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ABSTRACT 

Production Planning and Control (PPC) plays a key role in stabilizing and improving manufacturing 
processes under external and internal uncertainties by providing transparency in the whole system. This 
study focuses on PPC with internal uncertainties such as losses of work-in-process products during a contact 
lens manufacturing process. Although such losses are expected, the yield rates are uncertain and vary at 
different production stages. A hybrid agent-based simulation (ABS) and discrete-event simulation (DES) 
approach was utilized to resemble the underlying dynamics of the manufacturing system with uncertain 

yield rates. The results of the simulation experiments demonstrated that a simple average yield approach 
for production planning would cause potential backlogs and extra holding costs for the excess inventory. 
The proposed hybrid simulation could be used to support the decision-making process on a weekly basis to 
help a production planning team make a schedule that would improve efficiency and customer satisfaction.  

1 INTRODUCTION 

The development of manufacturing technologies for a variety of different products increases the need to 

use advanced analytics to solve complex manufacturing problems and help companies to stay competitive 
under dynamic market changes (Jeon and Kim 2016). Optimization and simulation techniques are widely 
used in addressing manufacturing challenges allowing to analyze the processes and make informed 
decisions through production planning and control (PPC) (Jeon and Kim 2016). Companies can analyze the 
performance of their production systems, identify potential bottlenecks, and find solutions for them, by 
simulating the behavior of multiple machines in a production line (Farsi et al. 2019; Barrera Diaz et al. 

2021; Bouaziz et al. 2022; Rocha and Lopes 2022). Nevertheless, PPC is a challenging task that has to deal 
with internal and external uncertainties such as production losses (yield rates) and dynamic demand. A 
substantial amount of research has been done in the PPC area focusing on different manufacturing processes 
and uncertainties (Hilmola and Gupta 2015; Costas et al. 2023). However, most of the work has been 
focused more on external uncertainties such as customer demand from different perspectives, while only a 
few studies were conducted on yield fluctuations (Lowe et al. 2016). Including internal uncertainties in PPC 

would bring a significant improvement to the entire planning process, allowing improved control of the 
inventory levels and potential system losses.  

Consequently, one of the most significant obstacles due to internal uncertainties that must be overcome 
during the planning of production schedules for a manufacturing process is considering the expected yields 
or output from the production process. According to Lean Six Sigma, yield is defined as the percentage of 
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the produced items that meet customer quality or specification requirements. Therefore, one of the goals of 
a production planning team is to create a schedule that maximizes production efficiency and minimizes 
waste while considering the expected yield of the process. The expected yield depends on the kind of 

machines used for the different processes a product will be assigned to, the state of the chosen machine, 
and other process factors that can impact production losses (Adipraja et al. 2022). Also, due to the 
requirement of in-depth analysis of the machines and the production processes in practice, estimating the 
actual per-machine yield rates is a challenging step (Chincholkar and Herrmann 2008; Cawley 2018; 
Mehmeti et al. 2018; Patel et al. 2001). If the estimate of the process yield  is not accurate, there may be 
issues with overproduction or high inventory, underproduction or low inventory, and wasted resources, 

which significantly impact the profitability of the manufacturing operation. Additionally, the chosen yield 
rate might affect the level of customer service by creating backlogs due to re-scheduling orders after 
unexpected losses.  

The typical procedure for yield-based planning is to use the average yield rate across all processes and 
schedule the order sizes accordingly. This method is not necessary accurate and may estimate yield with a 
large variation from the true yield that depends on the assigned machine and how well that machine will 

perform. Therefore, considering the complexity of calculating the actual yield rate, this study attempts to 
answer the questions of how the actual yield rate differs from the average yield rate and how yield rates 
impact production outcomes. We proposed the hybrid agent-based simulation (ABS) and discrete-event 
simulation (DES) framework that would help to extend PPC by simulating the underlying dynamics of the 
manufacturing system and modeling the behavior of different system components. The framework offers 
an opportunity to study how the average yield rate and inventory levels are related to each other, the impact 

of the chosen rate on different order sizes, and which order size is more sensitive to yield rate variability 
and inaccurate estimates. The proposed simulation model could support the decision-making process on a 
weekly basis to help a production planning team create a schedule that would improve production efficiency 
and customer satisfaction and decrease losses, and extra holding costs.  

