
 For this experiment, the most complex and largest dataset 4 was used, which is suitable for mass 
production of small varieties of products, with a make-to-order (MTO) planning type that includes hot lots 
and engineering lots. There are a total of 10 product types in the dataset, with each product having 242-583 

different process steps. Based on the characteristics of each process, they are broadly classified into 11 
functional categories. In addition, the 11 process types are composed of 105 equipment groups with 
different types of equipment: table, batch, and cascading equipment types, depending on the characteristics 
of the equipment. 

3.2 SMAT2022 Data Set 

In this experiment, we added an AMHS-based logistics model to the SMT2020 process model for a more 

specific semiconductor FAB environment. Lee et al. (2022) added logistics information such as bay layout, 
buffer, and vehicles to the SMT2020 model to create a new dataset called SMAT2022. In SMAT2022, the 
OHTs move along the bay layout and transport lots. The logistics layout was configured using the spine 
type commonly used in FABs.  

2174



Kim, Lee, and Park 
 

 

Table 2: Classification of SMT2020 data set. 

Category Group Feature 

Production All features of SMT2020 data set 

Material Handling 

Layout 

Spine configuration 

3 Inter-bays 

40 Intra-bays 

AMHS 
500 OHTs 

734 ZCUs 

Buffers 
18000 STB/UTBs 

40 Stockers 

 
 Table 2 shows the process and logistics models used in SMAT2022. Based on Tables 1 and 2, the 
simulation model based on SMAT2022 and the FAB layout used in the experiment were constructed, 

resulting in Figure 2. The SMT2020 dataset 4 used in the experiment contains queue time defined between 
various process steps, and the experiment was conducted by selecting one representative step of the main 
process with queue time constraints in the table, batch, and cascading type equipment. 
 

Figure 2: Layout of FAB model. 

3.3 Two Consideration for AI base Queue Time Prediction Model 

In the first experiment, we performed queue time prediction based on an AI model. To predict queue time 
using the AI model, we considered two main factors. The first is determining the prediction timing, which 
can be broadly classified into two categories in this experiment, as shown in Figure 3. 

Figure 3: Two points of prediction time 𝑡1, 𝑡2. 
 

In the case of  𝑡1, it represents the dispatching timing of the starting process with queue time constraints. If 
the prediction timing is set to  𝑡1, it would be possible to prevent the waste of wafers by preventing the 
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input of lots that exceed the predicted queue time at the dispatching timing or by re-dispatching them. On 
the other hand, 𝑡2 represents the dispatching timing of the ending process where the queue time constraint 
ends. In this case, since the processes with queue time constraints have already been performed, it is 

necessary to start the ending process within the remaining time. Therefore, it is not possible to prevent lot 
input itself, and if there are no idle equipment available, there may be cases where the queue time is 
exceeded. In this experiment, 𝑡1 was set as the prediction timing so that the prediction results could be used 
for equipment re-dispatching. 
 The second consideration was which variables to use as explanatory variables for training the prediction 
model. Since 𝑡1 was set as the prediction timing, only variables that could be collected at 𝑡1 had to be used 

for training the model. We defined the six variables with the highest explanatory power, as shown in Table 
3. Table 4 represents the variables which are considered before the variables of Table 3. 

Table 3: Input & output variables of the prediction model. 

Input 
variable 

𝑥1 Average queue time of the last 3 measurements 

𝑥2 WIP count of tool group 𝑜𝑝𝑒𝑟𝑖+𝑛 

𝑥3 Average of the time stored in the buffer for the last 3 

𝑥4 The ratio of available equipment count to the total equipment 

𝑥5 Lot priority 

𝑥6 Critical ratio 

Output 

variable 
𝜆 Queue time 

Table 4: Previous variables of the prediction model. 

Input 
variable 

𝑥1
′  The average length of the route that the last three lots passed through. 

