
Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

DEEP LEARNING ENABLING DIGITAL TWIN APPLICATIONS IN PRODUCTION
SCHEDULING: CASE OF FLEXIBLE JOB SHOP MANUFACTURING ENVIRONMENT

Amir Ghasemi

Amsterdam School of International Business
Amsterdam University of Applied Sciences

Fraijlemaborg 133
Amsterdam, 1102 CV, NETHERLANDS

Yavar Taheri Yeganeh
Andrea Matta

Department of Mechanical Engineering
Politecnico di Milano
Milan, 20156, ITALY

Kamil Erkan Kabak

Dept. of Industrial Engineering
Izmir University of Economics

Izmir, 35330, TURKEY

Cathal Heavey

CONFIRM Research Centre
School of Engineering
University of Limerick

Limerick, V94 T9PX, IRELAND

ABSTRACT

Digital twin-based Production Scheduling (DTPS) is a process in which a digital model replicates a
manufacturing system, known as a “Digital Twin (DT)”. DT is essentially a virtual representation of
physical equipment and processes that are connected to the physical environment using an online data-sharing
infrastructure within the Manufacturing Execution System (MES). In the case of reactive scheduling, DT is
used to detect fluctuations in the scheduling plan and execute rescheduling plans. In proactive scheduling,
it is used to simulate different production scenarios and optimize future states of production operations.
Replicating detailed simulation models in most PS cases is highly computationally intensive, which negates
against the main goal of DT (online decision making). Thus, this research aims to examine the possibility
of using data-driven models within the DT of a Flexible Job Shop (FJS) production environment aiming
to provide online estimations of PS metrics enabling DT-based reactive/proactive scheduling.

1 INTRODUCTION

Digital Twin (DT), as one of the key technologies derived from Industry 4.0, refers to a virtual representation
of a physical system or object, such as a machine, a production line, or a factory. This virtual model is
created using real-time data obtained from sensors, Internet of Things (IoT), and other data sources to
simulate the behavior of the physical system (Liu et al. 2021). DTs provide manufacturers with real-time
monitoring and analysis of the performance of their physical assets, allowing them to optimize performance
and identify areas for improvement.

Production Scheduling (PS) is a critical module within manufacturing systems planning that involves
creating a detailed plan for production processes. The production schedule usually outlines the sequence
of operations, the timing of each operation, and the resources required for each operation. Today, in the
globalized and competitive market, there is no doubt about the crucial role of PS modules in manufacturing
systems that allow manufacturers to utilize their resources efficiently and effectively to meet production goals.
Within this context, reactive and proactive scheduling are two distinct approaches for PS in manufacturing.
Reactive scheduling is characterized mainly by the need to respond to unforeseen or unexpected events that
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disrupt the planned production schedule. Such disruptions may be caused by machine failures, supply chain
delays, or other unforeseen events that require immediate response. In this approach, a decision maker (a
human scheduler or a robot) is responsible for making quick decisions and communicating changes to the
production unit (Takeda Berger et al. 2019). Proactive scheduling, on the other hand, involves anticipating
potential disruptions and taking preventive measures to minimize their impact on the production schedule.
This approach involves using tools to analyze data, predict future states of the production environment,
and generate optimized production schedules based on these various scenarios. Proactive scheduling may
consider factors such as demand forecasts, expected machine downtime for maintenance, and potential
delays in each production step (e.g., processing time fluctuations) (Zhang et al. 2022). In both discussed PS
strategies, the existence of a control system with data sharing capabilities is the key required infrastructure.
In modern manufacturing systems, such as semiconductor manufacturing, this infrastructure is usually
provided by the Manufacturing Execution System (MES). MES typically provides functionality for real-
time data collection, PS, work order management, quality control, material management, and maintenance
management. MES systems capture data from various sources, such as machines, sensors, and manual input
from operators on the shop floor. This data is then analyzed and used to monitor production performance,
identify bottlenecks, and make real-time decisions to optimize production production (Jaskó et al. 2020).
As discussed above, DT is one of the tools proposed within the context of Industry 4.0 to provide real-time
decisions regarding different aspects of a production unit, such as PS.

Accordingly, Digital twin-based Production Scheduling (DTPS) refers to generating scheduling plans
based on fully or partially online simulation experiments using reactive, proactive, and/or hybrid PS
strategies. These experiments (depending on the decision-making procedure) include online simulation
models of the production unit and predictive simulation experiments examining future PS states. This is
facilitated through the online data sharing infrastructure provided by the MES.

