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ABSTRACT

In recent times, manufacturing industries and their related supply chains have faced growing internal and
external pressures. Due to the complex nature of global supply chain networks and the increased frequency
of disruptive events, there is a pressing need to implement digital tools to support these industries. Digital
twins have gained significant interest from industry and research communities due to their ability to provide
valuable services in the short term. While there have been many contributions on digital twin-based
methodologies for system design and production planning and control, the use of digital twins in supply
chain management still needs to be improved. This paper presents an overview of the existing contributions
on digital twins for supply chains. Starting from a preliminary literature review on the topic, relevant works
are selected and used to identify insights on the current development level and future research opportunities.

1 INTRODUCTION

Global supply chains recently faced significant disruptions caused by both internal and external factors.
The demand for customized products and pressure on prices has led to a shift towards more flexible
production systems and logistics networks. At the same time, unpredictable events such as pandemics and
lockdowns have highlighted the importance of stress testing and risk-averse planning approaches (Simchi-
Levi and Simchi-Levi 2020). Consequently, production and logistics enterprises are increasingly investing
in digitization (Belhadi et al. 2022). Recent studies have emphasized the significance of digital twins as
decision support systems that rely on predictive modeling of the behavior and dynamics of a supply chain
(Arshad et al. 2022; Marmolejo-Saucedo 2020). To achieve this objective, a simulation or optimization
engine is commonly integrated with the digital shadow, which enables dynamic interaction with the physical
system. This feature facilitates the addition or expansion of functions while providing interactive feedback
(Busse et al. 2021; Martin and Oger 2022). Moreover, it is crucial for both the virtual and physical system
to continually exchange information, hence a bidirectional data link is needed.

Among others, one of the most inclusive definitions of digital twin identifies it as “a set of adaptive
models that emulate the behaviour of a physical system in a virtual system getting real time data to update
itself along its life cycle. The digital twin replicates the physical system to predict failures and opportunities
for changing, to prescribe real time actions for optimizing and/or mitigating unexpected events observing
and evaluating the operating profile system” (Semeraro et al. 2021). Recent literature has introduced the
term Digital Supply Chain Twin (in the remainder indicated as DT for the sake of simplicity) to differentiate
it from the ones applied to other fields. This terminology refers to a DT that fulfills the requirements
and specifications of supply chain management and reflects a growing trend in recent articles. Indeed, by
integrating sensors and other data handling technologies (e.g., Internet-of-Things) to several critical phases
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of supply chains (e.g., orders arrival timestamps, shipping tracking), DTs can offer real-time insights into
the performance of a physical supply chain and identify potential issues or bottlenecks (Wang et al. 2022).
Also, the integration of DTs within supply chain management phases promises a multitude of advantages,
including the optimization and improvement of customer service, reduced costs, and increased profits. By
leveraging DTs, businesses can identify and eliminate inefficiencies, reduce risks, and monitor and track
the supply chain’s performance to identify opportunities for improvement. Another advantage of DTs is the
real-time monitoring of supply chain performance, where sensors and other data sources can be integrated
into the DT to provide a real-time view of the supply chain. This feature can enable managers and operators
to quickly identify and resolve issues, preventing costly delays and disruptions, and ultimately enhancing
the overall performance of the supply chain. For instance, DTs can be used to simulate various scenarios
and test different strategies for managing the supply chain from a particular state. This can aid managers
in making more informed decisions about resource allocation in the short-term and adjusting the supply
chain to meet the customer expectations.