The rest of the paper is structured as follows. Section 2 represents the literature review of manufacturing 
problems where DES, ABS, and hybrid simulation methods were used to solve them. The hybrid model 

design with all agents' behaviors is represented in section 3. Next, the manufacturing of contact lenses as a 
case study is described, followed by experiments and results. Finally, we discuss the findings from the 
experiments of how the average yield scheduling approach affects inventory levels and the future directions 
of this study. 

2 LITERATURE REVIEW 

Simulation methods have often been used to address different manufacturing problems. In this paper, we 

review publications that used discrete-event simulation (DES) and agent-based simulation (ABS) to plan 
production and manufacturing. There is also a review of production planning problems that use scrap rate 
as a main parameter. Ruane et al. (2023) used a DES approach for manufacturing performance improvement 
and evaluated the system's performance using the throughput rate, cycle time, and work-in-progress 
inventory.  Previously, Huynh et al. (2020) used a DES method to optimize the production process and 
track the status of each station over time. 

While the DES approach allows to describe a manufacturing process, ABS helps to describe the 
behavior of different systems and how they interact. Thus, Najid et al. (2002) applied a multi-agent system 
to the job shop scheduling problem. Denkena et al. (2005) developed concurrent planning and scheduling 
methods using ABS modeling. Caridi and Cavalieri (2004) also focused on multi-agent-based production 
scheduling problems. Li and Chan (2013) applied ABS to the design of multi-level control and feedback 
architecture, especially planning and scheduling in port container terminal operations. As mentioned earlier, 

Costas et al. (2023) used an ABS method to analyze the cost of uncertainty in production systems. The 
authors simulated a production system to describe system behavior using the agent-based simulation 
method and calculated the average throughput to estimate the efficiency for each scenario under different 
levels of uncertainty.  
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Both DES and ABS models have benefits when describing production systems and solving 
manufacturing issues. However, the combination of both these approaches would build stronger models to 
support the decision-making process in PPC (Jeon and Kim 2016). For example, Khedri Liraviasl et al. 

(2015) used a hybrid approach that combines ABS and DES techniques for modeling reconfigurable 
manufacturing systems. The two simulation approaches were utilized for describing the model at two 
different levels. DES was used at a macro level to define sequences of operations, order arrivals, queueing, 
events times, and system utilization, while ABS was used at a micro level to model the behavior of different 
elements by using state charts.  The agent-based method helped with autonomous decision-making, 
decentralized system control functions, and improvements in collaboration and functional objects, and the 

discrete-event simulation technique was implemented for process modeling, sequencing of operations, and 
comparing different configurations. Other integrated simulation models that combined DES and ABS were 
introduced for the semiconductor manufacturing process (Sadeghi et al. 2016; Khemiri et al. 2021). Sadeghi 
et al. (2016) created a model that allowed to investigate the potential problems in the production stages such 
as cycle time and drive the potential changes to the dispatching rules. However, the model did not include 
some aspects such as equipment downtimes, maintenance, and material transfers that were addressed in the 

hybrid simulation model (Khemiri et al. 2021).  
Some research focused on measuring and improving manufacturing performance by reducing scrap or, 

in other words, increasing the yield in a manufacturing system. Shokri (2019) developed research to reduce 
scrap in manufacturing SMEs through Lean Six Sigma. The paper suggested changes to the manufacturing 
process, such as improving equipment maintenance, changing operating procedures, and employee training 
to improve skills and knowledge (Shokri 2019). Hilmola and Gupta (2015) Hilmola et al. studied the impact 

of scrap rates on the performance of a manufacturing company using the Theory of Constraints (TOC) and 
throughput accounting (TA) frameworks (Hilmola and Gupta 2015). They suggested that reducing the scrap 
rate could lead to significant improvements in throughput and profitability. In the semiconductor area, the 
yield improvement of wafers production was demonstrated through the yield deep learning prediction 
models based on the wafer maps (Jang et al. 2018). The yield performance of semiconductor machines was 
addressed in the scheduling process through mixed integer programming that helped to improve the quality 

of the product (Doleschal et al. 2015) 
Despite the wide applications of simulation methods including agent-based methods, no study has used 

them for assessing the yield effect on inventory management. The proposed model would enhance existing 
research by providing insights into the diverse perspectives of yield uncertainties and their influence not 
only on the manufacturing critical problems but also on the inventory, holding/material cost, and backlogs.    

