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ABSTRACT

Within the area of manufacturing planning and control, there is a long ongoing debate on when and
if decisions should be integrated into a centralized model or split into separate planning levels. While
a centralized monolithic model is capable of solving separate decisions simultaneously, a hierarchical
approach offers more degrees of freedom since a local planner always has more accurate information. The
focus of this paper is on the design and mathematical assumptions of optimization models for overtime
and order release decisions in order to cope with different degrees of demand and process uncertainty.
We execute the optimal decisions within a simulation model of a multi-stage, multi-product stylized flow
shop. Our results show that a fully centralized is outperformed by a hierarchical design and that planning
order release quantities centrally, in combination with flexible overtime planning, yields the lowest costs
for high process uncertainty on the shop floor.

1 PROBLEM DESCRIPTION

The manufacturing planning and control field has had a continuous discussion about whether certain
decisions should be integrated into a single centralized decision model or separated into distinct planning
levels (Gelders and Van Wassenhove 1982; de Kok and Fransoo 2003; Vogel et al. 2017; Wang et al.
2021; Ghadimi et al. 2022; Kasper et al. 2023). One argument for a centralized model is that it can
handle multiple decisions simultaneously, while a hierarchical approach offers more flexibility since a local
planner at the shop floor (i.e., the bottom level) always has more information and a better representation of
the actual processes. The focus of this paper is on the design and mathematical assumptions of optimization
models that make order release and/or overtime decisions in order to cope with different degree of demand
and process uncertainty. While order release decides on when to release which order from an pre-shop
order pool (Bertrand and Wortmann 1981; Bergamaschi et al. 1997; Haeussler et al. 2019), short-term
capacity decisions (i.e, overtime) try to match resources, work centers and jobs based on the specific job’s
requirements (Chen et al. 2009). There are many methods of order release and the research subject itself
spans a long tradition since the early 1950s (Adam and Surkis 1977; Bertrand and Wortmann 1981; Cigolini
et al. 1998; Thuerer et al. 2012; Haeussler et al. 2020; Thürer et al. 2023). In this paper, we either use
order release as part of an optimization model or use a simple order release rule, called backward infinite
loading (BIL), where the lead time is predetermined and constant over time.

Capacity adjustment includes many research strands within production research, mainly being the
worker allocation problem (Costa et al. 2019), outsourcing as a form of capacity increase (Qi 2011) and
the application of overtime (Özdamar and Yazgaç 1997). Overtime can be used for various methods, be
it negating all tardy orders (Shi et al. 2023), simply generating more possible capacity (Abdel-Aal 2019)
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or minimizing costs because the scheduling of overtime is possible (Jaramillo and Erkoc 2017). Again,
we either include the overtime decision in a central model (i.e., an optimization model) or, on the lower
decision level, adjust the capacity by using a heuristic rule that decides on overtime using simple workload
thresholds. The main goal of these two planning decisions is threefold: (i) achieve short flow times, i.e.
the duration of orders from release to completion, (ii) maintain a high machine output and (iii) reach a
good due-date performance of the orders. Thus, the main challenge for order release and capacity planning
is to balance overtime, holding (WIP and finished goods inventory) and backorder costs.

In this paper, we compare different optimization models that either simultaneously or successively -
in combination with a rule or a heuristic - decide on overtime and order release. The successive planning
models consist of two planning hierarchies where we vary the decisions to be made on the central (top)
planning stage: On the one hand we use an optimization model for order release, and on the other, we
decide on overtime centrally. The top level decision is then combined with an overtime or order release
decision on the lower planning level. The decision whether to centralize or decentralize the one or the other
decision is not straightforward and largely depends on the degree of variability and uncertainty in demand
and the underlying production process: While an integrated centralized model can simultaneously decide
on both decisions and thus should be superior in coordinating release and capacity adjustments, it has
less information and a more inaccurate representation of the shop floor. On the contrary, the hierarchical
approach is more flexible to react to the changing environment in the short-term and thus should be superior
for high process uncertainty. Therefore, our research question for this paper is as follows:

To what extent should overtime and order release decisions be integrated on a central planning
level under different demand variability and process uncertainties?

