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ABSTRACT

A Reinforcement Learning (RL) model is applied for photolithography schedules with direct consideration
of reentrant visits. The photolithography process is mainly regarded as a bottleneck process in semiconductor
manufacturing, and improving its schedules would result in better performances. Most RL-based research
do not consider revisits directly or guarantee convergence. A simplified discrete event simulation model of
a fabrication facility is built, and a tabular Q-learning agent is embedded into the model to learn through
scheduling. The learning environment considers states and actions consisting of information on reentrant
flows. The agent dynamically chooses one rule from a pre-defined rule set to dispatch lots. The set includes
the earliest stage first, the latest stage first, and 8 more composite rules. Finally, the proposed RL approach
is compared with 7 single and 8 hybrid rules. The method presents a validated approach in terms of overall
average cycle times.

1 INTRODUCTION

Reentrant Manufacturing Lines (RMLs) are considered as an example of complicated networks that have
an extensive number of states, and hence finding exact solutions for them is difficult. Therefore, they
are considered intractable or NP−hard (Ramirez-Hernandez and Fernandez 2007). These RMLs are also
typical characteristics of semiconductor manufacturing, as each job visits a particular process a number
of times in a repetitive manner that is also referred to as a cycle. Each visit of a job has a different
operation, and, therefore, different types of jobs having different cycles compete for the same machine
on a particular workstation or process. Additionally, the process may have additional constraints such as
sequence-dependent setups and machine eligibilities that complicate the scheduling even further. For these
reasons, proper management of job operation scheduling is crucial to improve production performance in
semiconductor manufacturing.

In this study, the impact of dynamic selection of dispatching rules for the photolithography process
is analyzed using a Reinforcement Learning (RL) approach and a simplified discrete event fabrication
simulation model that explicitly takes into account RMLs. Due to the complexities of semiconductor
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manufacturing, many similar simplified fab simulation models have previously been used to evaluate the
overall fab performance (see Rose (2007)). In this study, the simulation modeling structure on these models
is enhanced with the integration of an agent for sequential decision-making for photolithography operations
in the simulation model. Stochasticity in process times along with machine failures is also embedded in
the model. Although the popularity of machine learning applications has been increasing in recent years,
most studies do not consider RMLs explicitly in fab schedules, and the role of RMLs on performance
improvement over traditional scheduling rules is not specifically considered.

In the literature, RMLs have been used to control lot release and sequencing in ‘Shop Floor Control’
(Uzsoy et al. 1994). The control of RMLs has been investigated initially using simple models having
two workcenters, three buffers, exponential process times, and a fixed number of revisits (see Liu et al.
(2001)) and also by the adaptive versions by adding one more server and buffer (see Ramirez-Hernandez
and Fernandez (2007)). However, such studies with simple models of RMLs do not consider production
constraints such as sequence-dependent setups, machine capabilities and machine failures. To evaluate
the role of RMLs, the RL approach proposed in this study considers the information on the number of
revisits of lots visiting photolithography in addition to the current percentage of lots in the queue. Also,
it compares the proposed RL approach with 10 customized rules that prioritize the lots according to their
information on reentrant visits apart from 5 single rules. Thus, this study focuses on the impact of RMLs
on the dynamic flexible job shop scheduling problem (DFSJP) with a proposed Q−learning algorithm to
improve overall cycle time performance.

In a recent study, Tassel et al. (2023) applied RL and self-supervised learning to train a single RL
agent’s Neural Network (NN) acting as a global dispatcher for semiconductor manufacturing. The method
outperforms the traditional hierarchical dispatching strategies typically used in semiconductor manufacturing
plants, substantially reducing order tardiness and time until completion. However, in their study, information
on reentrant flows is not taken directly into account in learning and scheduling. This information may have
a great influence on scheduling within reentrant flows. Moreover, their definition of the state considers
only features of lots and machines. This makes the agent lack a global view. Like Xie, S. et al. (2022)
proposed, it would be more reasonable to consider the features of lots as the features of actions rather than
the features of states. The global state of the whole fab also has an impact on the scheduling, for example,
the current WIP level. In addition, the convergence of learning is very difficult to guarantee when the NN
is used to approximate the policy or value function. The way in which they overcome this problem is not
mentioned in their study. This study attempts to fill these gaps using the proposed RL approach and the
distinct use of the RML information. This paper is organized as follows. The following section surveys
the related literature in Section 2. The description of the problem is given in Section 3. This is followed
by the introduction of the Reinforcement Learning (RL) model and the Q-learning algorithm in Sections
4 and 5. Section 6 presents related experiments and their results. Finally, the paper ends with discussion
and conclusions in Section 7.