Figure 1 compares the number of publications on DTs in manufacturing with respect to logistics and
supply chains. The papers have been obtained as a result of two separate queries which have been done
on 2023-01-10 on the Scopus database, respectively: (1) ”Digital Twin” AND (”Logistics” OR ”Supply
Chain”), resulting in 528 papers, and (2) ”Digital Twin” AND (”Manufacturing” OR ”Production”), which
provides 3687 results. The figure shows that while in manufacturing there has been a significant increase
in publications following 2017, the number of publications on DTs for supply chains has not experienced
the same increase. We may infer that the generation and management of DTs for supply chains may reveal
to be more challenging than building DTs of manufacturing systems. Literature has provided successful
DT implementations that focus on specific supply chain processes, such as manufacturing (Kritzinger et al.
2018), retail (Kümpel et al. 2021), logistics (van der Valk et al. 2022), and healthcare (Rivera et al. 2019).
Despite these succesfull applications, literature still lacks of a widely accepted methodology and framework
for building DTs for supply chains. This is likely due to the complexity of supply chains, which involve
numerous stakeholders and intricate processes that require both precise modeling and frequent manual
interventions. The complexity may further increase if the value chain spans across the globe and involves
various transportation modes. Additionally, supply chains are highly dynamic and frequently subject to
disruptions such as pricing pressures, customer and supplier issues, and transportation delays. These
disruptions cause significant structural changes in both material and information flows that are not easily
reflected in digital models, which are often designed for lower-frequency uses. Furthermore, structural
changes necessitate continuous adjustments to data sources, which can pose a challenge in generating and
updating accurate digital representations.

This paper aims to gather insights from the available literature and summarize the main features that
must be provided by DTs applied to whole value chains. Existing literature reviews are listed and exploited
to gather useful insights on the technological enablers, barriers, and research challenges. The rest of the
paper is organized as follows: Section 2 summarizes the existing literature reviews and frameworks on DTs
for supply chains; Section 3 discusses on the common features and functions of DTs. Section 4 summarizes
the main applications; Section 5 lists the research opportunities; Final remarks can be found in Section 6.

2 LITERATURE REVIEW

In this section, we gather insights from existing literature reviews on DTs for supply chains. The papers
have been selected by executing the query ”Digital Twin” AND (”Logistics” OR ”Supply Chain”) on the
SCOPUS database without date restrictions (Lugaresi et al. 2023). From the 528 results, a subset of papers
has been selected based on the following criteria applied to the title and the abstract: (1) the publication
must be in English, (2) the publication must regard the application of DTs to provide benefits to supply
chains, (3) the publication aims to provide a comprehensive literature review on the subject. As as result,
the 15 papers listed in Table 1 have been selected and are summarized in the following.
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Figure 1: Comparison in the number of publications on digital twins in manufacturing with respect to
logistics and supply chains in the last ten years (from Lugaresi et al. 2023).

Agalianos et al. (2020) investigated the literature on the integration of discrete event simulation and
DTs in the management of warehouse systems. The work highlighted the trend of including real-time
capabilities in simulation experiments, for instance for scheduling capabilities. Barykin et al. (2020)
attempted to address the link between DTs and risk management. The authors concluded that there are
no available approaches to build the conceptual model of a supply chain DT. Krajcovic et al. (2018) used
a case study to demonstrate the phases with which an enterprice can adopt intelligent logistic planning
methodology, and identified how different technologies can aid in specific inventory strategies. Marcucci
et al. (2020) explored the DT concept and its potential role in urban freight transport policy-making and
planning. The authors emphasized the importance of having a thorough understanding of the connections
between real-world context and choice/behavior. The paper claims that the use of both behavioral and
simulation models is crucial in creating a DT that can facilitate effective participatory planning processes
and forecast both behavior and responses to structural changes and policy implementations. Vilas-Boas
et al. (2023) provided an overview of the use of DTs in food logistics, outlining the key requirements for
technologies to be applied in each stage of the logistics process. The paper also discussed potential research
opportunities in the fresh food supply chain and highlighted the challenges that must be addressed when
integrating these technologies. Taghipour et al. (Taghipour et al. 2022) emphasized the impact of digital
enablers in enhancing the performance of various entities within a supply chain, and investigated how
digitization can influence the profitability of these activities both individually and collectively. The authors
underlined the importance of collaboratively managing supply chain processes that are autonomous and
decentralized. Kamble et al. (2022) conducted a systematic literature review to examine the relationship
between various dimensions of supply chain DT and sustainable objectives. The authors concluded that
technological advancements in Internet-of-Things (IoT), cloud computing, and blockchain have expanded
the potential applications of DT in supply chain management. Also, they suggested that a comprehensive
supply chain DT should encompass all entities, including people and things, throughout the entire supply
chain, rather than solely local manufacturing systems. Further, the paper proposes a sustainable DT
implementation framework for supply chain management to assist future practitioners and researchers.
Bhandal et al. (2022) identified four clusters of values and one cluster of enablers for DTs in operations and
supply chain management. The value clusters include articles that demonstrate how DT implementation
can improve supply chain activities at the level of business processes and supply chain capabilities. The
authors identified the supply chain resilience and risk management value cluster as a newly emerging
cluster and situated on the periphery of the primary literature network. van der Valk et al. (2022) did a
liteature review by classifying papers on the basis of use cases, purposes, and technological readiness. The
authors highlighted the challenges for DTs development and identified five main research directions: (1) the
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Table 1: Existing literature reviews on digital twins for supply chains (from Lugaresi et al. 2023): • =
full, (•) = partial coverage.

