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ABSTRACT 

Supply chains face a myriad of adverse risks that impact their daily operations and make them vulnerable. 
In addition, supply chains continue to grow in size and complexity which further sophisticates the problem.  
Lack of a structured approach and limitations in existing risk management methods contribute towards 
effective mitigation strategies not being properly developed. In this paper, we develop a discrete event 
simulation modelling approach to quantify the performance and risk assessment of a manufacturing supply 
chain in Sweden which is under the impact of risks. This approach could support decision makers by 
prioritizing risks according to their performance impact and facilitating the development of mitigation 
strategies to enhance the resilience of the supply chain. The conceptual digital model can also be used to 
generate synthetic data to build an artificial intelligence-enhanced predictive demonstrator model to 
showcase capabilities for building data-driven resilience of the supply chain. 

1 INTRODUCTION 

Supply chains (SCs) are prone to several external and internal risks and disruptions which unfortunately 
cannot be avoided. SC risks are those that impact its value-creating outcomes in terms of productivity, 
volume and quality of products produced from a geographical and time-dependent perspective (Bogataj and 
Bogataj 2007). Operations can be severely disrupted, come to a complete halt or deliveries can be delayed 
if such risks are not proactively planned for, ultimately leading to a domino or ripple effect (Ivanov et al. 
2018; Kinra et al. 2020), propagating and affecting subsequent operations in the wider SC network and 
hence its resilience, as SCs are as strong as their weakest supporting links. Examples of such effects could 
be seen in the 6-day interruption of the Suez Canal by the container ship Ever Given in March 2021 
(Özkanlısoy and Akkartal 2022) or the 50-day blockage of the Rhein-Railway at Rastatt in July 2017 
(Borghetti and Marchionni 2023). 
 Risk management thus plays a pivotal role in building the resilience of an organization (Martin and 
Peck 2004), which is defined as the ‘ability of organizations to return to its original state or move to a new, 
more desirable state after being disturbed’ (p.4). This ability to return to original or new states after the 
disturbance, largely depends on whether the organization(s) was able to proactively make decisions before 
the disruptive event took place rather than during or after the event (Murino et al. 2011) (reactive responses). 
Risk management includes several steps such as risk identification, risk assessment and risk mitigation 
(Collier et al. 2022; Madni and Jackson 2009; Sodhi et al. 2012). However, ‘risk prioritization’ has also 

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 2064



Chari, Marti, Lopes, Johansson, Despeisse, and Stahre 
 
been deemed to be an important step (Elangovan et al. 2021; Faisal 2009), especially in the current Industry 
4.0 (I4.0) environment (Pandey et al. 2021). Simulation modeling is a common method to analyze and 
quantify risks that impact a SC (Finke et al. 2010; Flammini 2021). Such models can help industrial 
practitioners manage their operations based on the priority of risk impacts and hence build the resilience of 
their organizations as well as their SCs. 
 Ongoing development of new and more sophisticated products continue to demand more components 
which can only be provided by specialized suppliers. In addition, continued drive for globalization 
distributes SCs over larger areas, in more countries and on multiple continents. This development poses 
several challenges to managing risks (Pearsall 2016) such as: 

 
• Elongated SCs, with many parts sourced from sub-tier suppliers. 
• Less visibility of data related to critical parts, delivery times, etc. due to sub-tier sourcing. 
• Presence of components and suppliers in multiple countries. 
• Longer distances between means of production. 

  
 In addition to the above challenges, SCs are growing at a scale that is difficult to oversee and manage 
manually by humans, making it harder for SCs to prioritize and manage risks that have different degrees of 
impact on their operations. In view of these challenges, the question we hence try to address in this paper 
is: How can we prioritize risks for building the resilience of manufacturing supply chains? 
 Artificial intelligence (AI) powered solutions can help to identify risks; however, a multitude of 
requirements need to be met for successful deployment (Alzahrani and Asghar 2023). We took on the task 
of an iterative journey to implement an AI solution first by generating synthetic data of an SC for AI model 
exploration. We analyzed a SC in the Digitala Stambanan project (Digitala Stambanan 2021) which 
primarily consisted of three companies (hereafter companies 0, 1, 2 and 3). Here, value is created through 
specific customized processes and activities starting from the flow of raw materials from companies 0 (sheet 
metal provider) and 1 (provider of nuts and bolts) to company 2 (where the assembly of steel products takes 
place) which delivers the finished product to the end customer, which is the OEM (3). The SC partners 
collectively agreed that the timely delivery of products (delivery assurance) was the primary objective for 
value creation in the SC. As delivery assurance is a subjective concept, we focused on throughput as the 
measurable value at this stage of development. However, there are various reservations among partners to 
share data and implement AI such as data security and lack of trust in AI. Therefore, we attempt to 
circumvent this challenge by developing a modelling approach based on discrete event simulation (DES) 
which can simulate the goods flow in a SC. The present simulation model quantifies the impact of pre-
defined risks (with a range of likelihood and impact) on the throughput of the SC which could then help 
companies prioritize the risks. The data produced by the simulation model can be used at a later stage for 
the demonstration of a throughput prediction model based on synthetic data to demonstrate the capabilities 
and benefits of an AI system. The model serves the only purpose of accelerating the development process 
of an AI system. Validation will take place only later and will be applied directly to the AI system trained 
on real data. 