2 LITERATURE REVIEW

In the scheduling literature, rule-based approaches, also referred to as ‘heuristic methods’ or ‘dispatch
rules’, are broadly applied by many studies (see Panwalker and Iskander (1977); Akcali et al. (2000)).
However, as Min and Yih (2003) highlight that a well-performing rule does not exist or is not superior
to the others for different production settings, particularly dynamically changing production environments.
They apply different rules by associating four decision variables with multiobjectives by using a simulation
model and competitive Neural Networks (NNs). They report their methodology as effective for a real-time
control system and a preliminary control information saves time to obtain fast responses. However, such
rules may suffer from lower quality solutions (Sarin et al. 2011). To overcome this issue, meta-heuristic
approaches are also implemented to obtain higher quality solutions for flexible job-shop systems. Chen et al.
(2016) use an application of Genetic Algorithm (GA) to minimize loading differences of machines in the
photolithography area apart from a MIP model with machine capability and reticle constraints. Zhang et al.
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(2018) propose improved imperialist competitive algorithm (ICA) for the schedules of photolithography
machines using a rolling horizon strategy. However, these approaches might require significant computation
time compared to rule-based approaches. On the other hand, recent machine learning-based scheduling
approaches, particularly neural network (NN) based schedules, have been also widely applied in the
literature. To illustrate, Arisha and Young (2004) develop a hybrid photolithography model that includes
an integrated NN scheduler, and report significant improvements in tool utilization and lot cycle times.

Recently, the RL approach, a Markov Decision Process (MDP) based methodology that targets to
maximize cumulative discounted rewards (Sutton and Barto 1998), has been broadly applied in semiconductor
manufacturing to overcome computational or quality issues in solutions. With regard to the application of
RL methods, Liu et al. (2001) use a Temporal Difference (TD) method, a class of incremental learning
procedures, for a simplified reentrant system that includes one type of part and two service centers with
one machine each. The TD method performs better than some known heuristics such as FBFS (First Buffer
First Served), LBFS (Last Buffer Last Served), and UNWB (Workload Balancing Policy). Specifically,
they observe close results to the WB policy on mean throughput, mean time before the first blocking,
and mean number of parts before the first blocking. Q-learning that is a type of Model-free approach
of RL (Watkins and Dayan 1992) is also applied for examining the RMLs. To illustrate, a variation of
look-up table in Q-learning is applied by Ramirez-Hernandez and Fernandez (2005) considering the similar
problem structure given by Liu et al. (2001). On another study, later they propose an approximate dynamic
programming (ADP) algorithm for both control problems of job release and job sequencing in RMLs
with the criterion of a discounted cost (DC) (Ramirez-Hernandez and Fernandez 2007). Using the TD
learning with gradient-descent method, they apply a SARSA(λ ) algorithm in their ADP approach. By the
examining open RMLs, they present the comparative results of ADP approach by simulation experiments to
numerical solutions of the modified policy iteration given in the literature. In addition to previous studies,
they claim that their approach is also effective for improving the production performance for the short-term.
However, as Park et al. (2020) point that Q-learning approaches may require extensive training time due to
exponential growth of state and action space. To overcome this issue, then both Q-learning and NN-based
methods (Gabel and Riedmiller 2008), deep RL and multiagent approaches (Park et al. 2020) are applied.