Reference Domains Framework Barriers Enablers Challenges
Agalianos et al. 2020 Unspecific - - - -
Barykin et al. 2020 Unspecific • - (•) -
Krajcovic et al. 2018 Automotive • - - -
Marcucci et al. 2020 Urban Logistics - (•) - -
Vilas-Boas et al. 2023 Food - - (•) •
Taghipour et al. 2022 SC Management - - • -
Kamble et al. 2022 Sustainability (•) - (•) -
Bhandal et al. 2022 Risk Management - - • -
van der Valk et al. 2022 Unspecific - - - -
Zahra et al. 2022 IoT - - - -
Dy et al. 2022 Unspecific - - - •
Kulaç et al. 2022 Unspecific - - (•) -
Uhlenkamp et al. 2022 Unspecific (•) - - -
Jeong et al. 2022 Unspecific (•) - - -
Aguilar-Ramirez et al. 2022 Blockchain, IoT - - - -

integration of different information system tasks within a single digital object, (2) the derivation of further
DT-driven services, (3) the development of of industrial use cases, (4) the extension of DT capabilities
toward additional domains besides classical production, and (5) the direct control of supply chains. Zahra
et al. (2022) highlighted the role of digitization in supply chains and the enabling technologies to achieve
DT capabilities. Dy et al. (2022) examined the uses of DTs in different industrial sectors. Their literature
review also focuses on the application of DTs for supply chain risks. The authors revealed the current
advancements of DTs in the mentioned industries and their application to risk management. Its purpose is
to aid supply chain practitioners and researchers in recognizing challenges and areas of potential research
related to DTs. Kulaç et al. (2022) presented enabling technologies and application sectors of DTs for
supply chain operations. The authors suggested the value of DTs can be divided in three main functions:
(1) descriptive, which means providing end-to-end visibility of the supply chain status; (2) analytical and
predictive, which exploits capabilities of simulation models for scenario analysis; (3) diagnostic, which
exploits big data analytics and machine learning algorithms to detect patterns, hidden relationships, and
abnormalities. Uhlenkamp et al. (2022) developed a maturity model of DTs that includes seven categories:
context, data, computing capabilities, model, integration, control, human-machine interface. The goal is
to assess the effectiveness of existing solutions and identify opportunities for improvement or adaptation
to new use-cases. The method provides a comprehensive framework for evaluating DTs and represents
the first step towards a systematic evaluation and a structured development of new applications. Jeong
et al. (2022) provided a comprehensive overview of the evolution of DTs since the introduction of the
term in 2002. The authors presented implementation layers to guide the practical application of DTs, and
suggested technology elements for each layer that can efficiently facilitate the creation of new DT models.
The technology elements are also defined and applicable across various domains. Aguilar-Ramirez et al.
(2022) identified how DTs and blockchain technologies can collaborate to meet the requirements of supply
chains. The authors identified the advantages and disadvantages that should be thoroughly evaluated before
implementing blockchain-based DTs in any business.
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Figure 2: Trends identification based on the classification proposed in Van der Valk (2022): a) SCOR
model dimensions, b) DT purpose, c) DT use cases. The indicators are expressing the relative number of
papers that fall into each category.