Following this introduction, the rest of the paper is organized as follows. Section 2 presents the frame 
of reference, Section 3 discusses the overall method and modeling approach for prioritizing risks, Section 
4 presents the results in the form of experiments and we end the paper with conclusions and future work in 
Section 5. 

2 FRAME OF REFERENCE 

2.1 Supply Chain Risk Management and Resilience 

Resilience can be defined as ‘a measure of the persistence of systems and of their ability to absorb change 
and disturbance and still maintain the same relationships between populations or state variables’ (Holling 
1973) (p.14). For the case of a SC, the responsiveness of companies to the different shocks between nodes 
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or arcs in the SC can be associated to its ‘resilience’ and hence of the entire SC, which can then be attributed 
to its competitive position in the market (Sheffi and Rice 2005). Hence, companies must be able to respond 
to such unintended events and quickly return to pre-disruption levels or even better states of performance, 
while maintaining consistent output levels. We consider disruptions to be interruptions in operations that 
are caused by various risks impacting the SC.  
 Sheffi and Rice (2005) describe a company’s response to disruptions and the corresponding impact on 
its performance in the form of eight phases as follows (Figure 1): The first step is preparation which entails 
proactively foreseeing possible disruptions that could occur and minimizing its impacts. When the 
disruption occurs, the next step is a reactive response that aims to control the situation and prevent it from 
creating more damage to operations. Although the magnitude of the initial impact could be less at the 
beginning, it could take time to propagate and for the full extent of the damage to be seen. When this occurs 
(either immediately or with a delay), firms must then prepare to recover from the impacts of the disruption. 
Recovery activities then try to bring back operations to normal levels after which the long-term impacts 
must be carefully considered for future strategy planning for risk and disruption mitigation.  

Figure 1: Disruption profile characteristics (Sheffi and Rice 2005). 

Risk, as defined in the risk theory domain, ‘is a situation or event where something of human value 
(including humans themselves) is at stake and where the outcome is uncertain’ (Birkie et al. 2014) (p.84). 
That is, risk is perceived to exist when there is a large likelihood that the unintended event and 
corresponding disruption that occurs has a significant impact or cost associated with them (Faisal 2009). 
Risks have had several typologies associated with them in SC and Supply Chain Risk Management (SCRM) 
literature. Some have been categorized based on the location of risks: internal and external risks (Martin 
and Peck 2004) while some others on the impact of risks: operational (e.g., from uncertain demand and 
supply) and disruption risks (e.g. earthquakes, natural disasters and geo-political issues) (Tang 2006). 
Others such as Ivanov et al. (2017) categorized disruption risks at the SC level according to production, 
supply and transportation risks.  

As previously described, risk management also entails several stages or steps namely risk identification, 
risk assessment, risk prioritization and risk mitigation (Elangovan et al. 2021; Faisal 2009; Madni and 
Jackson 2009). Risks could also have dependencies and inter-relatedness that may have an impact on one 
or more organizations in the SC (Murino et al. 2011), destabilizing the whole system. We have considered 
these aspects while modeling risks in the present study. 

2.2 Simulation Modeling and Artificial Intelligence 

Although the overall deep learning architecture for supply chain risk is not yet fully solved, supply chain 
risk prediction is an emerging field which deserves attention because of the vast potential of cognitive 
perception of artificial intelligence-based solutions. However, deep learning-based solutions depend on 
available data for model exploration and testing (Alzahrani and Asghar 2023). 

Many partners are often reluctant to share data due to a variety of reasons, which is also the case in this 
study. To circumvent this problem, methods based on generative AI were already proposed to generate 
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synthetic data which approximate the data featured in a problem (Panfilo et al. 2023). Access to real data 
is also required with generative AI, or SC partners need competent personnel who are familiar with AI 
inhouse who can apply similar methods as proposed by Panfilo et al. (2023). However, this is not the case 
in the present study. Synthetic data from modelled data can be used for various computer vision (CV) 
applications and also for other forms of data problems (Nikolenko 2019). We aimed at using this concept 
to approximate the data featured in goods flow of a SC synthetically, using a DES modelling approach. A 
framework was proposed to use DES for synthetic data generation for a manufacturing system in a single 
plant (Chan et al. 2022). We aim at using this method, but apply it to represent a whole SC.  