Regarding deep RL and FJSP, Waschneck et al. (2018) evaluate the impact of the application of deep
Q-Network (DQN) agents together with a factory simulation model over standard dispatching heuristics
to improve global scheduling performance in semiconductor manufacturing. Park et al. (2020) apply a
new multi-agent RL approach to a Q-Network with a discrete event simulator to minimize the makespan
for the die-attach and wire-bonding stages of a semiconductor packaging plant. Unlike previous studies,
they apply a centralized approach which allows the share of fully connected NN by the agents to deal
with changes particularly in the status of initial setups, number of machines, and production requirements.
They compare their proposed method with a Genetic Algorithm (GA), a Two-Phase Deep Q-Network
(TPDQN) by Waschneck et al. (2018) and several rule-based methods such as the Shortest Setup Time
(SSU), Shortest Sum of Processing Time and Setup Time (SPTSSU), Most Remaining (MOR), Most Work
Remaining (MWR) and Shortest Processing Time (SPT). They observe superior results to all of them with
different datasets. On a non-identical parallel machine scheduling, Kim et al. (2021) apply two action
filters that are WIP and mask filters to expedite and improve Q-learning with NNs by eliminating actions
for photolithography toolsets. Their proposed method outperforms the Weighted Shortest Processing Time
(WSPT) and the Apparent Tardiness Cost with Setups (ATCS) significantly for minimizing the weighted
tardiness. In a recent study, Yedidsion et al. (2022) propose a deep RL method to find an optimal schedule
under QTC (Queue-Time Constraints) with Proximal Policy Optimization (PPO) algorithm. The QTC is
defined as a time violation for a lot to wait between two processes. A lot that violates such time constraints
becomes scrapped or might need a rework. Thus, it affects the yield and throughput performance of the
system. They compare their proposed RL method with 7 alternative agent methods named as kanban,
capacity, frequency, random, always, never and Q-learning agents with makespan, number of queue-time
violations, reward, cycle time, and utilization. Their PPO method presents results close to the best possible
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values when compared to those of the other methods. However, Q-learning is ranked as fourth in terms of
cycle time after random and PPO methods in this study.

In summary, according to the RL and FJSP approaches, Q-learning with a single agent is one of the
most traditional RL methods applied in the literature. Exponential growth of state and action spaces in
Q-learning raises the issue of extensive training time. Various solutions such as multiagent or deep RL
methods have recently been applied in the scheduling literature to improve both problem and computational
performance. However, these approaches also have three main problems. The first is the difficulty of
calculating the state features with existing RMLs. Second is the requirement of re-training of multiagents
with changing manufacturing conditions, and third is the consideration of variability factors in the system
(see Park et al. (2020), p. 1421). However, apart from these difficulties, Q-learning is also applied as
a benchmark method for alternative approaches (see Yedidsion et al. (2022)). Accordingly, this study
attempts to address the first issue by considering the features of lots as the features of actions and also
using the information of RMLs. For this reason, the solution method is a modified variation of traditional
Q-learning in order to test whether it overcomes the training issue. The definition of dispatch rules based
on the updated information of lots can be attributed to another contribution of this study.

3 PROBLEM DESCRIPTION

The photolithography process is considered mainly a bottleneck process in semiconductor manufacturing
since a different circuit layer is formed at each visit of a job by masking the circuit designs on silicon wafers
(Kabak et al. 2013). Apart from being capital intensive and having a highly utilized equipment compared
to other equipment, the process has additional constraints imposed by different capability constraints. Also,
dynamic revisits of jobs into the process add further complexity. Figure 1 below denotes a schematic
diagram of the simplified fab model with the photolithography process.

Figure 1: A simplified fab model with emphasis on photolithography.