2.1 Current Trends

van der Valk et al. (2022) conducted a literature review using the same query shown in Figure 1. They
classified papers published until the end of 2021 according to use cases, purposes, and technological
readiness. Since their study, 189 additional papers have been published. Therefore, it is relevant to identify
current trends by analyzing how the new papers would be classified within the same categories, which are
the (1) Supply Chain Operations Reference Model (SCOR) dimensions, (2) DT purpose categories, and
(3) DT use cases.

Figures 2a, 2b, and 2c present the results of this trend analysis, providing useful insights into current
research trends. Figure 2a shows the trends in the SCOR processes dimensions. Until 2022, there was a
tendency to focus on the ”make” phases. This is coherent with Figure 1, as DTs for production phases were
developed before those for supply chain processes. Recently, there has been a significant increase in papers
focusing on planning (i.e., mostly risk assessment) and delivery phases (i.e., resilience, recovery phases).
This shift indicates a focus on the entire supply chain, moving away from the factory level. Figure 2b shows
the distribution of DT functionalities. Until 2022, there was a relatively even distribution among the DT
functions, but more recently, there has been a significant increase in visibility and monitoring applications.
This trend is supported by the fact that system state mirroring is one of the first steps in DT development,
both in terms of implementation and application interests (Jeong et al. 2022). However, despite the focus
on a particular service, the existing contributions remain at a general, conceptual level, without proposing
practical insights on DT architecture building or diving deeper into quantitative methodologies. Figure 2c
compares existing literature trends with respect to DT use cases. There has been a significant increase in
the number of literature reviews, indicating a growing maturity of the topic.

Starting from the papers identified in the literature, we have selected significant contributions with the
aim to highlight the main application frameworks, the functions of DTs in supply chains, and relevant
applications, which are described in the next sections.

2.2 Existing Frameworks

The implementation of DTs lacks a standard architecture, leading to confusion in terminology in the
literature. Different approaches to defining DT architecture have been proposed. The manufacturing field
originated the first approach, which identifies five dimensions of a DT: physical system, virtual system, data
integration, service system, and connections between the dimensions (Zhang et al. 2021). This framework
has been later extended to six dimensions with the addition of a decision support system (Jones et al.
2020). The second approach, commonly used in simulation studies, focuses on the components of the
simulation within the DT (Arshad et al. 2022; Wang et al. 2022) and describes its architecture as the
functional relationships between real-time input data, simulation experiments, and output results. In Martin
and Oger (2022), the environment in which the reinforcement learning agent is trained is referred to as a
DT, leading to the concept of DT being conflated with that of digital simulation or optimization. A modular
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framework proposed by Perez et al. (2022) divides the DT into three modules: (1) the system identification
module, which renders an accurate model of the supply chain business processes using embedded data and
parameters; (2) the simulation engine, that uses discrete-event simulation to explore different scenarios; (3)
the optimization engine optimizes the system, its parameters, and functions using either heuristic algorithms
or linear programming. Despite the aforementioned framework propositions, it remains complex to classify
existing works under a limited set of framework types. Indeed, each contribution has characteristics that
remain highly influenced by the chosen approach and application field.

3 DIGITAL SUPPLY CHAIN TWIN FUNCTIONS

DTs offer specific functionalities that can be tailored to the needs of individual value chains. In the following
is provided a summary of the most cited functions that are expected from DTs to the aid of supply chain
operations.