In recent years, there has been a growing interest in DTPS within the scientific community, particularly
in the context of Industry 4.0 (Negri et al. 2020). In a recent study, Li et al. (2023) developed a reactive PS
strategy using a DT. Their proposed architecture consists of a) Data Acquisition / Handheld terminals: to
capture and transmit a physical job-shop production environment; b) Job-Shop Service System: to provide
optimized reactive scheduling plans; c) Virtual Job Shop: to simulate the physical environment in an online
manner. Within this architecture, the moment Job Shop Service System detects a PS anomaly (e.g., due to
state, load, and processing time failures), it starts to develop rescheduling plans using a Grey Wolf Optimizer
integrated with the online simulation model. Within the same research domain, Zhang et al. (2022) proposed
a proactive PS methodology to be used within the DT of a job shop production environments. In their
proposed methodology, local adjustment and right-shift strategies were used to minimize the total makespan
of upcoming operations. Their research mainly proposed a theoretical framework for proactive DTPS,
however, they did not discuss the required data sharing infrastructure (MES connection) required to execute
such methodologies.

In other research, Negri et al. (2021) proposed a framework for real-time scheduling in a flow shop
environment that integrates a decision tree module, a Genetic Algorithm (GA)-based optimization module,
and a DT. The framework uses real-time data from accelerator sensors to compute the failure probability of
the equipment and to simulate the performance of different production schedules. Their results demonstrated
the viability of the framework and its applicability to flow shops and suggested that it could be adapted to
other types of production system. Their article also discussed the importance of considering the standard
deviation of performances in addition to makespan when selecting the best schedules. Villalonga et al.
(2021) designed and implemented a framework for automated decision-making in cyber-physical production
processes using DT-based architectures. Their proposed framework combined a fuzzy inference system
and a scheduling procedure to provide efficient decision-making at both the local and global levels of a
production system. Their framework integrates local DT into a global representation and uses real-time data
collection and analysis for dynamic decision making. Their results showed that the proposed architecture
outperforms the available solutions on the market in terms of flexibility and automated decision making.
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However, the computing constraints for re-scheduling was their main declared limitation. On the one hand,
one of the key features of DTPS is the ability to make online scheduling decisions using simulation and
optimization experiments, however, the execution of a large number of simulation experiments to measure
scheduling metrics in complex manufacturing systems is highly computationally intensive (Ghasemi et al.
2021).

ML models are an alternative to estimate PS metrics within complex manufacturing systems (Usuga Ca-
david et al. 2020). In general, using ML models to estimate PS metrics consists of training, testing, tuning,
and estimating steps. In more recent research, Li et al. (2023) proposed a Deep Reinforcement Learning
(DRL) agent to minimize total tardiness in a Permutation Flow Shop Scheduling Problem (PMSP) with
family setups. The proposed agent uses novel variable-length representations for state and action, which
enables the agent to calculate a comprehensive priority for each job and select the job based on these
priorities every time a machine is idle. The agent uses a Recurrent Neural Networks (RNN), specifically
Gated Recurrent Unit (GRU), to approximate the agent policy, which captures the sequential relationships
between jobs and handles variable-length sequences. They designed a two-stage training strategy to train
the agent under a sparse reward function. The main limitations of their research are lack of dynamic
and uncertain constraints such as new job insertions and machine breakdowns within their studied PS
environment.

Jeong et al. (2023) addressed the scheduling problem of a wet clean station in semiconductor manu-
facturing where information on internal operations and settings is not available. To overcome this, their
study proposed ML-based dispatch methods to find the best combination of recipes with the objective
of minimizing the makespan. ML models were driven using data obtained from the track in and out
times of each wafer lot, and a method was suggested to convert a sequence of recipes into input data in
a matrix structure. The proposed ML models predicted the times that wafer lots spend in the wet clean
station, depending on the combination of recipes sequentially processed in the station. Through a series of
computational tests, the proposed models were evaluated and confirmed to be applicable to an actual fab,
improving the productivity of the wet clean station. The study demonstrated the possibility of developing
ML models for scheduling lots in an environment where there is no progress history inside the facility.
However, the study was limited to only 10 product types. In earlier work on data-driven methods, Stricker
et al. (2018) presented a new data-driven DRL algorithm designed to improve the operational performance
of complex semiconductor production systems. In this example, the model assumes that the system state
information is fully observable in real time, which is not always be the case in practice.