According to Figure 1, the structure of the simulation model is based on three different types of delays.
The first delay is assumed to encapsulate all the processing between lot starts in the system up to the first
visit of the photolithography process. Similarly, the second delay is assumed to cover all the intermediate
processing between each photolithography visit of a lot. Finally, the last delay considers all of the processing
from the last photolithography visit from a lot to the end of production. In this problem, each job type is
assumed to have a different technology and a sequence of recipe operations in the photolithography process.
Each particular recipe operation has a machine eligibility constraint. That is, a particular set of toolsets
is available for a particular recipe operation. This study considers a dynamic flexible job-shop scheduling
problem (DFJSP) for the photolithography process with stochastic job arrivals. Dynamic selection of lots
are evaluated as sequential decision process by the proposed RL approach since different types of jobs at
different processing stages compete for the same machine in the photolithography workcentre. Stochastic
arrival and processing times are considered with machine failures in the simulation model. The objective
is to minimize overall cycle times by explicitly considering the status of RMLs at each lot assignment
decision. Dynamic rule selection is a very common approach to real-time scheduling. The predefined rules
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are usually well-tested and perform well in certain situations. This study is trying to realize the approach
by RL and find a good policy to do the selection of rules, i.e., using the right rule at the right time.

In the remaining sections, we are going to fill the research gap pointed out at the last of Section 1.
Information about reentrant flows will be included in both the definition of state and action, and some global
characteristics will also be added to the definition of the state (Section 4). To analyze the convergence,
instead of NN, a tabular Q-learning is adopted to solve the problem (see Section 5). How the algorithm
converges is discussed in Section 6 in an example model.

4 REINFORCEMENT LEARNING MODEL OF PHOTOLITHOGRAPHY SCHEDULING

Agents learn skills by interacting with the environment. Simply, the environment can be replaced by the
simulation model. However, there is still a gap between the environment and the simulation. To bridge
the gap, the state, action, and reward should be clearly defined and easily collected from the simulation
(Xie et al. 2019). The probability that the current state changes to the next state after one action is also
an important element in reinforcement learning. However, these probabilities are very hard to obtain from
the manufacturing system (Zhang et al. 2017). When the agent learns using simulation, the simulation
model actually finishes the transition between the states. The agent does not need to know transitions. The
drawback is that only model-free algorithms can be used to solve unknown transition probabilities.

4.1 State Space

The state of a wafer fab is a combination of states of all entities in the system, like lots, machines, workers,
etc. The state space will be quite huge if all these are included. So, aggregation among these trivial states is
necessary, and the results can be the state of the environment. The following lists some possible aggregated
features in state space: 1) Queue length/time; 2) Percentage of lots in the queue by product types; 3)
Percentage of lots in the queue by current re-entrant times; 4) Current Work In Process (WIP) in fab. Since
we focus only on photolithography, the first three features relate to the queue, with all steppers sharing a
single queue. The queue length is the number of lots in the queue, and the queue time is the sum of the
mean processing times of the lots in the queue. If the lots in the queue are grouped by product types, the
percentage of each group can be a feature to demonstrate the product mix. If the lots are grouped by the
current stage (currently visited counts) or a range of the current stage, the percentage of each group can
also be one feature to reflect the progress of lots. The state of the whole fab may also influence scheduling,
with the current WIP also being a feature.

4.2 Action Set

Lots of RL algorithms are only suitable for the fixed action set. If we consider jobs as actions in our
study, we cannot fix the number of actions. We must use features of actions. The algorithms cannot be
used directly then. As mentioned before, a single rule cannot perform well in all situations. The best rule
should be selected dynamically according to the actual state of the wafer fab. In this study, the agent will
select rules from a predefined set of rules. The action set is fixed. Most algorithms can be used directly
without any modifications. The rules, stated below, are put into the set and considered as the action set.
Especially, two re-entrant-related single rules are proposed: the earliest stage first and the latest stage first.

• First in first out (FIFO)
• Last in first out (LIFO)
• Shortest processing time first (SPT)
• Longest processing time first (LPT)
• Random
• Earliest stage (ES)
• Latest stage(LS)
• Earliest stage + FIFO (ESFIFO)

• Earliest stage + LIFO (ESLIFO)
• Earliest stage + SPT (ESSPT)
• Earliest stage + SPT (ESLPT)
• Latest stage + FIFO (LSFIFO)
• Latest stage + LIFO (LSLIFO)
• Latest stage + SPT (LSSPT)
• Latest stage + LPT (LSLPT)
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The first arriving lot is selected first in FIFO, and the lot with the shortest processing time is selected
first in SPT. LIFO and LPT are reverses of FIFO and SPT. The random rule gives lots random priorities.
The earliest stage rule grants jobs with a smaller reentrant counter higher priorities, by contrast, the latest
state rule grants jobs with bigger counter lower priorities. The others are compound rules. If two rules are
combined to form one rule, the 1st level rule selects the lots first, and the 2nd level rule selects the lots if
more lots have the same priorities as the 1st level. The random rule is used as the last hidden level of the
other rules in this study.