3 METHOD 

The objective of this study is to develop a digital model of a supply chain (SC) that is affected by determined 
risk events. The SC model centers around two critical components that are responsible for producing or 
transporting goods. These risk events temporarily reduce the production or transportation capacity of the 
selected SC elements, resulting in disruptions that diminish the output of affected components. Because of 
the nature of SC, elements deliver goods to other elements, and disruptions can propagate and cause 
disruptions in other unaffected elements which are in lower tiers. We decided to approach this challenge 
and propose a model which approximates the physical SC system, however, without any real-time data 
transfer, and using a simplification of bottlenecks theory in serial production (Tu et al. 2021) to represent 
goods flow in a SC. 

3.1 SC Modeling Approach 

The numerical DES approach (Fujimoto 1990) was developed as a proof-of-concept demonstrator to 
simulate flows and identify the consequences of each risk. We worked with our SC partners who gave us a 
basic representation of the SC and defined its risks qualitatively. 

Given the scarcity of available data, we were compelled to define the fundamental characteristics that 
represent the risks and make certain assumptions regarding the flow of goods. As a result, we developed a 
basic model that relies on two primary elements: 'nodes' that produce goods and 'arcs' that transport goods 
from one node to another. The SC is built as a directed graph, with each node responsible for producing a 
single product. The highest tier nodes do not require products as input, but the other nodes require an input 
to be able to produce an output. The model is implemented in python making extensive use of the pytorch 
library (Paszke et al. 2019). 
 To build the demonstrator we replicated a real SC that consists of four companies 0, 1, 2 and 3 (OEM), 
all of which are based in Sweden. The risks description, SC architecture, product and information flow is 
presented in Figure 2. Data was collected from the SC partners through two workshops conducted in 
January and March 2023 along with interviews with top-level management at the companies.  

Figure 2: SC simulation model visual representation. 
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A node 𝑛! has an input buffer 𝒃"#,			! ∈ ℕ# and an output buffer 𝒃&'(,			! ∈ ℕ#	where raw materials and 
finished products are stored. Each product has an assigned vector 𝒅)*+,			! ∈ ℕ# which defines how many 
products a node needs, with pre-products to produce one unit of its output products. A node also has a 
capacity to produce goods  𝛽" ∈ [0,1], 𝛽" ∈ ℝ. Arcs 𝑎" transport one type of goods from one node to the 
next. Analogue to nodes, they have a capacity to transport 𝛾" ∈ [0,1], 𝛾" ∈ ℝ but no buffers. Nodes produce 
goods in each timestep 𝒑),*-	 = (𝜷	 ∗ 		𝒑.*/	), 𝒑.*/	 ∈ ℕ# . Nodes and arcs are also exposed to risks 
which are defined by the parameters explained below. 

3.2 Risks Representation and Disruption Function 

Risks can occur in each time-step randomly and each node and arc can be exposed to multiple risks, except 
the last element of the SC where we assume undisrupted production. We decided to replicate a risk event 
by defining three parameters: 
 

1. Probability: 𝑃(𝑟) 
2. Capacity impact: 𝑐) ∈ ℝ		|	𝑐) ∈ [0, 1] 
3. Time interval to fix the disruption: 𝜏) ∈ ℕ 
 
As shown in Figure 3, a risk event causes a disruption of the production capacity resulting in a 

temporary bottleneck. In the case of an event happening, the capacity of a node or transport arc is 
temporarily reduced. The new capacity of a node or arc is given by: 𝛽;" =		𝛽" ∗ (1 − 𝑐)), or  𝛾=" =		 𝛾" ∗
(1 − 𝑐)) respectively. The effect of a risk event triggering a disruption is displayed in Figure 3. Companies 
can be exposed to multiple risks which could trigger risk events at the same time. For our present case, we 
made the following assumption: The system is always defined by the weakest link and therefore the total 
capacity of production is the value of the lowest element. This is a simplified concept based on a bottleneck 
in serial production. (Tu et al. 2018) Thus, the total capacity is the minimum value of all these simultaneous 
disruptions  𝛽;" = 𝑚𝑖𝑛(𝛽;"

0 ) for nodes or  𝛾=" = 𝑚𝑖𝑛(𝛾="0 ) for an arc. 