3 MODEL DESIGN AND APPLICATION 

To demonstrate the effect of choosing a production yield rate for manufacturing scheduling of orders on 
inventory, potential backorders, re-scheduled orders, and production schedule disruptions the Hybrid 
Agent-Based Simulation (ABS) and Discrete-Event Simulation (DES) model was developed. 

Hybrid simulation offers the advantage of providing a more precise and realistic representation of 
complex systems compared to basic simulation. Straightforward simulation techniques, such as discrete-
event simulation or agent-based simulation, have limitations in their ability to depict complex systems. 

While the behavior of manufacturing processes can be accurately modeled using DES, a more effective 
representation of individual actors such as machines, production orders, and planners can be achieved with 
ABS. By merging these two simulation techniques, hybrid simulation can capture both the behavior of the 
manufacturing process and the behavior of individual agents, resulting in greater accuracy and realistic 
description of the system (Khemiri et al. 2021).  This enables a more comprehensive analysis of the system, 
leading to improved decision-making and process optimization, which is the motivation behind our use of 

this method. Our research aims to incorporate more complex actions in future steps, which can only be 
accomplished through the hybrid simulation approach. 
 The case study was demonstrated on the manufacturing of surgical contact lens hypothetical process. The 
high-level process is shown in Figure 1.  
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Figure 1: Manufacturing process steps for surgical contact lens. 

Surgical contact lenses are produced in product-specific batches, with each batch undergoing all the 
manufacturing stages outlined in Figure 1. At the production step, a quality inspection is conducted for each 

batch. If any lens from the batch fails to meet the standards, it is discarded, and the batch proceeds to 
subsequent steps with a reduced quantity, known as the production order leftover. The packaging step 
follows a similar inspection process, where lenses with issues from the batch are removed. The quantity of 
the batch is defined by the Planner as Initial Production Order.  

3.1 High-level Design 

The production schedule planning process for the given example has to go through specific steps. In order 

to manufacture a batch of contact lenses, the production planner receives the customer orders first, then 
creates the production order (PO) quantity and sends the production schedule to the manufacturing process. 
The PO must go through several manufacturing steps (Figure 1): 

 
1. Production Process includes the lens production process, ice blocking period, and milling. 
2. After the lens is produced, it goes through the polishing step. 

3. After polishing is done, each lens from the order will be individually packaged (packaging process). 
4. The final packaged order will be sent to the warehouse. 
5. From the warehouse, it will be delivered to the customer (distribution center (DC) in our example). 
 
The model was designed as a hybrid agent-based and discrete-event simulation using AnyLogic 

software. The main process was represented as a discrete-event, where some manufacturing stages were 

represented as agents with their own behavior.  The potential yield losses can happen whether in the 
production or the packaging process where defective unfinished lenses will be removed from the 
manufacturing process. Then a batch with smaller quantity will follow to the next operation with “good” 
lenses, which have passed the inspection. Steps 4 and 5 are out of the scope of this work as the main focus 
was on the losses in the manufacturing process and their effect on the inventory.  

The input to the manufacturing process is the PO lens quantity placed by the planner through the 

production schedule based on customer orders received from the demand planning team and manufacturing 
constraints. The system output is leftover lens quantity from the Initial PO order after the yield losses from 
the production and packaging processes.  
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The hybrid system consists of five agents: Planner; Production Order; Manufacturing Process; 
Production machines; Packaging machines. 

3.2 Agents’ Attributes and Behaviors 

3.2.1 Agent – Planner 

Before the PO can be placed, the planner has to analyze the customer orders and create a schedule based 
on manufacturing constraints and losses in the system. The goal is to produce the exact number of lenses 
that are listed in the DCs' (customers') orders, enabling prompt shipment. The customer orders are generated 
by the demand planning team based on inventory, orders from DCs, and customer demand, and the planner 
has no control over them. However, the planner needs to place a production schedule in the way to satisfy 

the required quantities of products shipped on time. Due to losses in the system, it is necessary to schedule 
slightly more units than required. Therefore, the behavior of the planner is dynamic and depends on various 
factors. As a result, it needs to be modeled as a separate agent.  