4.3 Reward

The goal of RL is to maximize the cumulative reward. This is different from the overall goal of the
scheduling. Therefore, the definition of the reward must ensure that the goal of scheduling is automatically
achieved while the cumulative reward is maximized (Xie et al. 2023). Because the objective is to minimize
the average cycle time, this is equivalent to minimizing the WIP. This stance could be verified by the
Little’s Law for the stable systems. Also, WIP causes additional inventory costs in the system. Therefore,
the reward can be a function of the cost of the inventory. To obtain the cost, first the average level of WIP,
xn, between the decision steps n−1 and n is calculated in the following.

xn =
1
Tn

Cn

∑
i=1

yiti

where Cn is the number of WIP changes between step n−1 and n, t is the duration between two changes
in the WIP, and yi is WIP level at i. Thus, ∑

Cn
i=1 ti = Tn, where Tn is the time between step n−1 and n. The

inventory cost on can be calculated by

on = wxnTn = w
Cn

∑
i=1

yiti

where w is the inventory price per time per lot. The lower the cost, the more reward the agent receives.
So, the immediate reward r is considered the inverse of the cost. Since the inventory price w is always
kept the same, it can be omitted from the equation.

r =−on =−(w
Cn

∑
i=1

yiti)≈−
Cn

∑
i=1

yiti

5 REINFORCEMENT LEARNING IN WAFER FAB SIMULATION

In the previous section, the RL model is defined. This section will address the approach to solving the
RL model. Naturally, it is impractical for agents to interact with the real manufacturing system to learn
scheduling skills because the real system cannot follow instructions from the agents without the validation
of the agents, and the validation can only be performed after learning. Thus, the simulation model of
the manufacturing system replaces the real system. After being trained and validated, the agent can
directly/indirectly connect to the manufacturing execution system (MES) to dispatch lots.

5.1 Interaction between RL and Simulation

Reinforcement learning is embedded in a simulation experiment in which the simulator performs many
replications. Each replication is one learning epoch. The experiment ends when the epoch reaches the
maximum. The experiment can be for training or evaluation. Before starting a training experiment, the
featured state space and the predefined rule set are created and used to build the agent. The trained agent
is saved to local files at the end of the experiment. When an evaluation experiment starts, the agent is
loaded and created from local files.
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Figure 2: Tabular Q learning agent with simulation experiment.

The simulator communicates with the agent whenever a stepper becomes idle and the queue length is
greater than 1. In the training experiment, the simulator collects and sends the current state and reward to
the agent and asks the agent for a rule. The answer to the rule is used to grant the lots priorities which will
be used by the simulator to take the lot, i.e., the one with the highest priority. In the evaluation experiment,
the simulator only sends the current state to the agent without the reward. More details are shown in Figure
2 with a tabular Q-learning agent that is used in this study.

5.2 Tabular Q-learning Algorithm for Photolithography Scheduling

The tabular Q-learning algorithm is a very classical model-free algorithm for reinforcement learning. The
Q values of all state-action pairs are stored and updated in a table (Sutton and Barto 1998). To create the
table, several levels are defined for each state feature. The number of states is the size of the complete
combination of levels in all features. When the agent is initialized in the simulator, it creates the queue
table with a size of |S| ∗ |A|, where S is the state space and A is the set of actions/rules. Whenever the
simulator asks for a rule, a method
def selectRule(state,reward)

in the agent is called. The rule is selected by a ε − greedy algorithm with respect to the Q table. This
guarantees the exploration of the state space while exploitation of the gained experiences. The Q value of
the previous state-action pair is updated in the current step (1 step look ahead ). A piece of code in the
algorithm is shown below. Note that the method lrDecay(α) returns the decayed learning rate from the
current decision step, where α is the initial learning rate. This helps the algorithm to converge. γ denotes
the discount factor.