The comparison is done by using a multi-model approach where, for the top level, the decisions of
a mixed integer or linear program are executed over a certain planning horizon in a simulation model
of a multi-stage, multi-product stylized flow shop. For the decentralized decisions we use either an
overtime heuristic or static release, in our case backward infinite loading. In our experimental setup we test
several demand patterns (i.e., constant and uncorrelated seasonal demand) and different sources of process
uncertainty like machine failures and exponentially distributed processing times. Performance is measured
by using cost-based measures consisting of overtime, inventory and backorder costs as well as the service
level.

2 MATHEMATICAL MODELS

Our approaches combine optimization methods on a planning level with reactive short time heuristics or
static rules on the shop floor to test their performance on varying levels of uncertainty. There are three
models that are analyzed within this paper. The three models are similar in their foundation but have a
distinct difference in what they control. Our first model is centralized and integrates all decisions and
generates a completely static plan that determines release quantities as well as overtime usage (OverTime
and RELease planning - OTREL). The optimal decisions are rigidly executed by the simulation. The second
model determines release quantities centrally and uses an overtime heuristic to schedule overtime within
the simulation (RELease planning and Heuristic OverTime - RELHOT) and the third model plans overtime
centrally and release quantities by using a rule based approached with fixed lead times (i.e., BIL) inside the
simulation (OverTime planning and static release with BIL - OTBIL). The central models are all represented
by optimization models and all three have a similar basis. One will be explained in detail and then the adjusted
logic for the other two will be presented shortly. We assume that the full day can be used for production
(equal to 1440 minutes), where 960 minutes is the normal work time and an additional 120 (Un

t ), 240 (V n
t ) or

480 (Y n
t ) minutes can be gained by assigning overtime. We assume that the scheduling of overtime is always

possible, but only in steps of either 120, 240 or 480 minutes. The optimization models themselves are based
on the overtime model proposed by Özdamar and Yazgaç (1997) and adapted to fit with our three approaches.
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2.1 Overtime Planning and Static Release with BIL (OTBIL)

The first optimization model is called OTBIL as it combines overtime planning from an optimization
point of view with a static application of backward infinite loading. It optimizes the number of over-
time hours in each planning period at each work center and it can map the actual release quantities by
using the same lead time as BIL on the shop floor τ (see the variable d j,t+τ in equation 2). The ob-
jective is to minimize the total costs. Put simple, the decision variable is the amount of overtime and
the release is governed within the simulation by BIL. The assumed lead time for BIL is an experimental
factor which we will vary over scenarios, but within each scenario we use the same lead times for both levels.

Table 1: Notation of our optimization models.

Indices
n work centers (n = 1, ...,N)
j products ( j = 1, ...,J)
t periods (t = 1, ...,T )

Variables
W n

j,t WIP of product j in front of work center n at the end of period t
Fj,t Finished Goods Inventory (FGI) of product j at the end of period t
B j,t Backorders of product j at the end of period t

Un
t ,V

n
t ,Y

n
t Binary variable indicating 2, 4, 8 hours of overtime

Xn
j,t Output of product j at work center n in time period t

R j,t Release amount of orders j in period t
Parameters

ω holding costs for the WIP (per order and period)
φ holding costs for finished goods (per order and period)
χ backorder costs (per order and period)
θ overtime costs per hour

d j,t demand of product j in period t
τ periods of lead time used in BIL

ξ n
j operation time of product j at work center n

cn capacity of work center n
cMF

red factor for capacity reduction based on probabilities of machine failure (MF) [0...1]
cHOT

red factor for anticipated overtime on the shop floor [0...1]

min
N

∑
n=1

J

∑
j=1

T

∑
t=1

(ω ·W n
j,t)+

J

∑
j=1

T

∑
t=1

(φ ·Fj,t +χ ·B j,t)+
N

∑
n=1

T

∑
t=1

(2 ·θ ·Un
t +4 ·θ ·V n

t +8 ·θ ·Y n
t ) (1)

W n
j,t =W n

j,t−1 +d j,t+τ −Xn
j,t ∀ j, n = 1, t ∈ {1 . . .T − τ} (2)

W n
j,t =W n

j,t−1 −Xn
j,t ∀ j, n = 1, t ∈ {T − τ +1 . . .T} (3)

W n
j,t =W n

j,t−1 +Xn−1
j,t −Xn

j,t ∀ n > 1, j, t (4)

Fj,t −B j,t = Fj,t−1 −B j,t−1 +XN
j,t −d j,t ∀ j, t,n = N (5)
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J