3.3 OEM Performance Evaluation Strategy 

With our DES model in place, we were able to simulate the flow of goods and identify the consequences 
of each risk event. Through this model, we performed a risk quantification analysis that enabled us to 
evaluate the impact of different risks on the SC. The definition of risks’ fundamental characteristics and 

Figure 3: Risk event and disruption effect on production or transport capacity. 
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flow of goods simplification (Tu et al. 2021) enables the basic model development. The location of the 
evaluation takes place at the OEM production node 3 where we compare a, b	 ∈ ℕ, where a is the ideal 
production (max capacity) and b the real production. Additionally, we have 	a	 ≥ 	b. But, to provide insights 
into the vulnerabilities of the SC we need to define evaluation functions to the OEM. To evaluate the 
performance, we defined four different evaluation functions (1) – (4): 
 

These evaluation functions were chosen to study the effect of different common evaluation functions. 
(1) representing the absolute error, (2) representing an indicator function, (3) mean square error and (4) a 
hybrid between absolute and indicator function. Through simulation of various risk scenarios, our model 
enables the identification of potential failure points in the supply chain and evaluation of risk mitigation 
strategies. This approach facilitates the development of contingency plans to minimize disruptions and 
ensure optimal performance of the manufacturing supply chain. 

4 EXPERIMENTS 

The output of this analysis is a risk prioritization where the risks are ranked according to their impact on 
the capacity to deliver by the focal company i.e., the risks are ranked according to their impact on loss. 
Using this model for risk prioritization enables generating scenarios with different sets of risks and shows 
the potential of developing corresponding mitigation strategies with respect to these risks at the focal 
company.  

4.1 Demonstrator Model Implementation with Qualitatively Collected Risk Parameters 

We engaged with industry stakeholders to gain a comprehensive understanding of the risks that are most 
relevant to the specific supply chain under consideration. Our approach to risk characterization was 
therefore empirical, drawing on the insights and expertise of those who are intimately familiar with the day-
to-day operations of the supply chain. Figure 4 provides a visual representation of the qualitative measures 
used to characterize the risks 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5	𝑎𝑛𝑑	𝑟6	in the manufacturing supply chain model. In Figure 2 it 
was visible which nodes of our SC are exposed to which instance of these risks. Taken together, these 
qualitative measures provide a useful framework for understanding and characterizing the various risks 
facing a manufacturing supply chain. 

Six risks (𝑟") were identified in the SC and what they all have in common is that they temporarily slow 
down the production capacity:  

 
• 𝑟1 , data missing (operational): Delivery data about critical parts are unknown; different data 

formats from suppliers who have different systems; material received but with wrong part numbers; 
critical dimensions of item not supplied by customer; no insight about the item’s environment, how 
it will be assembled and its criticality in the process functions), 

(1) 
 
 

(2) 
 
 
(3) 
 
 
(4) 

2069



Chari, Marti, Lopes, Johansson, Despeisse, and Stahre 
 

• 𝑟2 , deviations in material characteristics unknown (operational): Steel is not of a required 
specification or not completely flat; material surface defects; material received is in outer tolerance 
range; flatness of material cannot be ‘seen’),  

• 𝑟3, unique material specifications (demand-side): of company C (thickness and grade of steel that 
is not common and required by the OEM; material coming from a specific steel mill),  

• 𝑟4, machine/furnace breakdowns (system): When a machine or furnace breaks down, it can cause 
significant delays and downtime, which can impact the timely delivery of finished goods. 

• 𝑟5, dependency on suppliers (supply-side): Who provide material with unique specifications and 
from specific mills. also shows where the risks occur in the SC (which companies and arcs or 
transactional paths between companies are impacted). We assume that no risks occur at the OEM 
but only how the risks in the upstream SC activities can have an impact on its performance. 

• 𝑟6, cyber-security and data breach risks (cyber): A cyber-attack or data breach can have serious 
consequences for a manufacturing supply chain, leading to the loss or theft of sensitive information, 
such as proprietary technology or customer data, causing disruptions to operations. 
 

By characterizing these risks at a higher level of detail, we can understand the potential vulnerabilities 
of the supply chain. This information is crucial for designing effective risk management strategies that can 
help mitigate the impact of disruptions and maintain the resilience of the supply chain. 

4.2 Generated Production Rates in the SC 

In the first experiment we investigated the production of each node 0, 1, 2 and 3. Nodes 0-2 are exposed to 
risks which lower the production capacity of each producing node and transporting arc. We have simulated 
the goods flow of the introduced SC for 1’000 days, and 10’000 parallel random results were generated. 
This represents a simulated total timeframe of approximately 30’000 years. 

In Figure 5, goods produced in each node are displayed for different sets of samples from the previously 
mentioned results. We note low differences in production of each node in the 100th (a) and the 50th (b) 
percentile, however in the 10th (c) and 1st (d) we observe two groups - nodes 0 and 1, and nodes 2 and 3 
whose current production capacity is close to one another. We see that node 3 trails node 2 most of the time 
in (c) and (d). This behavior cannot be a consequence due to disruptions caused by risks at node 3 because 
this node is not exposed to any risks. Therefore, lower production values are observed at node 3 which are 
caused by disruptions at previous supplier nodes as this node depends on having adequate supplies for a 
smooth production to take place. As nodes 0 and 1 have higher production values at all times compared to 
nodes 2 and 3, the behavior for lower production at node 3 needs to be caused by events at node 2. 