6 EXPERIMENTS AND RESULTS

The simplified fab model is built in Anylogic. Experiments are carried out on the simulation model to
investigate the convergence of the algorithm and the performance in the simulation compared with the
single rules in the rule set.
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Algorithm 1 Behaviours of Q-learning agent
1: def init(S, A)
2: Q←Matrix(|S|, |A|) with random values
3: s′← null, ε ← 0.1, γ ← 0.9 ,α ← 0.1, training← True
4: def Q(s, a) return Q[s][a]
5: def selectRule (s, r)
6: rnd← random number
7: if training and rnd < ε

8: select rule a randomly from A
9: else

10: a← argmaxa∈A[Q(s,a)]
11: if training and s′ ̸= null
12: Q(s′,a′)← Q(s′,a′)+ lrDecay(α)× (r+ γ×maxa∈A[Q(s,a)]−Q(s′,a′))
13: s′← s, a′← a
14: return a

6.1 Experiment Environment

In the simulation model, the fab produces 3 types of products (A, B, and C) with 5 identical steppers in the
photolithography workcenter. The interarrival time of lots into the fab follows an exponential distribution
with a mean of 192. The products are mixed equally. All processing times are normally distributed and are
manually adjusted to ensure 85% utilization on the steppers. The mean processing times of the products
(A, B, and C) in the steppes are 55, 35, and 20, respectively. The mean times at Delay 1 and Delay 3 are
independent of product types and are 20 and 50, respectively. However, the mean times at Delay 2 are
product type dependent and they have means of 20, 15 and 30 for products A, B and C. All products visit
the steppers 20 times. The maintenance is performed on the steppers in a uniform distributed interval of
from 200 to 240 with also unifor distributed time from 10 to 24. The steppers break down randomly. The
time to next failure follows the TriangularAV distribution with a mean of 1000 and a variability of 0.1.
The time to repair also follows the same distribution with a mean of 10 and a variability of 0.1. In the RL
model, the following seven features with certain levels form the state space: 1)Queue length; 2) Percentage
of product A in the queue; 3) Percentage of product B in the queue; 4) Percentage of lots between stages
1-5; 5) Percentage of lots between stages 6-10; 6) Percentage of lots between stages 11-15; 7) Percentage
of lots between stages 16-20. All percentage-related features have 2 levels: 0.0-0.5 and 0.5-1.0. The queue
length remains within 5 levels: 0-2, 3-5, 6-8, 9-11, and 12-∞. So, the size of the state space is 320. 15
rules form the action set. As a result, the length of the Q table is 4800. The parameters of the learning
algorithm remain the same as the code shown in Section 5.2.

6.2 Convergence of Q-Learning

Since the simulation environment has not a terminating state, the simulation ends after a fixed duration of
two years. The experiment runs for 20,000 replications, i.e., 20,000 learning epochs for the agent. The
learning rate decays during the experiment. The total reward and the average cycle time in each replication
are collected during the experiment and with the replication index as the x-axis shown in Figure 3.

Based on the density of dots, the plots show the probability that the agent produces better results in
both the total reward and the average cycle times. Due to the reducing learning rate, the range also becomes
narrower. However, because the soft policy, i.e., ε−greedy, always explores the state space with probability
ε . It can cause very bad or good results in that replication. Even with a very low probability, once a bad
move occurs, it can destroy the whole replication because the follow-up situations in decision-making may
change too. This is why the rewards and cycle times do not converge in a very narrow range. Of course, ε
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Figure 3: Total reward and average cycle times over replications.

can be decayed over the learning. Since the learning rate is also decayed, the collaboration between two
decays may greatly influence the convergence. The study about this will be carried out in future work.

Figure 4: Total reward and average cycle times over every 500 replications.