In summary, the computational intensity of simulation experiments prevents DT from being used as a
tool for PS in complex manufacturing systems. To alleviate this issue, trained ML models can assist the DT
in estimating the required scheduling metrics without executing a large number of simulation experiments.
However, the application of ML models within the literature is mainly limited to selecting dispatching
rules. Moreover, to simplify the ML application domain, within the literature, several critical aspects of
real-time dynamic scheduling of manufacturing systems are ignored. Thus, in this research, the following
content is provided:

• A simulation model that simulates the behaviors of the photolithography workstations in a semicon-
ductor front-end fab as a Flexible Job Shop (FJS) environment. The considered FJS is considered
at time point t with stochastic initial machines blockage times, stochastic sequence dependent setup
times, and stochastic processing times.

• An ML-based solution (i.e., metamodel) for predicting makespan is developed. The methodology
utilizes deep learning methods to capture the complexities of the FJS environment. Specifically,
the architecture of the DL models are based on RNNs and attention mechanism.

The remainder of this article is organized as follows. Section 2 describes the considered manufacturing
system’s environment. Section 3 details parameters of the simulation model and the architecture of the
generated data sets for ML. Section 4 details the configuration of the DL models used within this research.
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Section 5 provides the experiments results after training and testing the proposed ML models. Section
6 discusses the findings, while Section 7 concludes the article and presents potential avenues for future
research.

2 PROBLEM DESCRIPTION

Figure 1 shows the general research framework considered in this article. In this study, we examine a fully
automated manufacturing cell, which bears resemblance to a photolithography environment in semiconductor
manufacturing systems. In semiconductor manufacturing fabs, photolithography tools are fully automated
sequences of several different toolsets in tendon. With high financial stakes, they are more than often
pushed into high levels of utilizations for throughput optimization. This dictates most of the time their
operation sequences to follow some preferable patterns with reasonable dispatching algorithms. In other
words, photolithography tools are the least likely toolsets in semiconductor fabs to operate as flexible cells.
Acordinglly, the flexiblity in the production cell is limited in this research. Typically, such manufacturing
cells incorporate a cell controller, which integrates a combination of software and hardware components,
including sensors, actuators, Programmable Logic Controllers (PLCs), and Supervisory Control and Data
Acquisition (SCADA) systems, to administer manufacturing processes. The cell controller establishes
a communication link with the MES, receiving directives and data on the type, quantity, and timing of
the products to produce. The cell controller employs this information to manage the equipment in the
manufacturing cell and generate the required products. Furthermore, the cell controller acquires production
process data, such as machine status, cycle times, and production counts, which are transmitted to the
MES for monitoring and analysis. This feedback mechanism enables the MES to optimize production and
ensure that the manufacturing process is functioning efficiently.

Within the MES system, the Transaction Server, Database, and Web Server are integral components.
The Transaction Server acts as a mediator between the MES system and other manufacturing systems,
like the Cell Controller, and manages the transactions between them. The database, on the other hand,
is the central storage location for all manufacturing data within the MES system. This includes essential
information such as production schedules, inventory levels, equipment status, quality control data, and other
metrics. The database plays a critical role in ensuring data accuracy and consistency, while also providing
a reporting and analysis platform for users to gain insights from the data. Finally, the Web Server serves as
the interface for users to interact with the MES system through a web browser. Tasks such as scheduling
production runs, monitoring equipment status, and reviewing production data can be performed through
the user interface provided by the Web Server to the Web Client.

In this study, the objective is to develop an ML model capable of accurately estimating PS metrics for
a manufacturing cell. To achieve this goal, it is necessary to gather data related to jobs, scheduling plans,
machines, queues, and actual performance metrics obtained for each PS plan. The collected data will serve
as the input features for the ML model, which will be trained to accurately estimate the desired PS metrics
(Targets) for a given state of the manufacturing cell. The trained ML model is then used within the MES
system to facilitate online/dynamic scheduling of the production cell.