Figure 4: Experiment set up with identified risks and associated parameters which were defined in equation 
2. The risk impact with respect to the parameters can be observed in Figure 3. In Figure 2, it is visible 
which node is exposed to which instance of these risks. 
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The production of node 3 is only lowered if raw materials from node 2 are missing. This behavior could 
therefore indicate that node 2 represents a bottleneck which sometimes fails to adequately supply node 3.  
 

4.3 Single Risk Impact Evaluation 

We now estimate the impact of each instance of risks on the SC introduced in 3.1 (observable in Figure 2) 
and at the beginning of this chapter with respect to the overall performance of the SC. To evaluate the 
performance, we make use of the previously defined evaluation functions (1) – (4). The location of the 
evaluation takes place at the OEM production node 3. In order to evaluate the overall impact of each 
instance of risk 𝑟",! we lowered the probability 𝑝)!,# of each risk separately while leaving all others at the 
defined level.  

For each 𝑘 ∈ {0, ..., 9} defining a parameter 𝜆0 = 0.1 ∗ 𝑘	we obtain the new probability 	𝑝=)!,#,0 = 𝜆0 ∗
𝑝)!,#,0We note that in the case of 𝑘 = 0, the probability 𝑝=)!,#,0 will become 0 and in this case eliminating the 
risk. For each 𝑝=)!,#,0 we have run the simulation for 10’000 time-steps, and we generated 100’000 different 
random parallel scenarios for evaluation. The average improvement over the baseline scenario was taken 
as a measure to evaluate the impact. 

Figure 5: Daily production of node 0 (blue), 1 (orange), 2 (green) and 3 (red). 10’000 samples of 1000 days 
were simulated. The average performance of percentile 100th (a), 50th (b) 10th (c) and 1st (d) are displayed. 
Node 0-2 are exposed to risks which can disrupt the production. The production of node 3 is only lowered 
if components of the supplying node 2 are missing. 
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Figure 6:  Risk impact analysis for each instance of risks evaluated with function defined in (Equation 1) 
(a), (Equation 2) (b), (Equation 3) (c) and (Equation 4) (d). The same could also be observed in Figure 2, 
where it was shown how these risks can disrupt the goods flow in the SC. We lowered the probability for 
each instance of risk while maintaining the probability of all other risks. The lower end of each bar 
represents the 𝑘	 = 9 and the upper 𝑘 = 	0, eliminating this risk 𝑝=)!,#,0 = 	0. 

In Figure 6, the result of our evaluation for each risk instance is visible. We can observe that some risk 
instances have a larger impact on the SC as others regardless of the evaluation function. We also see that 
the result depends on which evaluation function Equations (1) – (4) we are using. Different instances will 
be evaluated with a large or low impact. For example, 𝑟2,3 has a higher impact in all evaluation functions 
except (Equation 3).  𝑟1,3 has according to (Equation 2) a very high impact, but according to (Equation 3) 
a negligible one.  

These differences show that defining the evaluation function is a key component in defining an 
evaluation metric for SC performance analysis. The nature of (Equation 1) and (Equation 3) penalize 
especially high probability; relative impact in the case of (Equation 1) has no effect and a comparatively 
low one in (Equation 3). On the other hand, we have (Equation 2) and (Equation 4) where especially 
(Equation 2) favors high production values but does not penalize low impact disruptions much. It is not 
surprising that in this regard, according to (Equation 2) (the high impact low probability) three instances of 
𝑟4,! are the most disrupting risks to the SC. All results have in common, that is, in case of (Equation 1) the 
top two, (Equation 2) top five, (Equation 3) the first and (Equation 4) 	again, the top five most disruptive 
risks identified are all associated with node number 2. All the functions in this regard also point towards 
building more resilience in node 2 first.
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4.4 Limitations 

The verification and validation of the simulation model was performed only qualitatively in collaboration 
with our SC partners. We conducted face validity (Sargent 2010) and created operational graphics for 
validation of the model due to the nature of the conceptual state of the model. Values of the output 
parameters (here, performance of the SC in terms of throughput and lead time) were graphically shown 
through the various timesteps to check if the model behaved as intended. For the next iteration, however, 
suitable quantitative means of verification and validation need to be investigated. 