There are two main attributes (parameters) used: 
 
• Customer Initial orders – received by Planner from demand planning team 

• Average Initial Yield – the known number after the analysis of historical losses of the 
manufacturing system  

The behavior and interaction of the planner with other agents such as the manufacturing process are 
defined through the event – “Production Order Generation Event” on an hourly basis, which includes: 

• Receiving Customer Initial Order i CO (generated inside of the event) based on the uniform 
distribution (Hilmola and Gupta 2015): 𝐶𝑂(𝑖)~𝑈(𝑎, 𝑏), where a- minimum possible order quantity 

and b – maximum possible order quantity -                              
• PO Calculation for each i: 

 

 𝑃𝑂(𝑖) = (2 − 𝐴𝑌)𝐶𝑂(𝑖) (1)  

 
(ex., Average Yield  AY=85%, then PO= 1.15% * Initial CO)   
• Adding Orders to “Production Order” Population 
• Sending PO to Manufacturing through a message 

3.2.2 Agent – Manufacturing Plant 

The main structure of the Manufacturing Plant agent is modeled using DES to capture the entire contact 
lens manufacturing process. Every PO goes through several specific steps in production sequentially and 
eventually leaves the system. DES is deemed suitable for modeling this process due to its linearity nature.   

PO enters through the enter point – “poProcess”, which receives the message from the planner about 
the PO(i) quantity. The message delivery is ensured through “connections”. The main steps: production, 
polishing, packaging processes are modeled as service blocks with their own serving time (production 

rate/cycle time). Since the schedule is usually placed for a week, queue blocks are created before each 
process to capture the order waiting in line while machines are busy with other orders. Once the PO has 
successfully passed through all the necessary steps, it is removed from the system entirely at the “sink” 
stage. The sink is a representation of the case when the final quantity of PO leaves the manufacturing system 
and is sent to the warehouse for shipment to the customer. The whole discrete process is represented in 
Figure 2. 

       Each order goes through the whole manufacturing process based on the First In First Out (FIFO) 
process.  

• Production Process n=1 depends on the Resource Pool – Production Machines j (agent).  
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Figure 2: Manufacturing plant agent (discrete event).   

 
o The resource pool includes multiple production machines, and the PO will be randomly 

assigned to the first available machine.  In this process, the message with PO i and assigned 

production machine j – Xp(i,j) will be sent over to the Production Order Agent, where 
𝑋𝑝(𝑖, 𝑗) = 1, 𝑖𝑓 𝑜𝑟𝑑𝑒𝑟 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑛𝑔𝑒𝑑 𝑡𝑜 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. This action is done on 
Seize step.  

o Additionally, the variable POleftover(i,j,n) of the Production Order Agent will be updated with 
the rounded-down leftover PO i quantity information after yield losses according to (2) – will 
help to see how many contact lenses were scrapped on this step. This update is done on the exit 

step. 𝑃𝑌(𝑖, 𝑗) - production yield for an order i depends on the assigned machine j 
 

 𝑃𝑂𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟(𝑖, 𝑗, 𝑛) = 𝑃𝑂(𝑖)𝑋𝑝(𝑖, 𝑗)𝑃𝑌(𝑖, 𝑗), where n=1 (2) 

 
• Packaging n=2 depends on the Resource Pool – Packaging machines k. The same way as the 

production machines pool, the packaging resource pool includes multiple machines, and PO will 
be assigned to the first available machine. In this step, another message will be sent to the 
Production Order agent  to update what packaging machine k was assigned to each order j – Xpk(i,k) 
as well as the leftover PO quantity from both steps - 𝑃𝑂𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟(𝑖, 𝑘, 𝑛) calculated based on (3), 

where the packaging yield - (𝑃𝑘𝑌(𝑖, 𝑘)) is assigned accordingly for each order i. This leftover lens 
quantity will be the final order quantity that will be sent to the warehouse and inventory status will 
be defined based on this amount.  
 