3.1 Visualization and Monitoring

To ensure that the DT always reflects the physical system and responds to environmental changes, it
should be updated in real-time. The frequency of data exchange depends on the specific use-case, but it is
widely agreed in the literature that continuous optimization and improvement cannot be achieved without
a constant connection (Busse et al. 2021). Given the real-time connection, a DT allows organizations to
visualize and monitor the status of assets, inventory, and products in real-time. This capability also grant
the needed information to make on-time and undistorted judgements. Even unprocessed data can suffice
for this function, which differs from analytics described in the next section.

3.2 Advanced Analytics

All DT systems rely on descriptive analytics to gain insights into the performance of the physical system,
identifying patterns and trends based on historical data. In the following, the main types are summarized.

• Predictive analytics are commonly used to forecast future events or outcomes, and it is employed
in several use cases, such as in the classification of products according to their quality (Min et al.
2019) or estimating the delivery failure probability of suppliers (Abideen et al. 2021). Using data
from both the physical systems and the DTs, predictive analytics can be used to identify issues such
as potential bottlenecks or inventory deviations, as well as to forecast both demand and supply.
Differently from the traditional approaches, DTs can provide the capability to perform predictions
based on data that do not represent any historical situation.

• Reactive analytics involve real-time analysis of events as they occur and the development of reactive
recovery policies immediately after failure is observed. This approach is commonly used in risk
management studies (Cavalcante et al. 2019; Ivanov and Dolgui 2021; Martin and Oger 2022).
This function may also involve the use of sensors and real-time IoT data to monitor events and
trigger automated responses.

• Prescriptive analytics are approaches used in DTs to test different configurations of the supply
chain (Lepenioti et al. 2020). Other contributions used reinforcement learning to generate recom-
mendations for prescriptive analytics. For example, Wang et al. (2022) trained an agent to make
supply chain decisions regarding route optimization. Similarly, in (Burgos and Ivanov 2021), an
agent is trained to make supply and delivery decisions. The agent is fed with different data such
as warehouse data, orders, and truck route information until it determines the best action to take
based on available data.
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3.3 Simulation and Optimization

A DT can be used to analyse different scenarios and optimize the supply chain performance. For instance,
the impact of changes to transportation routes, inventory levels, or suppliers can be tested and optimized
in the virtual world before designing operational procedures. Pan et al. 2021 simulated different inventory
policies using discrete-event-simulation in Anylogic and different what-if-scenarios to determine optimal
inventory policies. The simulation capabilities can also be exploited to identify opportunities for continuous
improvement (Marmolejo-Saucedo et al. 2020).

3.4 Adaptation

A DT must accurately represent the physical system in all its complexity and variability so that its outputs
can be effectively used (Burgos and Ivanov 2021). The literature is rich with applications covering a
wide range of DT scopes. Gerlach et al. (2021) proposed to simplify them in three main categories: (1)
asset level focuses on a single physical component, such as a machine or device. However, asset DTs are
atomic and are not compatible with the definition of digital supply chain twins. (2) site level involves the
integration of multiple physical twins within a site or facility, such as warehouses or production facilities.
Such a DT can be used to monitor interactions and dependencies between physical assets and optimize the
entire site, including inventory management and production planning aspects. (3) network level involves
the integration of multiple sites or facilities into a single DT. It enables coordination and optimization
across the entire supply chain, including logistics and demand planning.

3.5 Enterprise Systems Integration

Information system databases from tools such as enterprise resource planning (ERP), warehouse management
system (WMS), material requirements planning (MRP), and customer relationship management (CRM)
are typically identified as the main data sources for DTs (Coelho et al. 2021). Cloud-sharing and external
data can also be exploited. The integration remains challenging as state of the art DTs imply a partial
re-purposing of enterprise systems and migration to holistic data storage solutions (Marmolejo-Saucedo
and Hartmann 2020). For instance, Min et al. (2019) illustrated a DT application in a petrochemical
manufacturing industry where data is collected using industrial IoT systems with specific edge computing
capabilities. The data is then retrieved using ad-hoc application programming interfaces to be further
processed.