To provide a detailed description of the production scheduling (PS) environment considered in this
research, Tables 1 and 2, together with Figure 2 are presented as an example of the fully-automated
manufacturing cell at time point t. As depicted in Table 1, the example involves two jobs, J1 and J2, with
the former having three operations (O11,O12, and O13) and the latter having two operations (O21 and O22).
Furthermore, each operation can be performed on any of the three available machines (M1,M2 and M3).
Table 2 illustrates the operation sequence tuples that require a machine setup due to operational changes,
such as a change in the mask (reticle). For instance, if operation four is scheduled after operation one on
any machine, an additional setup is required to process it.

Figure 2 shows an arbitrary schedule for the production cell. Accordingly, as shown in Figure 2, at
time point t each machine is blocked to process previously scheduled operations (for instance, M1 will be
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available at time point t +b′1). Moreover, as defined in Table 2, to process operation five after operation
two, a setup should be operated on M1 that lasts for S2,5 time units.

Figure 1: The General Framework Proposed in this Research.

Table 1: Flexible Job Shop production information.

job operation (id) machine set job operation machine set
J1 o11(1) M2,M3 J2 o21(4) M2,M3

o12(2) M1,M2 o22(5) M1,M2
o13(3) M1,M3

Table 2: Setup Required Operation Sequences.

setup required sequences
(1,4),(1,3),(1,5),(2,4),(2,5),(3,5),(4,2)

Overall, the considered FJS production environment in this research has specific features mimicking
a real fully-automated production cell (such as photolithography) as follows:

• The production cell is observed at time point t > 0 through extracting data from the MES database
(in real time).

• At time point t, each machine is not available for specific a period (b′ ≥ 0) due to processing
running operations. This amount of time is stochastic since the variation is considerable but there
is available historic data for it.

• There is a defined set of capable machines to process each operation, which is due to the required
technology or quality.

• The processing time of each operation i on machine m (p′im) and the required setup time to process
operation i′ after operation i (si,i′) are uncertain but there is available historical data to estimate
them. Based on their considerable variability, they are both considered as stochastic values.

• The Makespan (Cmax) refers to the completion time of the latest operation.
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Figure 2: Proposed Flexible Job Shop Environment Example.

The following section details the simulation model developed to generate MES data dynamically for
the described FJS production environment.

3 SIMULATION BASED MES DATA GENERATION

Table 3 details the parameters of the FJS environment considered in this investigation. These parameters are
used to generate FJS instances and their simulation results according to the Makespan values. Consequently,
the FJS test bed, in this investigation, consists of a manufacturing cell with eight machines (NM) and 12 jobs
(NJ) waiting to be scheduled on these machines at time t. There are a total number of NO operations for these
jobs that, for this illustrative example, follow the discrete uniform probability distributionU(8×NJ,10×NJ).
Furthermore, the total number of sequences with setup times is equal to 0.5×NO. According to Ghasemi
et al. (2020), the processing time (p′) of operations in a photolithography workstation follows a gamma
distribution (γ) with shape and scale parameters equal to 26.98 and 2.448, respectively. To reflect the
features of a fully automated production cell, we consider the same distribution for processing times. To
generate setup times (S) within the simulation model, we assume that each setup time follows a probability
distribution with parameters 5× γ(26.98,2.448). Moreover, the initial scheduling block time (b′) at time
point t follows a mixture distribution of a discrete uniform distribution between 0 and 5 multiplied by
the distribution of p′. Finally, to calculate the Makespan values for each FJS instance, 100 randomly
independent simulation replications (SL) are executed.

Table 3: Considered FJS Environment.
NM NJ NO NS p′ S b′ SL

8 12 U(8×NJ,10×NJ) 0.5×NO γ(26.98,2.448) 5× γ(26.98,2.448) U(0,5)× γ(26.98,2.448) 100

In general, the simulation model acts as a function to estimate Makespan values for a given schedule
as follows:

Makespan = FSL(NM,NJ,NO,NS, p′,S,b,schedule) (1)

where, FSL refers to the average of Makespan values obtained from SL simulation replications. As discussed
above, executing simulation replications (experiments) in the case of complex manufacturing environments
is usually highly time-intensive, which is not feasible for online decision making within the context of DTPS.
Thus, in this research the main goal is to find a DL based metamodel with the following representation:

Makespan′ = g(NM,NJ,NO,NS, p′,S,b,schedule) (2)

where, g refers to the trained ML model (DL model) that estimates Makespan values. Figure 3 shows an
example of the generated training and testing data used to train and test the ML model. To distinguish
different parts of the generated data, each part of the data is highlighted with different colors. As discussed
in Section 2, the generated data consists of two parts ({Features/States}) and {Targets}. Here, Jobs Data,
b′ values, Setup Data, and Schedule are {Features/States} and Makespan values are targets. Note that,
in this example, due to space limitations we just provided Makespan values with SL = 10. Moreover the
developed simulation model to calculate Makespan values is available at the following repository: GitHub
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Figure 3: Generated MES Data Example.