5 CONCLUSIONS AND FUTURE WORK 

The present study provides a DES model which is a proof-of-concept to showcase the capability of 
visualizing and prioritizing risks along a manufacturing SC. The need for such a study is grounded in the 
fact that different data sources are available at the SC partners, the requirement of visualisation and 
prioritisation of risks holistically, showcase which company is the critical bottleneck in the SC, and build 
trust for future more sophisticated systems. DES modeling was deemed to be the best approach for this 
study, as it allows flexibility in testing multiple complex risks while evaluating the trade-offs for 
prioritization of high impact risks and the corresponding development of mitigation strategies. If the 
estimation of risks identified qualitatively are accurate, it would point to building more resilience in 
company 2, i.e., this assumption can be fulfilled only if the qualitative risks identified, accurately represent 
reality. As part of the digital transformation process in I4.0 (according to the I4.0 Maturity Index (Schuh et 
al. 2020)) of SCs, the implementation of our simulation model is the first stage (visibility) in this process 
that enables a digital SC risk assessment and prioritization. 
 The capabilities of simulation models and the usefulness of establishing experience with digital risk 
evaluation are many: (i) quantify impact of risks so that prioritization can take place. Even though the 
quantified data is not perfect, it can give a justified assessment where several scenarios can be established 
with different sets of risks and the results of each can be compared, and, at later development stages, having 
already an approximative digital representation of the real system, the model can be used to develop more 
sophisticated mitigation strategies to address the impact of risks on the capacity to deliver; (ii) develop 
proactive mitigation strategies. Risks are inherently part of the different links and nodes of SCs, and it is 
not possible to completely avoid them (Faisal 2009). Hence, it is important that organizations establish in 
the early stages what risks could impact their operations as well as their SC partners. Further, with a 
thorough understanding of the different risks and how to prioritize them using simulation models, actors in 
a SC can proactively create mitigation strategies and plan their resources more efficiently; (iii) generate 
synthetic data (Rengkung 2018) to train a deep neural network which could be used to automatically detect 
the most problematic node or arc. Random risks could be generated for a given SC and the storage time 
series stored as input data. The trained network could also be evaluated towards real data and with Turing 
tests (Schruben 1980); (iv) the model could be expanded to include delays in deliveries of arcs which at 
this iteration was not included. Real data could be (partially) included in the model to improve the 
representation; (v) a possibility of future integration into Digital Twins whose corresponding capabilities 
can help manufacturing organizations further build its resilience (Maheshwari et al. 2022).  
 Bonini’s paradox explains the difficulty in creating models and simulations that fully represent complex 
systems and as such, the more ‘complete’ they are, the less understandable and useful they become. 
Applying the paradox in this paper, we tried to find a balance between usefulness and accuracy in the 
modeling of the simplistic SC chosen, and attempted to model its flows such that it represents reality in a 
reasonably good manner. With increasing pressure for SCs to be more efficient from a sustainability point 
of view (Reyes et al. 2023), they may need to incorporate resilience and risk management strategies if they 
want to improve their sustainability performance (Zavala-Alcívar et al. 2020).  
   

2073



Chari, Marti, Lopes, Johansson, Despeisse, and Stahre 
 
ACKNOWLEDGMENTS 

This work was supported by European Union's Horizon 2020 research and innovation programme under 
grant no. 101058384 and by Swedish innovation agency VINNOVA under grant no. 2021-02421. The work 
was carried out within Chalmers' Area of Advance Production. The support is gratefully acknowledged. 

REFERENCES 

Alzahrani, A. and M. Asghar. 2023. “Intelligent Risk Prediction System in IoT-Based Supply Chain Management in Logistics 
Sector”. Electronics, 12: 2760.  

Birkie, S. E., P. Trucco, and M. Kaulio. 2014. “Disentangling Core Functions of Operational Resilience: a Critical Review of 
Extant Literature”. International Journal of Supply Chain and Operations Resilience, 1: 76-103.  

Bogataj, D. and M. Bogataj. 2007. “Measuring the Supply chain Risk and Vulnerability in Frequency Space”. International Journal 
of Production Economics, 108(1): 291-301.  

Borghetti, F. and G. Marchionni. 2023. “Cross-border Critical Transportation Infrastructure: a Multi-level Index for Resilience 
Assessment”. Transportation Research Procedia, 69: 77-84.  

Chan, K. C., M. Rabaev, and H. Pratama. 2022. “Generation of Synthetic Manufacturing Datasets for Machine Learning using 
Discrete-Event Simulation”. Production and Manufacturing Research, 10(1): 337-353.  

Collier, Z. A., A. Gaskins, and J. H. Lambert. 2022. “Business Process Modeling for Semiconductor Production Risk Analysis 
Using IDEF0”. IEEE Engineering Management Review: 1-10.  