 POleftover(i, k, n) = POleftover(i, j, 1)𝑋𝑝𝑘(𝑖, 𝑘)𝑃𝑘𝑌(𝑖, 𝑘), where n=2  (3) 

3.2.3 Agent – Production Machines 

Production machines are modeled as a specific agent type and assigned to the Production Process in 
Manufacturing Agent through the Production Machines resource pool.  

There are three identical production machines defined as a capacity for the resource pool. Each machine 
has its own behavior:   

 
• New Generation machine - very good yield (fewer losses) 
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• Good performing machine – “normal” yield (few losses) but in some occasions might not perform 
that well)  

• Old machine - bad yield (high variation) (more losses, due to the variability hard to predict when 

the loss will be high or low).  
 

𝑃𝑌(𝑖, 𝑗) - production yield for an order i depends on the assigned machine j. The assigned machine j is 

defined in the Production Process block of the Manufacturing agent and the yield is assigned accordingly. 

The actual yields are not stable and follow a uniform distribution - 𝑃𝑌(𝑖, 𝑗)~𝑈(𝑐(𝑗), 𝑑(𝑗)), where c(j) – the 

lowest yield % and d(j) – highest yield % for a machine j.        

3.2.4 Agent – Packaging Machines 

Packaging Machines are similar to Production Machines modeled as a separate agent and assigned to the 
Packaging process through the Packaging Machine resource pool.  

After the packaging is done, the quality check is performed. The lens orders packages that include any 
external particles or when the package is damaged will be rejected. This issue is due to the performance of 
a specific packaging machine. There are two identical packaging machines defined as a capacity for the 

resource pool that has different performances: 
 
• New Generation machine with very good yield 
• An older machine with a “satisfactory” yield but higher variation 

 
The yield for an order depends on the assigned machine. The assigned machine k is defined in the 

Packaging Process block of the Manufacturing agent and the packaging yield - (𝑃𝑘𝑌(𝑖, 𝑘)) is assigned 
accordingly for each order i. The actual yields are not stable and follow a uniform distribution - 
𝑃𝑘𝑌(𝑖, 𝑘)~𝑈(𝑒(𝑘), 𝑓(𝑘)), where e(k) – the lowest yield % and f(k) – highest yield % for a packaging 
machine k.   

The POLeftover(i,j,1) from the Production process n will go through the polishing step with no losses 
and then through the Packaging process. Depending on which machine it will be assigned to and the 

behavior of that machine at that time period, additional lenses will be lost to the leftover quantity from the 
production - 𝑃𝑂𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟(𝑖, 𝑘, 2). 

3.2.5 Agent - Production Order 

Production Order Agent tracks each PO during the whole manufacturing process. The behavior of each 
order is described by the following attributes: 

 

• Parameters: 
o Amount – the initial amount of PO i created by the Planner agent – updated during the 

POgeneration event 
o Planner (SKU number)  

• Variables: 
o machineAssigned – Xp(i, j) = 1 production machine j (1-3), where each order i  was assigned 

o packageAssigned – Xpk(i, k) = 1 packaging machine k (4-5), where each order i was assigned  
o customerOrderInit – CO(i) - initial customer order i quantity  
o POLeftover(i,n) – PO leftover quantity after the yield losses in each process 
o Diff(i,n) – the difference between CO(i) -POLeftover(i,n) on each process n – will help to define 

the inventory status for n=2 (Packaging step – final) 
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       The variables are updated through the state-chart shown in Figure 3. The state chart is connected with 
the manufacturing process agent. Production order will move to “ProductionM” state when it will receive 
the message from the ProductionProcess with machineAssigned information and POLefover(i,1). Then it 

will move to PackaginM state when the message arrives from the PackagingProcess (during the seize step). 
When the order is produced and about to leave the PackagingProcess block, another message will be sent 
with Diff(i,2) information, and the order will move to the next state based on its value. The logic is: 

 
• If Diff (i,2)< 0 →move to “LowInventory” state – it means the produced quantity wasn’t enough 

to cover the initial customer order – the order has to be rescheduled and sent back to the production  

• If Diff(i,2) >= 0 → move to the next decision block  
o If Diff (i,2)= 0, then move to IDEAL state – the produced order is the exact quantity needed 

for a customer, and it can be shipped right away 
o If Diff (i,2)> 0 → move to “ExcessInventory” state - the produced order quantity is more than 

the customer order, so the extra inventory must be kept in the warehouse  

 

Figure 3:  Production order agent state-chart. 

