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ABSTRACT

This paper considers the problem of real-time dispatching of a fleet of heterogeneous automated guided
vehicles (AGVs) with battery constraints. The AGV fleet is heterogeneous in terms of material handling
capabilities; some can tow loads, some can lift loads while others manipulate loads with the assistance of
a robotic arm. Transport requests arrive in real-time and include a soft time window, with late delivery
incurring tardiness costs. Transport requests need to be assigned to a capable AGV based on required
material handling capabilities with the objective to minimize a weighted sum of tardiness costs of transport
requests and travel costs of AGVs. In this paper, an AGV-specific linear dispatching rule (LDR) learning
approach is proposed to assign AGVs to randomly arriving transport requests in real time over a finite
horizon. The proposed approach is compared with a heuristic policy from practice by using real-world
data provided by our industry partner.

1 INTRODUCTION

Industry 4.0 aims to bring a fourth wave of industrial revolution in manufacturing. A recent trend is a
shift from the traditional top-down and central architectures towards a more decentralized control wherein
systems and devices possess their own intelligence. A trend is to enable semi-centralization, where the
central entity makes a decision after gathering information from devices that retain their intelligence
independently (Didden et al. 2021). This intelligence may allow devices to have a certain autonomy in
decision-making in the presence of information within a production or logistic setting. Recently, smarter
mobility within production areas has been made possible due to the wide adoption of AGVs. AGVs
are autonomous guided vehicles that move supplies and materials between multiple locations, including
workstations, storage facilities, and shipping and receiving areas (Confessore et al. 2013; Vivaldini et al.
2016). Because of improved process flexibility, space utilisation, product safety, computer-integration, and
control, the use of AGVs has increased significantly over the last decade. AGV technology has enhanced
with new advances in their flexibility, where each vehicle could have specific capabilities (for example,
one can lift light or heavy goods, while another can tow loads) to do diverse jobs automatically (Riazi
et al. 2019; De Ryck et al. 2020).

This paper deals with the dynamic management of transport requests with a fleet of AGVs, wherein
AGVs may have differences in their material handling capabilities, operating costs, and speeds to cater to a
more diverse set of requirements. It is an outcome of our collaboration with Brainport Industries Campus
(BIC), which is a new high-tech campus constructed in Eindhoven, The Netherlands. The campus is a joint
initiative of high-tech suppliers that co-exist and collaborate on multiple fronts such as shared logistics
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and warehousing (Brainport Industries Campus 2020) in this campus. AGVs are an important part of these
shared resources. Since multiple tenants collectively make use of a pool of heterogeneous AGVs, widely
used heuristics to manage homogeneous AGV fleets become inefficient at handling heterogeneous AGV
fleets. Therefore, practitioners are looking for a better understanding on how to manage heterogeneous
fleets. A widely used stream of heuristics that is well-suited to cope with increasing problem sizes includes
dispatching rules. Dispatching can be considered as a crucial and also one of the most challenging design
aspects of an AGV management and control system (De Ryck et al. 2020). Le-Anh and De Koster
(2006) define dispatching as selecting and assigning tasks to vehicles, including the routes that vehicles
travel to accomplish these tasks. If all tasks are known prior to the planning period, the problem can be
solved simultaneously for all tasks. Literature refers to this type of problem as static or offline dispatching
problems. However, in practice, tasks are often unknown in advance and revealed over time, i.e. dispatching
relies on real-time information. Hence, the dispatching problem needs to be solved sequentially. Literature
refers to this type of problem as a real-time, dynamic, or online dispatching problem (Vis 2006). In this
paper, we consider a dynamic AGV dispatching problem. Most dispatching rules used in literature are
single-attribute ones, which take a dispatching action based on one parameter only.

Even though single-attribute dispatching rules have proved to work well in the past, the downside is
that they are highly dependent on their environment (Tay and Ho 2008). Holthaus and Rajendran (1997)
show that when the utilization of the shop floor changes, other rules become more efficient. However,
in most cases, a combination of various dispatching rules outperforms single-dispatching rules. Multiple
studies that use a Linear Dispatching Rule (LDR) for AGV scheduling (Jeong and Randhawa 2001; Le-Anh
and De Koster 2005; Bilge et al. 2006; Guan and Dai 2009) show that combining multiple attributes
can outperform single-attribute dispatching rules significantly. As stated in Kim et al. (2021), LDRs are
underrepresented in the literature, while it has the potential to outperform state-of-the-art competitors.
Research on learning the weights of different attributes for an LDR in AGV dispatching is minimal, while
the implementation of LDRs has also proved to work well in various other domains, most notably when the
rules are tailored to each entity on the shop floor specifically (e.g., machines or AGVs). Kim et al. (2021)
and Didden et al. (2023) study LDRs in machine shop settings. Here, the authors use a gradient-based
approach to adaptively adjust the weights of each attribute depending on the environment. Similarly, Wang
et al. (2019) look at using a genetic algorithm to create combined dispatching rules, showing that these
tailored rules can outperform single dispatching rules.