Digitala Stambanan. 2021. “Digitala Stambanan” - A New Value-Adding Infrastructure for Industry 4.0. 
https://digitalastambanan.se/, accessed 15th November 2022. 

Elangovan, D., G. Sundararaj, S. R. Devadasan, P. Karuppuswamy, and R. Vishnupriyan. 2021. “Development of Supply Chain 
Risk Management Strategies for Mitigating Loss Prevention in Manufacturing Organizations”. In  Lecture Notes in 
Mechanical Engineering, 1st International Conference on Materials, Design and Manufacturing for Sustainable Environment, 
ICMDMSE 2020, Coimbatore, India,  525-538. 

Faisal, M. N. 2009. Prioritization of Risks in Supply Chains. In Managing Supply Chain Risk and Vulnerability: Tools and Methods 
for Supply Chain Decision Makers, edited by T. Wu and  J. Blackhurst, (41-66): Springer London.  

Finke, G. R., A. J. Schmitt, and M. Singh. 2010. “Modeling and Simulating Supply Chain Schedule Risk”. In  Proceedings of the 
2010 Winter Simulation Conference, edited by B. Johansson, J. Montoya-Torres, J. Hugan, and E. Yücesan, 3472-3481. 
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Flammini, F. 2021. “Digital Twins as Run-time Predictive Models for the Resilience of Cyber-Physical Systems: a Conceptual 
Framework”. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 379(2207).  

Fujimoto, R. M. 1990. “Parallel Discrete Event Simulation”. Communications of the Association for Computing Machinery, 33(10): 
30-53.  

Holling, C. S. 1973. “Resilience and Stability of Ecological Systems”. Annual Review of Ecology and Systematics, 4: 1-23.  
Ivanov, D., A. Dolgui, and B. Sokolov. 2018. “The impact of Digital Technology and Industry 4.0 on the Ripple Effect and Supply 

Chain Risk Analytics”. International Journal of Production Research, 57(3): 829-846.  
Ivanov, D., A. Dolgui, B. Sokolov, and M. Ivanova. 2017. “Literature Review on Disruption Recovery in the Supply Chain”. 

International Journal of Production Research, 55(20): 6158-6174.  
Kinra, A., D. Ivanov, A. Das, and A. Dolgui. 2020. “Ripple Effect Quantification by Supplier Risk Exposure Assessment”. 

International Journal of Production Research, 58(18): 5559-5578.  
Madni, A. M. and S. Jackson. 2009. “Towards a Conceptual Framework for Resilience Engineering”. IEEE Systems Journal, 3(2): 

181-191.  
Maheshwari, P., S. Kamble, A. Belhadi, V. Mani, and A. Pundir. 2022. “Digital Twin Implementation for Performance 

Improvement in Process Industries- A Case Study of Food Processing Company”. International Journal of Production 
Research: 1-23.  

Martin, C. and H. Peck. 2004. “Building The Resilient Supply Chain”. International Journal of Logistics Management, 15: 1-13.  
Murino, T., E. Romano, and L. C. Santillo. 2011. “Supply Chain Performance Sustainability through Resilience Function”. In  

Proceedings of the 2011 Winter Simulation Conference, edited by C. S. Jain, J. Himmelspach, K.P. White, and M. Fu,  1600-
1611. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Nikolenko, S. 2019. Synthetic Data for Deep Learning (1 ed., Vol. 174). Springer Cham.  
Özkanlısoy, Ö. and E. Akkartal. 2022. “The Effect of Suez Canal Blockage on Supply Chains”. Dokuz Eylül Üniversitesi Denizcilik 

Fakültesi Dergisi, 14: 51-79.  
Pandey, S., R. K. Singh, and A. Gunasekaran. 2021. “Supply Chain Risks in Industry 4.0 Environment: Review and Analysis 

Framework”. Production Planning and Control.  
Panfilo, D., A. Boudewijn, S. Saccani, A. Coser, B. Svara, C. Chauvenet, C. Mami, and E. Medvet. 2023. “A Deep Learning-Based 

Pipeline for the Generation of Synthetic Tabular Data”. IEEE Access: 1-1.  

2074

https://digitalastambanan.se/


Chari, Marti, Lopes, Johansson, Despeisse, and Stahre 
 
Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. 

Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. 2019. “PyTorch: 
an Imperative Style, High-Performance Deep Learning Library”. In  Proceedings of the 33rd International Conference on 
Neural Information Processing Systems (NeurIPS 2019), December 2019,  Vancouver, Canada,  8026–8037. 

Pearsall, K. 2016. “Manufacturing Supply Chain Challenges - Globalization and IOT”. In  2016 6th Electronic System-Integration 
Technology Conference (ESTC), 13-15 Sept. 2016,  1-5. 