∑
j=1

(ξ n
j ·Xn

j,t)≤ (cn +120 ·Un
t +240 ·V n

t +480 ·Y n
t ) · cMF

red ∀n, t (6)

Un
t +V n

t +Y n
t ≤ 1 ∀n, t (7)

W n
j,t ,X

n
j,t ,Fj,t ,B j,t ≥ 0 (8)

Un
t ,V

n
t ,Y

n
t ∈ {0,1} (9)

The objective is to minimize the costs, consisting of work in progress (WIP), finished goods inventory
(FGI) holding, backorder (BO) and overtime costs (OT), as seen in (1). The costs are calculated for each
period, so if products have to wait in FGI or are multiple periods late, they will generate costs for each
period that they are early/late. (2) - (5) represent the material flow within the production and (6) displays
the capacity for the work centers with the possibility of overtime. cMF

red represents the capacity reduction
if machine failures are introduced into the system and becomes 0.9, i.e., a 10% reduction of capacity, in
scenarios where we test machine failures. This optimization model governs overtime setting. This is done
by setting the three binary Variables Un

t ,V
n

t ,Y
n

t either one or zero (9), whereas the sum of all three has to
be ≤ 1 for each work center in each period, ensuring that only one overtime mode is active for each work
center during each period (7). Constraint (8) ensures that all variables are non negative.

Backward Infinite Loading (BIL) Backward infinite loading has several variations, but all seek to
deduct a certain lead time from each order’s due date to determine its’ release date. If the release date is
on or before the current date, the job is released to the shop regardless of current shop loads. Otherwise,
the job stays in the pre-shop pool until the aforementioned is true. There are multiple BIL calculation
techniques, where many utilize the following method to calculate the release date according to Wisner
(1995), which we adapted as can be seen in the following Algorithm 1.

Algorithm 1 Backward Infinite Loading.

1: if due_date - τ ≥ current_date then
2: do nothing ▷ Product stays in waiting
3: else if due_date - τ < current_date then
4: release product immediately ▷ Product starts production independent of shop load
5: end if

BIL, in our case, therefore checks if there is at least τ periods left until the products’ due date, and once
this threshold is undercut, the product is released. As mentioned above, BIL uses the same lead time τ as
fed into the optimization model. Therefore the optimization model has the perfect anticipation of release
quantities. Please note that this model is the only model that uses fixed lead times for order release, as the
other models have no fixed lead time and calculate release times individually for each order.

2.2 Release Planning and Heuristic Overtime (RELHOT)

This optimization model governs release decision and uses a simple heuristic to schedule overtime on the
shop floor. The optimization model needs to be adjusted as follows: Constraint (2) has to be replaced by
a constraint that allows the model to govern releases through R j,t and remove overtime application (see
constraint 10). Described in short, this model plans release times and quantities through R j,t and relies on
the overtime heuristic (HOT), described below, to schedule overtime during execution of the plan in the
simulation. The mathematical model for this optimization method is given by the following equations:

min
N

∑
n=1

J

∑
j=1

T

∑
t=1

(ω ·W n
j,t)+

J

∑
j=1

T

∑
t=1

(φ ·Fj,t +χ ·B j,t)
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W n
j,t =W n

j,t−1 +R j,t −Xn
j,t ∀ j, t, n = 1 (10)

W n
j,t =W n

j,t−1 +Xn−1
j,t −Xn

j,t ∀ n > 1, j, t

Fj,t −B j,t = Fj,t−1 −B j,t−1 +XN
j,t −d j,t ∀n = N, j, t

J

∑
j=1

(ξ n
j ·Xn

j,t)≤ cn · cMF
red · cHOT

red ∀n, t

W n
j,t ,X

n
j,t ,Fj,t ,B j,t ≥ 0

cHOT
red determines the anticipated amount of overtime the heuristic plans during execution. Dependent on

the scenario and initial test runs, this reduction is between 2-20% and changes depending on the scenario.
This is introduced to link the model and the overtime heuristic and is based on preliminary simulation runs.

Heuristic Overtime (HOT) This model employs a simple heuristic for overtime usage on the shop
floor. The heuristic takes the load in the queue of each work center into consideration and if there is enough
load for a certain mode of overtime, it applies it. The 1.125, 1.25 and 1.5 multipliers are the factors of
load that guarantee that there is at least 16 + 2, 16 + 4 or 16 + 8 hours of work available. Algorithm 2
describes the simple heuristic in detail.