Looking at Figure 3, it is very difficult to see the convergence. If every 500 successive replications is
considered as one period, then Figure 4 shows the average of the total reward and cycle times. This figure
clearly shows the convergence of the results. The total reward received from each replication is increasing
while the average cycle time is decreasing.

6.3 Comparison with Other Decision Rules

The trained agent (RL) is compared with the single rules in the rule set. For each rule and the agent, the
simulation runs 100 times and the outputs of the average cycle time are plotted (see Figure 5). The best
rule is the stage-related rule ESSPT (26.99). This proves that a better decision is made by involving the
information of reentrant flows. ESFIFO, ESLIFO, ESSPT, ESLPT, and ES always outperform the single
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rule without ES. All the earliest stage rules have very good performance while the latest stage rules produce
very long average cycle times. Agent performance (RL, 28.98) is not the best but is very close to the best
results. The reason why simple rules outperform the agent is due to the heavily simplified fab model. The
simple rules usually work better in simple systems. The agent is very likely to perform better in more
complicated models. More details about the experiment results can be found in Table 1 and 2.

Figure 5: Comparison with other rules.

Table 1: Cycle time performance of single dispatch rules.

Rule Mean ± Half-Width Min Max Std Dev
FIFO 31.33 ± 0.15 26.04 50.79 2.35
LIFO 27.92 ± 0.10 24.63 46.69 1.61
SPT 28.15 ± 0.10 24.58 39.43 1.63
LPT 32.97 ± 0.17 26.59 48.80 2.78
ES* 27.78 ± 0.09 24.50 36.73 1.51
LS 47.09 ± 0.42 33.60 79.70 6.74
Random 30.69 ± 0.14 26.38 39.95 2.18
RL 28.98 ± 0.14 25.07 42.96 2.34

7 DISCUSSION AND CONCLUSIONS

In this study, the performance of the RL approach to scheduling in RMLs is analyzed with a simplified fab
simulation model focusing on photolithography. According to the results of simulation experiments, the
reentrant situation of lots influences the scheduling, however, the role of the RMLs is not considered in most
scheduling studies. Moreover, NNs are often used to approximate policies and value functions, but they do
not guarantee of convergence. Tabular-based algorithms can guarantee convergence and can be also used
to solve problems having very big state space as long as enough computation power supports them. If it is
impossible to set up corresponding hardware, anyway, the state space can be reduced by some dimension
reduction algorithms or domain knowledge first. For this reason, an agent with a Q-learning algorithm is
embedded into the simulation model and a set of composite dispatching rules along with single rules is
defined as the set of actions. It is noted that the composite dispatching rules include the status of reentrant
visits. Accordingly, the agent picks a particular rule dynamically for sequential photolithography decisions
based on reward values. The results from the experiments confirm that the Q-learning approach can be used
to perform scheduling in RMLs in the simplified model. Future research can include the evaluation of the
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Table 2: Cycle time performance of composite dispatch rules.

Rule Mean ± Half-Width Min Max Std Dev
ESFIFO 27.81 ± 0.09 24.62 34.35 1.49
ESLIFO 27.85 ± 0.09 24.60 35.21 1.50
ESSPT* 26.99 ± 0.08 24.22 33.63 1.21
ESLPT 28.98 ± 0.12 24.98 39.09 1.94
LSFIFO 47.34 ± 0.43 32.47 85.79 6.99
LSLIFO 47.17 ± 0.49 32.33 101.12 7.92
LSSPT 46.73 ± 0.45 32.90 89.67 7.33
LSLPT 48.43 ± 0.47 33.14 84.59 7.65
RL 28.98 ± 0.14 25.07 42.96 2.34

impact of RMLs with a more detailed simulation model that takes into account additional main processes
such as wet benches, furnaces, implant, and their production constraints. In addition, the proposed approach
could be compared to deep RL approaches, and results could be validated by the different datasets obtained
from real-time fab data.