𝑥2
′  The average delivery time of the last three lots 

𝑥3
′  Whether the lot is a hot lot or not 

𝑥4
′  Whether the lot is an engineering lot or not 

𝑥5
′  Total number of equipment 

𝑥6
′  The ratio of WIP count to equipment count 

𝑥7
′  The number of equipment with preventive maintenance (PM)  

𝑥8
′  The number of OHTs passing through the target route 

Output 
variable 

𝜆′ Queue time 

 

𝑥1 in Table 3 represents the average queue time of the last three measurements passing through the same 
𝑜𝑝𝑒𝑟𝑖 and 𝑜𝑝𝑒𝑟𝑖+𝑛, 𝑥2 represents the WIP count of the tool group 𝑜𝑝𝑒𝑟𝑖+𝑛 , and 𝑥3 represents the average 
time stored in the last three buffers. Additionally, 𝑥4 represents the ratio of available equipment in the tool 
group 𝑜𝑝𝑒𝑟𝑖+𝑛 to the total equipment, 𝑥5 represents the priority of the lot, and 𝑥6 indicates the ratio of the 
remaining delivery date and remaining process time for the lot.  
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3.4 Simulation Environment for Experiments 

In the first experiment, the variables in Table 3 are collected from SMAT2022 simulation model mentioned 
in Section3.2. Simulation time was set to 180 days of warm-up period and 180 days of simulation period. 

The target step for the experiment was limited from 034 wet etch to 035 lithography, with a tool group of 
table type and a queue time limit of 2 hours. The process time is set at 1.14𝑚𝑖𝑛 and 2.78 𝑚𝑖𝑛 respectively. 

 Each variable was collected at points 𝑡1 through 𝑡7, as shown in Figure 4. In this case, the queue time 
𝜆 can be obtained by summing the differences between 𝑡2 and 𝑡6, which corresponds to the sum of 𝑠2 
through 𝑠5. Table 5 represents annotations from 𝑡1 to 𝑡6. 

Table 5: Annotations from 𝑡1 to 𝑡6. 

𝑡1 Dispatching time of tool group 𝑜𝑝𝑒𝑟𝑖  

𝑡2 Process completion time in tool group 𝑜𝑝𝑒𝑟𝑖 

𝑡3 Arrival time at STB  

𝑡4 Departure time at STB 

𝑡5 Arrival time at tool group 𝑜𝑝𝑒𝑟𝑖+𝑛 

𝑡6 Process starting time in tool group 𝑜𝑝𝑒𝑟𝑖+𝑛 

 

3.5 LGBM based Queue Time Prediction Model 

In the first experiment, a total of 1,638 queue time logs were collected, and we utilized this data as 
explanatory variables to build a light gradient boosting machine (LGBM) regression model. LGBM is a 
framework based on the gradient boosting algorithm, which utilizes tree-based learning. It has the 
advantage of high accuracy, efficient memory usage and fast speed (Ke et al. 2017). Hyperparameters that 
affect the model’s performance and learning rate were set to build a LGBM prediction model. Table 6 

below shows the hyperparameters we use. 

 

Figure 4: Collecting time points of input variables in the simulation model. 
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Table 6: Annotations from 𝑡1 to 𝑡6. 

𝑛𝑢𝑚_𝑙𝑒𝑎𝑣𝑒𝑠 31 

𝑙𝑒𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 0.1 

𝑛𝑢𝑚_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 100 

max _𝑑𝑒𝑝𝑡ℎ -1 

min _𝑐ℎ𝑖𝑙𝑑_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 20 

𝑟𝑒𝑔_𝑙𝑎𝑚𝑏𝑑𝑎 0 

 

 Figure 5 shows the queue time data collected from the simulation results, where the 𝑥-axis represents 
the name of the lot, and the 𝑦-axis represents the queue time of the lot. A total of 102 data points, accounting 
for approximately 6% of the entire dataset, exceeded the queue time constraint of 2 hours. 
 

Figure 5: Collected queue time data. 
 