Algorithm 2 Simple Overtime Heuristic.

1: if work center_load < period_length then
2: Do nothing
3: else if work center_load > period_length·1.5 then
4: Apply eight hours of overtime
5: else if work center_load > period_length·1.25 then
6: Apply four hours of overtime
7: else if work center_load > period_length·1.125 then
8: Apply two hours of overtime
9: end if

2.3 Overtime and Release Planning (OTREL)

This model is purely static and reliant on the plan, there are no adjustments to be made during execution.
Therefore it needs to be able to calculate both overtime usages and release. It is a combination of both
previous ones using only the optimization part and not the reactive shop floor part. Described in short, this
model plans both release and overtime in a plan and that plan is then executed by the simulation without
any changes. For the model, see Section 2.1 and instead of equation (2) we use equation (10) repeated
here for convenience:

W n
j,t =W n

j,t−1 +R j,t −Xn
j,t ∀ j, n = 1, t

3 SIMULATION MODEL AND EXPERIMENTAL DESIGN

The simulation was created using Python 3.11 with the simpy 4.0.1 library for the simulation and the Pyomo
6.5.0 library for the mathematical optimization environment using the gurobi solver. Each iteration starts
with the optimization model calculating a plan, and depending on which model is tested, feeding different
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information into the simulation that it has to abide by. After the simulation is done, costs as well as service
level information gets collected and then averaged over the amount of iterations. The simulation model
calculates costs based on each period, for each product that has a certain state of either work in progress
(WIP), waiting in finished goods inventory (FGI) or being late (BO) it applies a cost of 1$, 4$ or 16$
respectively per period. If overtime is scheduled, each 60 minutes of overtime cost 2$, so a maximum of
16$ cost per work center per period is possible if scheduling eight hours of overtime. The costs were chosen
this way as there is an increase in value once there are finished products or late (Haeussler et al. 2022). We
use a processing time of 160 minutes per step and a total period length of 960 minutes (expandable to a
maximum of 1440 with eight hours of overtime). The simulation also uses two forms of demand generation
and machine failures which are shortly described in their own paragraphs below. As we calculate plans
(with the optimization models) and execute them on the shop floor, there is no "warm-up" period, although
we added eight periods of no demand to the beginning and end of each plan (eight being the used due date
slack used within the simulation), to avoid end-of-horizon effects, guarantee that the optimization models
have full information and can schedule products everywhere within their planning horizon.

3.1 Stylized Flow Shop Design

Nowadays stylized flow shop is a popular manufacturing system that embraces different industrial areas
including electronics (Aurich et al. 2016), metal industry (Semini et al. 2006), semiconductor manufacturing
(Lin and Chen 2015) as well as many more. For this paper, the stylized flow shop design depicted in
Figure 1 has been chosen because of its applicability to many industries. This makes it possible to have
simple as well as very complex scenarios within one system if paired with all the stochastic influences
described previously. The stylized flow shop has three stages with two work centers (WC) each, and each
possible combination of work centers describes one product type, resulting in a total of eight different
products (abbreviated as P1 to P8 in Figure 1). The processing times are equal for all work centers.The
results were obtained by simulating various scenarios with (i) three different combinations of optimization
and flexibility on the shop floor, (ii) different processing time distributions (i.e., exponentially (exp) and
uniformly (uniform) distributed) , (iii) machine failures on all or no work centers, (iv) seasonal or constant
demand levels and (v) three levels of machine utilization based on a shop floor without any overtime and
machine failures, this results in 72 total scenarios per planning horizon. We also tested a planning horizon
of 52, 26 and 13 periods.

Figure 1: Our stylized flow shop design.

For OPT_OT_BIL, lead times (τ) from two to eight are tested and will be denoted as BIL2 to BIL8.
For each result, an optimization gap of 0.1% was allowed for the optimization models and the number of

iterations per scenario was determined to be 30 by using Welch’s method (Welch 1967). We applied Welch’s
Method to a basis of 50 iterations and the amount of deviation from the result was allowed to be within
2.5% which resulted in 30 iterations. All the displayed results are tested to be significant using Wilcoxon’s
significance test (Wilcoxon 1945), the significance tests are also available in our Data Repository. The
experimental design can be seen in Table 2.
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Table 2: Experimental design.