Rengkung, L. R. 2018. “Modelling of Dynamic Capabilities: A System Dynamics Approach”. Academy of Strategic Management 
Journal, 17.  

Reyes, J., J. Mula, and M. Díaz-Madroñero. 2023. “Optimisation Modeling for Lean, Resilient, Flexible and Sustainable Supply 
Chain Planning”. In Lecture Notes on Data Engineering and Communications Technologies IoT and Data Science in 
Engineering Management, 341-345. 

Sargent, R. G. 2010. “Verification and Validation of Simulation Models”. In  Proceedings of the 2010 Winter Simulation 
Conference, edited by  B. Johansson, J. Montoya-Torres, J. Hugan, and E. Yücesan,  166-183. Piscataway, New Jersey: 
Institute of Electrical and Electronics Engineers, Inc. 

Schruben, L. W. 1980. “Establishing the Credibility of Simulations”. Simulation 34(3): 101-105.  
Schuh, G., R. Anderl, J. Gausemeier, M. Hompel, and W. Wahlster. 2020. “Industrie 4.0 Maturity Index: Managing the Digital 

Transformation of Industries (Update 2020)”.  
Sheffi, Y. and J. J. Rice. 2005. “A Supply Chain View of the Resilient Enterprise”. MIT Sloan Management Review, 47.  
Sodhi, M. S., B.-G. Son, and C. S. Tang. 2012. “Researchers' Perspectives on Supply Chain Risk Management”. Production and 

Operations Management, 21(1): 1-13.  
Tang, C. S. 2006. “Perspectives in Supply Chain Risk Management”. International Journal of Production Economics, 103(2): 451-

488.  
Tu, J., Y. Bai, M. Yang, L. Zhang, and P. Denno. 2021. “Real-Time Bottleneck in Serial Production Lines With Bernoulli Machines: 

Theory and Case Study”. IEEE Transactions on Automation Science and Engineering, 18(4): 1822-1834.  
Zavala-Alcívar, A., M.-J. Verdecho, and J.-J. Alfaro-Saiz. 2020. “A Conceptual Framework to Manage Resilience and Increase 

Sustainability in the Supply Chain”. Sustainability, 12(16).  
 

AUTHOR BIOGRAPHIES 

ARPITA CHARI is a PhD student in the Production Systems division of the Industrial and Materials Science Department at 
Chalmers University of Technology in Sweden. Her primary research interest is in the area of resilience and sustainability in 
production/manufacturing and supply chain management, particularly within the context of Industry 4.0. Her email address is 
arpitac@chalmers.se.  
 
SILVAN MARTI is a PhD student in the Production Systems division of the Industrial and Materials Science Department at 
Chalmers University of Technology in Sweden. His primary research interest is in the area of synthetic data generation for modeling 
and artificial intelligence, particularly within the context of Industry 4.0.. His email address is silvan@chalmers.se.  
 
PAULO VICTOR LOPES is a PhD student in the Operations Research Program at Aeronautical Institute of Technology and 
Federal University of São Paulo. His research interests include data driven modelling of digital twins, what-if experiments design 
and data-driven techniques to improve production lines performance. He is currently a guest researcher at the Industrial and Material 
Science Department of Chalmers University of Technology, Sweden. His email address is paulo.lopes@ga.ita.br. 
 
BJÖRN JOHANSSON is a professor in Sustainable Production and Vice Head of Production Systems division at the Department 
of Industrial and Materials Science, Chalmers University of Technology, Sweden. He serves as Production Modeling Corporation 
director for the European office in Gothenburg. His research focuses on the area of Discrete Event Simulation applied for 
manufacturing industries, including environmental effects modeling, modular modeling methodologies, software development, 
user interfaces, and input data architectures. His email address is bjorn.johansson@chalmers.se. 
 
MÉLANIE DESPEISSE is an Associate Professor in Sustainable Digitalized Production at Chalmers University of Technology, 
Sweden. Her research focuses on the relationship between industry and environmental sustainability at various levels, from resource 
efficient manufacturing operations to technology roadmapping. Her research aims to develop tools and methods to help companies 
transition towards more eco-efficient and circular industrial systems. Her email address is melanie.despeisse@chalmers.se.  
 
JOHAN STAHRE is a professor at Industrial and Materials Science, Chalmers University of Technology, and heads the division 
of Production Systems. His research is on production automation and human factors. He has coordinated national and international 
projects on social sustainability, levels of automation and collaboration, and human supervisory control of production. His email 
address is johan.stahre@chalmers.se. 

2075

mailto:silvan@chalmers.se
mailto:paulo.lopes@ga.ita.br
mailto:bjorn.johansson@chalmers.se
mailto:melanie.despeisse@chalmers.se
mailto:johan.stahre@chalmers.se