 The training results are shown in Table 7, indicating that the percentage of predicted queue times within 

±300 seconds of the actual queue time was 31%, within ±600 seconds was 50%, and within ±900 seconds 
was 65%. Considering the processing time of the target process, which is 167.04 seconds, these results 
imply that the performance of the prediction model is not very high. The reason for the low model 
performance can be found in the explanatory variables used in the model training. This is because the 
characteristics of the variables collected at 𝑡1 cannot fully reflect the situation at 𝑡6. That is, due to changes 
in the WIP state and equipment status resulting from the dispatching results during the time between the 

two points, it is difficult to accurately predict the queue time using only the explanatory variables collected 
at 𝑡1. 

Table 7: Prediction results of AI model. 

𝜀 bound 
(𝑠𝑒𝑐) 

Average 
(𝑠𝑒𝑐) 

Processing time 
(𝑠𝑒𝑐) 

In-bound rate 
(%) 

±300 

2,414 167.04 

31 

±600 50 

±900 65 
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3.6 Experiments for Multi-resolution Simulation Model based Queue Time Prediction Model 

In the second experiment, queue time prediction was performed based on both a high-resolution simulation 
model and a low-resolution simulation model, and their prediction accuracy and time were compared. The 

high-resolution simulation model was also constructed based on the SMAT2022 dataset, incorporating all 
process models and OHT levels. In contrast, the low-resolution simulation model was developed by 
collecting OHT delivery times from the simulation logs of the high-resolution model. Consistent with the 
previous experiment, we conducted simulations over a 180-day warm-up period followed by a 180-day 
simulation period. 

Figure 6: Comparison of multi-resolution simulation models. 
 

 The black data in Figure 6 represents the results from the high-resolution simulation, while the yellow 
data represents the results from the low-resolution simulation. When comparing the results of each 
simulation, Table 8 shows that the error range ε of the low-resolution simulation results compared to the 
high-resolution simulation model were within ±300 seconds for 76% of the cases, ±600 seconds for 95% 

of the cases, and ±900 seconds for 96% of the cases, indicating a high level of fidelity. Furthermore, the 
average computation time of each model was found to be 7,066𝑚𝑠 for the high-resolution simulation model 
and 221 𝑚𝑠 for the low-resolution simulation model. 

Table 8: Prediction results of AI model. 

𝜀 bound 
(𝑠𝑒𝑐) 

Computation time of 
high-resolution model 

(𝑚𝑠) 

Computation time of 
low-resolution model 

(𝑚𝑠) 

In-bound rate 
(%) 

±300 

7,066 221 

76 

±600 95 

±900 96 

4 CONCLUSION 

In this study, two approaches for predicting queue time in semiconductor fabs were presented: an AI-based 
queue time prediction methodology and a multi-resolution simulation-based queue time prediction 
methodology. The strengths and weaknesses of each approach were discussed, and experiments were 
conducted. To predict queue time based on AI models, we set the prediction time and explanatory variables 
and trained using the LGBM learning algorithm, which is a tree-based algorithm. The percentage of 
predicted queue times within ±300 seconds was 31%, within ±600 seconds was 50%, and within ±900 
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seconds was 65%, indicating that the model's performance was not satisfactory considering the processing 
time of the target process.  

To improve the prediction accuracy, we performed queue time prediction based on multi-resolution 

simulation and lowered the model resolution to secure fast computation time. Comparing the low-resolution 
model with the high-resolution model, the low-resolution model showed a 76% match with the high-
resolution model in terms of the error range of ±300 seconds and a 95% match for the error range of ±600 
seconds and a 96% match for the error range of ±900 seconds. The average computation time required for 
queue time prediction was 221𝑚𝑠 for the low-resolution model, which is more than 30 times faster than the 
high-resolution model. This indicates that when it is not possible to extract the correct explanatory variables 

for AI model construction in queue time prediction that requires both accurate prediction results and fast 
prediction times, a multi-resolution simulation model can be used. 
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