Parameter Values
Planning Characteristics Optimization Models OTREL, OTBIL and RELHOT

Planning Horizon 52, 26 and 13 periods
Lead time Variation only for OTBIL (τ between two and eight)

Shop Characteristics Demand

Constant or Seasonal (two Sine with a oscillation
of 13 periods that have been shifted by half
their oscillation to average out the same
as constant demand)

Machine Failures
Either all or no work centers, gamma distributed
mean time to failure = 2760 minutes with σ = 26,
mean time to repair = 345 minutes with σ= 7

Job Characteristics Processing Times 160 minutes for each stage (exp or uniform distributed)

Inter Arrival Times
79.3 (85%), 85.3 (80%), 91.8 (75%) minutes for
75% and 80% utilization respectively; product
types uniformly distributed

Due Date Setting Fixed to entry period + eight periods

3.2 Demand Generation

For our experiments, we compare a static (Constant) to a seasonal demand (Sine) with a cycle length of 13
periods (as depicted in Figure 2). Both of these demands are calculated based on the inter arrival time of
products, where for the constant demand, the amount of products is randomly distributed among all product
types, resulting in a uniform distribution over the planning horizon (Puergstaller and Missbauer 2012). For
the seasonal demand, we follow the procedure given by Enns and Suwanruji (2004). We generate two sine
curves that are offset by a half season and assign products that are processed on either work center three
(WC 3) or four (WC 4), so there is a bottleneck at the second production stage, which shifts over time
between these two work centers.

Figure 2: Example sine demand for inter arrival time = 79.3 for 53 periods.
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3.3 Machine Failures

Machine failures have been included as another source of process uncertainty. Machine failures and their
repair times are based on a certain distribution given in Table 2 which are taken from earlier literature
(Kacar and Uzsoy 2010). Further, we assume that either no or all machines break down which results in
a loss of 10% capacity for each work center.

4 RESULTS

For brevity, we only present the results for the best performing scenarios in terms of total cost measures
but we provide the results for all scenarios in our Data Repository. The presented results are based on a
planning horizon of 13 periods and can be seen in Table 3.We structured the results section based on the
model categories where we start with OTREL, thereafter discuss the performance of OTBIL and end this
section with RELHOT.

4.1 Centralized Monolithic Model: OTREL

The centralized monolithic model OTREL should have the advantage of planning overtime and order release
quantities simultaneously. Thus, on the one hand it should be best in scenarios with seasonal demand
since it is known by the model (i.e., deterministic) and, on the other, it should get worse when process
uncertainty increases. This means that we conjecture OTREL to perform best in cases of seasonal demand
and low process uncertainty which means in cases of no machine failures and uniform processing times.
Therefore, the following Figures 3 and 4 show all scenarios with seasonal demand and varying process
uncertainty. This means that we do not depict scenarios with high process uncertainty (i.e, scenarios with
machine failures and exponential processing times) which will be discussed below.

Figure 3: Results for seasonal demand and 75% machine utilization with varying process uncertainty.

Surprisingly, OTREL does not perform best in any of the cases with 75% utilization and is even slightly
outperformed (3.66% more total costs) by OTBIL in the scenario with the lowest process uncertainty
(75%_S_NOMF_UNIF).

Figure 4: Results for seasonal demand and 80% machine utilization with varying process uncertainty.
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As can be seen in Figure 4, for 80% utilization OTREL only performs best in case of low process
utilization (80%_S_NOMF_UNIF), but cannot decrease costs in case of machine failures or exponential
processing times. For the four remaining scenarios, RELHOT is always the best performing. This means
that as soon as seasonal demand is paired with some process uncertainty it is beneficial to plan order
releases centrally and schedule overtime more flexibly (on the lower level).

4.2 Centralized Overtime and Static Order Release: OTBIL

Different to above, we would expect the combination of centralized overtime planning and static order
release (OTBIL) to perform best when the demand is constant. Thus, we show all scenarios with constant
demand in Figures 5 and 6 except the case with the high process uncertainty.

Figure 5: Results for constant demand and 75% machine utilization with varying process uncertainty.

Figure 6: Results for constant demand and 80% machine utilization with varying process uncertainty.

As expected, OTBIL always yields the lowest costs in all of the depicted cases of constant demand
except in one case (80%_C_NOMF_EXP) where there is no significant difference between the three tested
models. The major advantage of OTBIL in these cases is the balancing of FGI and backorder costs which
is also reflected in a relatively high service level of always more than 85% (see Table 3).