Repository. The next section describes the developed ML model to find an accurate g (metamodel) in
equation 2 to estimate Makespan values.

4 DEEP LEARNING-BASED META-MODELING

DL has revolutionized the field of ML by enabling the construction of models that can learn hierarchical and
abstract representations of data (Goodfellow et al. 2016). The use of deeper layers allows for the capture of
levels of abstract features from the input data, leading to better performance compared to traditional shallow
ML models. Universal approximation theory (UAT) has provided a theoretical basis for understanding
the capabilities of Artificial Neural Networks (ANNs) - the core of DL - to approximate any continuous
function, provided that there are enough neurons (width and depth) and nonlinearity (Hanin and Sellke
2018; Lu et al. 2017). There are several architectures within DL that have been proposed to address specific
challenges in modeling the structure of data. For example, convolutional neural networks are suitable for
image data, while RNNs and Graph Neural Networks (GNNs) address processing sequences and graphs,
respectively. Ultimately, powerful DL solutions are usually carefully designed architectures considering the
underlying structure of their tasks. Accordingly, we propose to investigate the use of DL-based metamodels
for the proposed FJS in this research. Specifically, to create a function g described in the previous section.

4.1 Conceptualization

4.1.1 Recurrent Neural Networks

RNNs are powerful for modeling sequential data through utilizing hidden states that are similar to memory
while processing a sequence one by one in a recurrent manner resembling feed-back connection. The last
hidden states can be used to represent the whole sequence. However, standard RNNs are prone to vanishing
gradients and they suffer from inefficiencies for longer sequences (Hochreiter et al. 2001; Hochreiter et al.
2001). To overcome these limitations, Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber
1997) was proposed, which uses gating mechanisms to selectively retain or discard information in the hidden
states during sequence processing. The gating mechanism allows LSTM to learn long-term dependencies
and avoids the vanishing gradient problem. Another alternative to LSTM is Gated Recurrent Units (GRU)
(Cho et al. 2014), which use a simpler architecture than LSTM, with only three gates instead of four. GRU
usually have comparable performance to LSTM while they require fewer parameters and make them more
efficient in some applications.

4.1.2 Attention Mechanism

The ability to adaptively attend to the most important elements of sets or sequences is achieved by means
of the attention mechanism. It has been widely employed as a powerful component in DL. It can feature
as a permutation invariant function in some cases, particularly when applied to a single sequence, which is
called self-attention. Scaled dot-product attention creates normalized weights based on the query (Q) and
key (K) tensors to be applied to the elements of the value (V ) tensor to result in a representation for each
element of query. Each tensor is a batch of elements that are vectors with the same dimension. Vectors
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in Q and K have a dimension of dk while V has a dimension of dV . Accordingly, for each query vector,
attention weights are created based on its dot product to the vectors of the key tensor that has the same
number of elements as V . Multi-Head Attention (MHA) is its extension, where for each head different
weights are learned, and their resulting representations are combined for the final representation. In fact,
MHA divides the dimensions by the number of heads and creates an attention for each. Mathematically,
MHA can be formulated as follows (Vaswani et al. 2017):

Multi-Head Attention(Q,K,V ) = (
hn

i=1

headi) W O

headi = Attention(QW Q
i ,KW K

i ,VWV
i )

Attention(q,k,v) = Softmax(
qkT
√

dk′
) v

(3)

Where W Q
i ,W K

i ∈ Rdkx dk′ , and WV
i ∈ Rdvx dv′ (dk′ =

dk
h and dv′ =

dv
h ) are learned projection matrices, while

W O ∈ Rdvx dv is for combining the heads.
Both the scaled-dot attention and MHA have a linear form, but MHA can combine different attentions

without increasing the number of parameters. The attention-based architectures have been effectively
employed within different methods for sequences, particularly in natural language processing. Transformers
(Vaswani et al. 2017) are a class of architectures that a combination of MHA modules, process sequences
with a notable degree of success. Since attention considers every pair of elements inside the query and key
tensors, it has a high computational complexity.