REFERENCES
Akcali, E., K. Nemoto, and R. Uzsoy. 2000. “Alternative Loading and Dispatching Policies for Furnace Operations in

Semiconductor Manufacturing: a Comparison by Simulation”. In Proceedings of the 2000 Winter Simulation Conference,
edited by J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, 1428–1435. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Arisha, A., and P. Young. 2004. “Intelligent Simulation-based Lot Scheduling of Photolithography Toolsets in a Wafer Fabrication
Facility”. In Proceedings of the 2004 Winter Simulation Conference, edited by R. G. Ingalls, M. D. Rossetti, J. S. Smith,
and B. A. Peters, 1935–1942. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Chen, J. C., Y.-Y. Chen, and Y. Liang. 2016. “Application of a Genetic Algorithm in Solving the Capacity Allocation Problem
with Machine Dedication in the Photolithography Area”. Journal of Manufacturing Systems 41:165–177.

Gabel, T., and M. Riedmiller. 2008. “Adaptive Reactive Job-shop Scheduling with Reinforcement Learning Agents”. International
Journal of Information Technology and Intelligent Computing 24(4):1–60.

Kabak, K. E., P. C. Heavey, and V.Corbett. 2013. “Impact of Tool Recipe Constraints on the Photolithography Area in an
ASIC Fabrication Environment”. IEEE Transactions on Semiconductor Manufacturing 26(1):53–68.

Kim, T., H. Kim, T.-e. Lee, J. R. Morrison, and E. Kim. 2021. “On Scheduling a Photolithograhy Toolset Based on a Deep
Reinforcement Learning Approach with Action Filter”. In Proceedings of the 2021 Winter Simulation Conference, edited
by Sojung Kim, Ben Feng, Katy Smith, Sara Masoud, Zeyu Zheng, Claudia Szabo, and Margaret Loper, 1–10. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Liu, C., H. Jin, Y. Tian, and H. Yu. 2001. “Reinforcement Learning Approach to Re-entrant Manufacturing System Scheduling”.
In Proceedings of the 2001 International Conferences on Info-Tech and Info-Net, edited by X.Y. Zhong, Junfeng Shi, Xia
Lin, Volume 3, 280–285. Beiing: Institute of Electrical and Electronics Engineers, Inc.

Min, H.-S., and Y. Yih. 2003. “Selection of Dispatching Rules on Multiple Dispatching Decision Points in Real-time Scheduling
of a Semiconductor Wafer Fabrication System”. International Journal of Production Research 41(16):3921–3941.

Panwalker, S., and W. Iskander. 1977. “A Survey of Scheduling Rules”. Operations Research 25:45–61.
Park, I.-B., J. Huh, J. Kim, and J. Park. 2020. “A Reinforcement Learning Approach to Robust Scheduling of Semiconductor

Manufacturing Facilities”. IEEE Transactions on Automation Science and Engineering 17(3):1420–1431.
Ramirez-Hernandez, J. A., and E. Fernandez. 2005. “A Case Study in Scheduling Reentrant Manufacturing Lines: Optimal and

Simulation-based Approaches”. In Proceedings of the 44th IEEE Conference on Decision and Control and the European
Control Conference, 2158–2163. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Ramirez-Hernandez, J. A., and E. Fernandez. 2007. “An Approximate Dynamic Programming Approach for Job Releasing and
Sequencing in a Reentrant Manufacturing Line”. In Proceedings of the 2007 IEEE International Symposium on Approximate
Dynamic Programming and Reinforcement Learning, edited by Derong Liu, Remi Munos, Jennie Si, Donald C. Wunsch,
201–208. New York, N.Y.: Institute of Electrical and Electronics Engineers, Inc.

Rose, O. 2007. “Improved Simple Simulation Models for Semiconductor Wafer Factories”. In Proceedings of the 2007 Winter
Simulation Conference, edited by S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton,
1708–1712. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

2146



Zhang, Kabak, Heavey, and Rose

Sarin, S. C., A. Varadarajan, and L. Wang. 2011. “A Survey of Dispatching Rules for Operational Control in Wafer Fabrication”.
Production Planning & Control 22(1):4–24.

Sutton, R. S., and A. G. Barto. 1998. Reinforcement Learning: An Introduction. 1st ed, Volume 1. Cambridge, MA, USA:
MIT Press.
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