Figure 7: Results for both demand patterns, 75% and 80% machine utilization with high process uncertainty.
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Table 3: All averaged results for 75% and 80% utilization with a planning horizon of 13 periods. Only significantly
different scenarios are shown.

Math
Model UTIL Demand

Pattern
Machine
Failures

Processing
Time
Dis.

BIL WIP FGI BO OT SUM Service
Level % to Best

OTBIL 75% CON NOMF Uniform BIL2 93.87 187.73 92.80 25.47 399.87 0.96 100.00%
RELHOT 75% CON NOMF Uniform 97.83 1228.67 0.00 3.33 1329.83 1.00 332.57%
OTREL 75% CON NOMF Uniform 98.50 1226.00 0.00 21.07 1345.57 1.00 336.50%
OTBIL 75% SINE NOMF Uniform BIL4 233.63 691.33 71.47 18.27 1014.70 0.97 100.00%
OTREL 75% SINE NOMF Uniform 213.93 756.67 17.60 63.60 1051.80 0.99 103.66%
RELHOT 75% SINE NOMF Uniform 167.80 936.80 0.00 138.67 1243.27 1.00 122.53%
OTBIL 75% CON NOMF Exp BIL3 195.00 403.20 412.80 18.13 1029.13 0.85 100.00%
OTREL 75% CON NOMF Exp 198.23 848.13 84.27 29.60 1160.23 0.97 112.74%
RELHOT 75% CON NOMF Exp 178.90 914.67 41.07 128.40 1263.03 0.98 122.73%
RELHOT 75% SINE NOMF Exp 242.77 682.80 183.47 223.87 1332.90 0.93 100.00%
OTBIL 75% SINE NOMF Exp BIL5 287.83 1034.67 168.00 17.33 1507.83 0.94 113.12%
OTREL 75% SINE NOMF Exp 291.17 599.73 625.60 59.33 1575.83 0.80 118.23%
OTBIL 75% CON ALLMF Uniform BIL3 169.23 435.47 129.60 68.67 802.97 0.94 100.00%
RELHOT 75% CON ALLMF Uniform 168.23 947.60 2.13 21.07 1139.03 1.00 141.85%
OTRE 75% CON ALLMF Uniform 164.67 961.87 2.13 69.60 1198.27 1.00 149.23%
RELHOT 75% SINE ALLMF Uniform 244.87 657.47 115.73 189.33 1207.40 0.95 100.00%
OTREL 75% SINE ALLMF Uniform 288.83 550.00 389.33 122.40 1350.57 0.83 111.86%
OTBIL 75% SINE ALLMF Uniform BIL5 312.40 922.13 110.93 50.67 1396.13 0.95 115.63%
RELHOT 75% CON ALLMF Exp 247.07 683.73 208.00 210.67 1349.47 0.92 100.00%
OTBIL 75% CON ALLMF Exp BIL4 271.97 651.47 477.33 68.80 1469.57 0.86 108.90%
OTREL 75% CON ALLMF Exp 281.07 635.07 557.33 71.07 1544.53 0.84 114.46%
RELHOT 75% SINE ALLMF Exp 301.80 535.33 538.13 280.53 1655.80 0.81 100.00%
OTBIL 75% SINE ALLMF Exp BIL6 382.63 1225.60 304.53 60.80 1973.57 0.90 119.19%
OTREL 75% SINE ALLMF Exp 369.90 465.47 1348.27 123.20 2306.83 0.66 139.32%
OTBIL 80% CON NOMF Uniform BIL2 126.03 149.33 309.87 41.07 626.30 0.87 100.00%
RELHOT 80% CON NOMF Uniform 129.10 1211.60 0.00 10.67 1351.37 1.00 215.77%
OTREL 80% CON NOMF Uniform 133.27 1194.93 0.00 40.80 1369.00 1.00 218.59%
OTREL 80% SINE NOMF Uniform 260.77 712.00 108.27 94.27 1175.30 0.95 100.00%
OTBIL 80% SINE NOMF Uniform BIL4 281.73 666.27 260.80 34.53 1243.33 0.89 105.79%
RELHOT 80% SINE NOMF Uniform 208.13 896.40 3.73 161.07 1269.33 1.00 108.00%
RELHOT 80% SINE NOMF Exp 268.70 711.87 234.67 242.13 1457.37 0.91 100.00%
OTREL 80% SINE NOMF Exp 328.93 596.67 737.60 88.93 1752.13 0.79 120.23%
OTBIL 80% SINE NOMF Exp BIL5 360.97 972.40 449.07 31.47 1813.90 0.87 124.46%
OTBIL 80% CON ALLMF Uniform BIL3 207.60 385.20 254.40 102.53 949.73 0.90 100.00%
RELHOT 80% CON ALLMF Uniform 218.13 859.60 16.53 47.07 1141.33 0.99 120.17%
OTREL 80% CON ALLMF Uniform 209.90 891.60 12.80 104.27 1218.57 0.99 128.31%
RELHOT 80% SINE ALLMF Uniform 296.53 605.33 253.87 217.47 1373.20 0.90 100.00%
OTBIL 80% SINE ALLMF Uniform BIL5 374.53 880.13 297.07 98.13 1649.87 0.88 120.15%
OTREL 80% SINE ALLMF Uniform 335.47 541.87 622.93 170.53 1670.80 0.77 121.67%
RELHOT 80% CON ALLMF Exp 294.03 625.60 294.93 237.60 1452.17 0.89 100.00%
OTBIL 80% CON ALLMF Exp BIL5 319.60 1086.93 245.33 94.27 1746.13 0.93 120.24%
OTREL 80% CON ALLMF Exp 351.30 541.07 873.07 107.33 1872.77 0.75 128.96%
RELHOT 80% SINE ALLMF Exp 317.93 589.73 533.87 284.13 1725.67 0.82 100.00%
OTBIL 80% SINE ALLMF Exp BIL6 442.43 1216.53 425.07 80.00 2164.03 0.88 125.40%
OTREL 80% SINE ALLMF Exp 388.13 498.40 1291.73 174.93 2353.20 0.68 136.36%