4 CASE STUDY 

4.1 Model Assumptions 

As already discussed earlier, the following hybrid ABS model was demonstrated in the manufacturing of 

surgical contact lens hypothetical process shown in Figure 1. Three main phases are assumed in the 
manufacturing process: Production, Polishing, and Packaging. Production plans are the manufacturing 
system's input, and warehouse inventory is supposed to be its output.  It is assumed that production and 
packaging operations yield rates follow a uniform distribution, but no losses are assumed in the polishing 
operations. 

The Production rate is assumed to be the same, regardless of the losses during the manufacturing of a 

batch. The throughput of actual manufacturing is 16 hours per order (production 10 hours per order, 
polishing 1 hour per order, and packaging 5 hours) when there is no waiting time. The manufacturing 
process runs continuously 24 hours and 7 days a week.  No raw materials limitations and manufacturing 
constraints (like changeovers, downtimes) are considered in defining the model. 

4.2 Data Collection 

Data was created artificially in the system according to different probability distributions and simulated 

based on the model assumptions.  
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The average yield of the system is equal to 83%. The production yield follows a uniform distribution. 
In the production line, there may be machines with different performances. We use three uniform 
distributions (0.62,0.92), (0.87,0.99), and (0.95,0.99) to simulate the behavior of old, average, and new 

machines accordingly.  
The machines in the packaging operation follow the same behavior as the machines in the production 

portion. For this phase, two uniform distributions of (0.81,0.99) and (0.93,0.99) are used. The first 
distribution simulates data for an old machine, and the latter simulates a new machine’s performance.  

Customer Orders creation follows the uniform distribution (10,200) units (contact lens) per order. The 
production order is considered a separate SKU number, which means a unique product that cannot be 

combined with other orders. The number of produced orders per week is approximately 20 orders. 
Based on the aggregated machine performance, the average yield across the whole manufacturing 

process is AY=0.83. The production orders have to be planned 17% more than the original customer order 
quantity according to equation (1).  

4.3 Experiments and Results 

For clarity of the experiment, the model was simulated with random seeds 10 times to capture the influence 

of the chosen average yield on the inventory status. To analyze how the average yield differs across 100 
orders that were randomly assigned to different machines of various performances, the true combined yield 
was calculated and shown in Figure 4.  This plot was generated for all ten runs, and one example run is 
represented in Figure 4. As can be seen, the true yield varies significantly frequently and is not even close 
to the average estimated. In most cases, the true yield is lower so a planner could end up with more orders 
that would need to be rescheduled. 

Additionally, we studied how the inventory status, described in section 3.2.5, was spread over weekly 
as planners usually adjust and create a new schedule every week. The average number of orders was 
calculated for each inventory category: low, excess, and ideal on a weekly basis – 5 weeks of study with an 
average of 20 orders per week (Figure 5).  As demonstrated, over time we have approximately the same 
split for low and excess inventory and only a few ideal cases. It means the SKU is always at risk of having 
too much inventory or not enough on the weekly basis as well. 

  

Figure 4: Average yield vs true combined yield for 
one model run. 

Figure 5: 10 random runs average inventory status 
over time. 

Furthermore, understanding how many lenses of each category were lacking or considered extra would 
highlight the issue of choosing the average yield approach. Based on 10 experiments, the average number 
of lenses, which had to be re-scheduled, was 359 units, and 667 units extra were produced. In general, 65% 
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of the total incorrectly produced amount was related to orders that did not have enough units and had to be 
sent back for production with missing quantity.  

Meanwhile, counting the number of orders that belonged to a specific inventory category helped to 

conclude how rare ideal cases happened with varying true yields. Most of the orders were not produced in 
enough quantity (48% of orders) or ended up with excess inventory (47%) according to Table 1. 
Additionally, the orders were split into the size categories: Large Orders (>150 units per order); Medium 
Orders( [50,150] units per order); Small Orders (<50 units per order). Counting the number of orders for 
each inventory category per a specific order size would help to analyze the behavior of the system under 
the different types of orders. Based on Table 1 results, the larger order tended to be more affected by 

overscheduling while on average it has both issues with low and excess inventory. While in comparison, 
the small orders had a higher number of orders that could be considered ideal cases and slightly more issues 
with under-scheduling. That is a logical explanation as a loss in a small order has more effect than a few 
lenses in a big order. 