4.2 Model

Designing DL models is a challenging task, specifically when dealing with complex and hidden structures in
the data such as complex PS environments. Moreover, combining different DL components can add another
layer of complexity. Multi-layer perception (MLP), multiple consecutive fully-connected layers, learn a
function between its input and output (Goodfellow et al. 2016). It can capture interactions among elements
of its fix-length input but it is not permutation invariant. Furthermore, RNNs and attention mechanisms
can be used for modeling sequences and interactions, respectively. Based on the characteristics of the FJS
environment, we propose two architectures to estimate the Makespan as follows.

4.2.1 Rnn + Mlp

For the metamodel in PS, capturing the complex dependencies among elements of the FJS environment
is essential. One way to achieve this is by creating a representation for each sequence, which can be
further processed to model their interactions. To encode schedules for each machine, in this research, one
RNN module is used. This RNN module after processing each operation within the sequence, memorizes
its specific precedence. The initial state of the RNN is used to specify the machine and its ready-time
(initial block times (b′)). By concatenating the machine’s id, which is a one-hot vector, with ready-time,
a fully-connected layer creates the first hidden state for each machine. Moreover, the final hidden state
contains information on the specific processing behavior of each machine along with its schedule. Another
RNN is used to similarly encode the sequence of each job, without specific initialization. This is due to
the fact that, for jobs, we only need to encode operations and their precedence. One of the key reasons
to use shared RNN modules among machines and jobs is that it reduces the number of parameters and
improves the model through parameter sharing.

In addition to creating representations for machines and jobs, a representation for the required setup
tuples (i.e., i, i′ in Table 2) is created. For this task a permutation-invariant function (Zaheer et al. 2017)
that can handle variable number of elements is necessary. A fully connected layer is used to encode each
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Figure 4: Architecture of the attention block used for the model of RNN + Attention.

pairwise sequence, and then the results are aggregated through a sum operation. In addition, the initial
blockage of the machines (b′) is concatenated with the respective machine representations, as it is an
important feature. This is similar to the skip connection (He et al. 2016; Vaswani et al. 2017), which
has been proven effective, especially for dealing with vanishing gradients in deeper architectures. After
creating representations for eight machines, twelve jobs, and setup tuples, they are concatenated and then
fed to an MLP. The MLP then utilizes every element to predict makespan after creating consecutive abstract
representations.

4.2.2 Rnn + Attention

To reduce the high number of parameters and handle permutation invariance for jobs, we propose another
architecture that incorporates the attention mechanism. The module can effectively attend to the most
important elements and poses permutation invariance. We utilize MHA modules to combine identical
representations that were created in the first architecture. In addition, the index of each machine is stacked
with its respective representation. Similarly, a zero feature is concatenated to jobs and one to setups to
ensure distinction between them for MHA. To model the dependencies, the architecture considers the
attention of each machine on both jobs and setups. Based on them, queries are created for the second
attention to determine how different machines can depend on each other while processing operations.

In the first MHA, machines are used as queries, while both jobs and setups are considered as keys and
values. We create a residual connection for the resulting representations by adding machines, followed by
a normalization layer (Ba et al. 2016; Ioffe and Szegedy 2015) to form queries for the second MHA. Then,
we create another residual connection for the output of this attention by adding machines, followed by a
normalization layer. We then apply two fully-connected layers (i.e., the feed-forward block), followed by
another residual connection and normalization layer. we use a similar combination of residual connections
and normalization layers to (Vaswani et al. 2017) that is proven to be effective. Finally, an aggregator
creates the makespan based on the final representation that is created for each machine. One option is
to use a fully-connected layer to project each representation to one dimension, followed by considering
the maximum of them. Alternatively, an MLP can mix them and determine makespan. Although Max
aggregation is a plausible option, the MLP-aggregator poses a more smooth behavior during training. The
overall architecture of the attention block is presented in Figure 4 and shows how the two MHA modules
based on Equation 3 are combined to make the final prediction.
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5 EXPERIMENTS