4 APPLICATIONS

The development of DTs for supply chain analytics is mainly aimed at providing decision support systems
for increasing supply chain visibility, managing risks, and handling disruptions. In these applications,
DTs can use the large volume of data they gather about the physical system and its functioning to detect
anomalies in real-time, using information from the field as well as from enterprise information systems to
identify critical areas and assess them.

4.1 Supply Chain Visibility

According to Moshood et al. (2021), the DT can contribute to four different dimensions of visibility:
(1) Sensing visibility: the DT can detect real-time changes and interpret sensor data to gain insights into
the supply chain flow. (2) Learning visibility: the DT has the potential to gain knowledge about the
operations of the organizations, such as the transport of suppliers, through flows of data. This knowledge
can be dynamic and used to suggest solutions and improve processes. (3) Integrating visibility: the DT
can improve a company’s adaptability and ability to incorporate new approaches by analyzing vital internal
processes and aligning them. (4) Coordinating visibility: the DT allows for better decision-making through
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collaboration between different parties involved in the supply chain, including suppliers, manufacturers,
and distributors.

4.2 Risk Management

The use of DT for risk management has gained attention in recent years, primarily because of the increasing
complexity and interdependence of systems resulting from the industry 4.0 transformation. Furthermore,
the demand for real-time risk monitoring and decision-making has contributed to this trend (Barykin et al.
2020; Gerlach et al. 2021). Indeed, in order to enhance agility and redundancy in supply chains, it is
important to implement good practices such as diversifying suppliers and avoiding single points of failure.
However, even with these measures in place, risks cannot be completely eliminated. DTs with predictive
functions can help mitigate these risks. In the literature they are often referred as supply chain ”control
towers”. For instance, Wang et al. (2022) suggest that DT can simulate scenarios corresponding to the
main identified risk scenarios, in order to recommend the best reconfiguration strategies for each scenario.
Cavalcante et al. (2019) developed a DT in which data about suppliers’ past delivery, such as deliveries
on-time and late deliveries, are processed to predict the probability of each supplier delivering an order
on time. This model creates a risk profile of each supplier, which can help in intelligent decision-making
and shaping a more resilient supply chain through risk avoidance or risk reduction strategies such as
removing high-risk supplier portfolios or combining them with more delivery-reliable suppliers. As more
data becomes accessible, and quantitative and modeling methods continue to evolve, the usage of DT
technology for risk management is expected to expand (Bhandal et al. 2022).

4.3 Disruptions Management

Disruption modeling using DTs in supply chain is a growing trend in recent years, although still considered
a novel topic. In particular, the Covid-19 pandemic has led to studies exploring the benefits of using DTs
to model and mitigate disruptions in the supply chain. Wang et al. (2022) discussed a case study of an
online retailer in China, who created a cloud-based digital supply chain platform. The study aimed to
validate the simulation model in the platform by calibrating its parameters to accurately reflect the current
demand status in one of the areas with 96% accuracy. Different scenarios, such as changes in demand,
supplier lead times, and transportation routes, were then tested to enable comprehensive improvements
in the supply chain. Burgos and Ivanov (2021) explored the use of a DT-based approach to model and
mitigate the impact of COVID-19 on a European food retailer’s supply chain. They combined historical
sales data, inventory levels, and supplier lead times to create a DT model using AnyLogic, and simulate
different scenarios to assess the impact of certain disruptions on the supply chain. Their findings showed
that increasing safety stock levels and using alternative suppliers can improve supply chain resilience in
the face of disruptions such as a pandemic. The study highlights the potential of DT-based approach to
provide real-time visibility and enable proactive decision-making, thus improving supply chain resilience.