Table 1: Experimental data study of the effect of the average yield rate on inventory status. 

Experiment Data Low Inventory Ideal Inventory Excess Inventory 

% number of orders 48% 5% 47% 

% number of Large Orders 48% 4% 48% 

% number of Medium Orders 48% 4% 48% 

% number of Small Orders 43% 15% 42% 

To investigate the lacking inventory from the wrong scheduling effect on the order size type, the 
negative difference was calculated based on absolute values and split proportionally between different sizes 

– Table 2. Additionally, the same calculation was done for the positive difference – excess inventory (Table 
2). Based on intuition, it is expected that large orders (consisting of big quantities from both normal and 
big lots) would be more susceptible to yield variations. The simulation experiments conducted to validate 
this observation indeed confirmed that small orders align better with the average yield scheduling approach. 
While some of these conclusions may appear obvious, it is crucial to substantiate them through experiments 
that clearly illustrate the critical nature of the problem. Table 2 shows that a lot of big orders will have to 

be rescheduled and it is clear that would significantly increase the production cost for an order and 
potentially cost more disruptions in the production. Also, Table 2 indicates that large orders overscheduling 
will build a lot of unnecessary inventory. 

Table 2: Experimental data study of inventory status vs order size. 

Experiment Data Large Order Normal Order Small Order 

% of the total number of lenses - lack inventory 44% 50% 6% 

% of the total number of lenses - excess inventory 42% 52% 6% 

5 CONCLUSION AND FUTURE WORK 

The hybrid ABS and DES model was developed to investigate how the average yield rate chosen during 
the scheduling process would influence the final product inventory and increase disruptions in the 
manufacturing process. The model was inspired by the surgical contact lens manufacturing example. Based 
on the experiment results, we can conclude that the average yield approach leads to a huge backlog that 
requires re-scheduling and potential disruptions in production plans for future weeks. Also, the average 
method leads to an excess inventory for some orders that would increase the warehouse holding cost and 

potential transportation costs. Orders with low inventory and excess inventory were likely to happen with 
equal probabilities. However, the total number of lenses that had to be produced additionally was higher 
than the excess lens units. From the lot size perspective, smaller orders tended to respond better to the 
average yield scheduling generating fewer losses and less inventory. Large orders are very sensitive to the 
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wrong production quantity planning. In cases when these orders were assigned to the old lines, a lot of units 
were lost and had to be re-scheduled, while the new generation line would build up extra inventory.  

The simulation experiment demonstrated that a simple average yield approach for production planning 

would cause potential backlogs due to re-scheduling and extra cost holding costs for the excess inventory. 
A more sophisticated approach is required to capture the fluctuations in yield, taking into account various 
factors such as the performance of different machines, potential combinations of production and packaging 
machines, individual specifications for each product type, the dependency of a specific machine's 
performance on the product type, the influence of order sequencing, and other factors that could impact 
yield. Implementing a dynamic rate that considers these specific factors for each product type can help 

improve control over the produced inventory. Employing more advanced methods, like predicting potential 
losses as demonstrated in (Shin and Park 2010), would be beneficial for simulating different scenarios and 
their effects on inventory. 

The developed simulation model could potentially help the production planners play around with 
different average yields rate to see how it could potentially impact the final product inventory under 
different manufacturing scenarios. The information learned from the simulation model, e.g., what could 

potentially happen under different scenarios, could help reduce losses, improve production efficiency and 
customer satisfaction, and reduce inventory costs by producing the right product amount.  

In future work, the simulation model will be enhanced by considering additional factors to determine a 
more accurate yield. These factors may include maintenance effects on machine performance, raw material 
types from different suppliers, downtimes, changeover, and other manufacturing constraints. The 
simulation model that takes into account all these factors could provide more valuable information to 

support decision-making during the production planning process.  
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