To examine the efficiency of proposed DL-based metamodels in predicting makespan, this section presents
the results obtained from the experiment. After generating 10,000 data instances (see Figure 3), we use it
to form a benchmark. Consequently, the data were randomly split into three sets for training, validation,
and testing of the models in an 8:1:1 ratio. We implemented the models using the PyTorch library and
trained them with the Adam optimizer. To avoid overfitting, we used early stopping and dropout techniques
(Goodfellow et al. 2016). The validation set is used for selecting the model to be evaluated in the test
set. In fact, the selected model has the best performance in the validation set. We train the models for
200 Epochs and if the performance of the model in the validation set is not improved after 20 Epochs the
training will be stopped (i.e., early stopping) and the model will be used for testing. The performance of
the models are evaluated based on Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE). ML models are sensitive to hyperparameters and require careful
optimization and extensive computational resources to select the best set of hyperparameters. Here, we
report an ‘out-of-the-box’ configuration of the model (Yang et al. 2019), which is not necessarily the best
possible performance of the model. The results obtained are presented in Table 4.

Table 4: Performance of ‘out-of-the-box’ models.

Model MAPE MAE RMSE
GRU + MLP 0.0739 205.356 258.233
GRU + Attention 0.0692 194.834 251.706
LSTM + MLP 0.0723 201.893 256.346
LSTM + Attention 0.0696 193.794 251.91

The four models display an ‘out-of-the-box’ performance with an error rate of approximately 7%
in predicting makespan. This result highlights the potential of DL as a viable solution. Moreover, the
attention architecture (e.g., LSTM+Attention) exhibits a slightly better performance than the MLP model
(e.g., LSTM+MLP). However, to make an accurate comparison of their superiority, it is necessary to conduct
both hyperparameter optimization and cross-validation. The DL codes can be found through the following
repository: GitHub Repository.

6 DISCUSSION

The main goal of this research is to examine the possibility of estimating PS metrics (Makespan, here)
using ML-based metamodels (DL models, here). As discussed in Section 4.2, such a metamodel can help
DTPS in providing online estimations of PS metrics while being integrated within the MES. Here, we
discuss the key findings of this research:

• The DL-based metamodels developed here are only used to estimate Makespan, which is one of
the most popular metrics, especially in the case of push manufacturing. Our experiments show
that the metamodels developed based on DL are capable of estimating Makespan with less than
7.4% MAPE. Note that this result is obtained by ‘out-of-the-box’ configurations, i.e., without
hyperparameter tuning that can significantly improve the performance of the model.

• Ghasemi et al. (2021) for the first time introduced the implementation of Learning-based Evolutionary
Optimization Algorithms in PS problems. They considered a more simplified PS problem (typical
stochastic job shop) in comparison with the current dynamic PS problem (FJS considered in this
research). Their results showed 9% MAPE using Genetic Programming (GP) as the ML tool. This
reduction in MAPE within a more complex PS environment shows the quality of the proposed
ML-based metamodeling technique in the current research.

• The semiconductor frontend fab involves various complex machines and tools, and their availability
can be unpredictable due to maintenance, breakdowns, or unexpected events. ML-based scheduling
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methodology proposed in this research can potentially analyze historical data and provide predictions
on equipment availability, enabling reactive/proactive scheduling adjustments to minimize downtime
and optimize resource utilization.

7 CONCLUSIONS AND FUTURE WORK

In the context of Industry 4.0, this study introduces ML-based metamodeling technique for the dynamic
scheduling of FJS production environments. Initially, a simulation model was employed to generate multiple
instances of the FJS environment, emulating the behavior of the MES within a fully automated manufacturing
cell. The resulting data was then used to train and test different DL models for predicting Makespan values.
The statistical error metrics demonstrated the efficiency of the proposed DL-based metamodeling approach.
However, it is important to note that this study examined only a specific FJS setting, as detailed in Section
2, and the DL-based metamodels were obtained without hyperparameter tuning. Worth nothing that in
semiconductor environments, there is a constant flow of parts, while unexpected machine downtime or setup
changes are common. These conditions introduce a high degree of uncertainty, which is not traditionally
captured by a single objective function (considered in this research).

There are several promising directions for future research. One of the main objectives is to integrate
the generated DL-based metamodel with an evolutionary optimization framework, as presented in Ghasemi
et al. (2021), to create online scheduling agents for smart manufacturing cells. Another direction is to
improve the Makespan prediction by adding into the metamodel the estimations calculated from analytical
methods in a multi-fidelity framework (Lin et al. 2019). By doing so, we anticipate further enhancements
in the performance of the scheduling system, ultimately leading to increased productivity and efficiency in
manufacturing operations.
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