4.3 Centralized Release Planning and Flexible Overtime Planning: RELHOT

Finally, the model that plans order release quantities and flexible schedules overtime on the shop floor
(RELHOT) should perform best in cases of high process uncertainty independent of demand variability.
Figure 7 shows that indeed RELHOT yields the lowest total costs for all scenarios with high process
uncertainty. This algorithm benefits from the central release plan by yielding the lowest WIP levels and
yielding the best timing performance by balancing FGI and BO costs inspite of the highest overtime costs.
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5 DISCUSSION AND CONCLUSION
In this paper we compare three different designs of production planning architecture for overtime and
order release planning. We analyze how different optimization models representing a central planning
level and a corresponding lower level (a rule or a heurisitc) can cope with different degrees of demand
and process uncertainties. The aim of this article is to determine, under different demand variability and
process uncertainties, to what extent overtime and order release decisions should be integrated at a central
planning entity. This means that, different to earlier literature we do not only compare monolithic and
hierarchical models (Vogel et al. 2017; Ghadimi et al. 2022), but we empirically compare different designs
of planning architectures that either explicitly plan overtime and/or order release quantities over a certain
planning horizon or use simplifying assumptions for planning. Therefore, we execute optimal decisions
within a simulation model of a multi-stage, multi-product stylized flow shop. Our results show that (i)
our fully centralized planning model is not even a viable alternative for low process uncertainty levels,
(ii) that centrally planned overtime paired with a backward infinite loading (BIL) release rule performs
best for constant demand and low processing time uncertainty (i.e, uniformly distributed) and (iii) in cases
of machine failures and exponentially distributed processing times the combination of centrally planning
releases with a flexible overtime planning heuristic yields the lowest costs. This shows that, in our simulated
case, a hierarchical planning architectures is superior to an integrated one and that it is not straightforward
to decide which decision should be taken centrally or decentrally. Overall, our findings are in line with
theory, with the only exception that our central monolithic model is always outperformed by other, more
flexible, architectures which highlights the importance of flexibility in production planning to react to the
uncertain manufacturing environment (Haeussler et al. 2019; Schneckenreither et al. 2022). Our results are
of course only limited to the simulated case and the validity of the results for job shops must be assessed
in future studies. Furthermore, it would be interesting to test other planning architectures including more
sophisticated optimization models (Hackman and Leachman 1989; Kacar and Uzsoy 2010; Haeussler et al.
2020) or more advanced order release or overtime approaches (Thuerer et al. 2012; Kacar and Uzsoy 2010;
Haeussler et al. 2019; Schneckenreither et al. 2021).
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