5 RESEARCH OPPORTUNITIES

Based on the literature review and discussion, preliminary types of research challenges have been identified
by the authors.

5.1 Digital Twin Architecture Definition

Architecture challenges involve the creation of a comprehensive and commonly accepted DT architecture,
which can benefit both researchers and practitioners. To enhance the performance of the entire supply
chain, the management processes should be decentralized, autonomous, and collaborative, enabling each
component to independently achieve its own objectives and constraints while simultaneously pursuing
overall optimization (Taghipour et al. 2022). Therefore, it is crucial to design and establish a practical DT
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architecture that can support the development of general components, including data exchange interfaces,
as well as application-specific services. Additionally, the structural design must consider the operational
phases of DTs, such as life cycle management (Romero et al. 2020).

5.2 Digital Twin Generation

Some research directions remain unexplored in the supply chain domain, and similarities with the man-
ufacturing domain can provide useful guidance. For example, supply chains could benefit from model
generation approaches and methodologies for managing DT operational phases (Lugaresi and Matta 2021;
Matta and Lugaresi 2023). Indeed, an investment in digitization feed the intuition that the increased amount
of data can be used for the generation of supply chain material flow and information models. Such capability
will be essential to guarantee the physical-to-digital alignment and to validate the logical structure of the
digital models.

5.3 Interaction Challenges

Although the interaction between the physical and digital worlds is a crucial aspect of DTs, few studies
have explored this topic in depth. Indeed, interaction challenges arise from the complexity of managing
existing DTs once they are operational. Thus, there is a need to develop techniques specifically tailored to
address the challenge of physical-digital alignment (Tan and Matta 2022). This is particularly important
for achieving level 5 of the DT evolution framework, which involves building and managing DTs at the
federated level. However, there is currently a lack of clarity on how this will be achieved (Jeong et al.
2022; Haße et al. 2022).

5.4 Application Challenges

Application challenges are specific to the implementation of DTs in supply chains. DTs have been
implemented to improve various functions within the supply chain such as procurement, logistics, distribution,
and retail, but they have not been widely adopted in a holistic approach, resulting in DTs that only address
one or a few echelons of the supply chain (Valero et al. 2022). This approach overlooks the potential benefits
of a comprehensive DT approach. Additionally, the multi-structural composition of supply chain networks
and the organizational, financial, and informational changes necessary for successful DT implementation
still need to be addressed. While most existing implementations focus on an asset-centric perspective,
there is a lack of research on enhancing the sensing and adjusting capabilities of the entire supply chain
environment. Although supply chain DTs can provide planning and controlling capabilities at both tactical
and operational levels, their potential benefits on the strategic decision-making level for providing business
intelligence and enhancing the business ecosystem are yet to be fully explored. Furthermore, devising
and integrating DTs for small and medium enterprises within value chains present significant challenges.
Indeed, according to Marmolejo-Saucedo and Hartmann (2020), there is a lack of a technological platform
capable of modeling DTs in all of their complexity. Hence, some companies must opt to create their own
platform. Additionally, a DT requires a significant amount of data to provide an accurate representation of
the physical system, leading to extensive data management concerns such as privacy, quality, and security,
as noted by Bhandal et al. (2022). It also requires significant computational capabilities or investments in
licenses that may not be readily available to many companies.

6 CONCLUSIONS

The field of supply chain management experienced an increased interest about DTs. While there are
relatively few applications, some case studies showed promising results exploiting specific functionalities
of DTs. However, a lack of a comprehensive overview of DTs capabilities and frameworks remains.
This study is preliminary. Future research should formalize the contributions of DTs through systematic
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literature reviews. For instance, specific DT functions can be applied to different processes within a supply
chain, and requirements can vary extensively depending on the applications. The relationships between
DT functionalities and requirements require deeper study. Future research should also include quantitative
assessment of the impact and implications of using DTs for value chains, as well as developing standardized
architectures and frameworks to facilitate their uptake in industry.
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