The specific problem we address in this paper is the dispatching of AGVs with battery constraints and
heterogeneous capabilities. Our problem holds some similarities to the Electric Vehicle Routing Problem
with Time Windows (EVRPTW) addressed by Keskin and Çatay (2016) and Zhao and Lu (2019). The
EVRPTW considers a fleet of Electric Vehicles (EVs) having limited driving range due to their battery
capacities, which may need to visit charging stations while servicing customers in their routes. We address
a dynamic EVRPTW problem that has similarities with the works of Singh et al. (2022). Our problem,
however, distinguishes from the EVRPTW literature by the following features to comply with industrial
needs. First, the fleet of AGVs considered in this study is heterogeneous in terms of travel speeds, costs,
and, more importantly, capabilities to service different types of requests from various tenants. Second,
partial charging for the AGVs is allowed under consideration of a critical battery threshold. Third, we
consider both the travel costs of AGVs and the tardiness costs of transport requests, where different types of
AGVs and requests have different unit travel costs and penalty charges, respectively. Finally, we consider
dynamic request arrival scenarios where the set of transport requests is unknown at the beginning of the
planning horizon and revealed over time to the dispatcher. Motivated by our industry collaboration at BIC,
the combination of these features constitutes the main novelty of the problem. We aim to make decisions
on which AGVs the transport requests are assigned so that a weighted average of the total travel and total
tardiness costs is minimized. For this particular problem, to the best of our knowledge, we are the first
to propose an LDR and a mechanism to learn its parameters. The proposed approach is compared with a
heuristic policy commonly used in practice.

1961



Singh, Didden, Akcay, Martagan, and Adan

The remainder of this paper is organized as follows. The problem is formally described in Section 2.
The proposed method, its training procedure, and details on determining the relevant attributes (also referred
to as features) are presented in Section 3. We describe the simulation model, discuss the training behaviour,
and present computational results in Section 4. Finally, conclusions and future research directions are
discussed in Section 5.

2 PROBLEM DESCRIPTION

The problem concerns a set of transport requests R serviced by a heterogeneous AGV fleet V with battery
constraints. The AGVs travel over a two-dimensional space and serve the transport requests that randomly
arrive during a time horizon of length H. The layout consists of a set of nodes where each node can represent
either a pickup-or-delivery location or a charging station. Since the transport requests arrive randomly, the
set R is unknown to the decision maker at the beginning of the time horizon. The source (pickup) and
destination (delivery) nodes of request r ∈ R are denoted with sR

r and dR
r , respectively. Each request r ∈ R

requires a set of capabilities AR
r from an AGV for transport, and it has a time window [eR

r , lRr ], where
eR

r is the earliest pickup time and lRr is the latest delivery time of the request. If an AGV arrives at the
destination of request r after its latest delivery time, the tardiness cost cR

r is incurred per unit time.
Each request needs to be performed by exactly one capable AGV in the heterogeneous fleet. The AGV

k ∈ V has a set of capabilities AV
k and is capable of servicing request r ∈ R if AR

r ⊆ AV
k holds, i.e., the

capability requirements of a request are included in the capabilities of an AGV. For example, with a request
classified as a ‘heavy load’ that needs to be lifted on a pallet, only those AGVs that have the capability to
lift heavy loads can carry out that request.

Unnecessary travel of an AGV is undesired. Therefore, each AGV has a travel cost cV
k per unit time.

While an AGV is traveling, the battery charge level decreases proportionally with the traversed distance at
a discharging rate of dV

k , and the AGV may need to visit a charging station before continuing operations.
Here, the battery is recharged at a rate of rV

k . The charge level of an AGV (measured as a percentage) must
take values between the minimum and maximum battery charge level denoted by bl percent and bu percent,
respectively. The AGV k must recharge its battery if the charge level drops below a critical threshold bV

k ,
and the recharging duration should be long enough to allow the charge level to reach at least this threshold.
In other words, before starting a new request, the charge level of AGV k must be at or above bV

k percent.
The critical threshold is a prespecified parameter for a given network of nodes to assure that an AGV can
reach any request destination and a charging station right afterward if needed. AGVs are not permitted
to visit a charging station while performing a request (i.e., carrying a load). An AGV also cannot serve
more than one request at the same time. In addition, AGVs can detect objects on the shop floor and move
around them while traveling. Consequently, collisions between AGVs can be avoided by hardware, thus
are not considered in this paper.

The objective of a central operator is to minimize the total travel costs of AGVs and the tardiness costs
of transport requests during time horizon H. The central operator may prioritize travel or tardiness costs by
adjusting the weight coefficients η1 and η2 that correspond to travel cost and tardiness cost, respectively.
Thus, the objective function is the total weighted cost over the time horizon H, and it is given by

η1 ∑
k∈V

cV
k πk +η2 ∑

r∈R
cR

r Tr, (1)

where πk represents the total travel time of AGV k and Tr represents the tardiness of request r.
When an AGV finishes the delivery of a request, it is routed to the nearest charging station. When

a new transport request enters the system, it must be decided which AGV is assigned to this transport
request. The assignment of a transport request to an AGV is considered feasible when the AGV is idle or
charging with a charge level equal to or larger than the critical charge level and contains the capabilities
required by the request. Once a transport request is assigned, the AGV must fulfill it and new requests
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may not be assigned to it. Also, an AGV k that has been routed to a charging station may still be assigned
a transport request if its charge level is greater than bV

k .

3 SOLUTION METHOD

In Section 3.1, we propose an AGV assignment policy that makes the assignment decisions based on a
linear dispatching rule. We use discrete-event simulation to calculate the objective function in (1) and aim
to learn the parameters of the linear dispatching rule that minimizes this objective. Section 3.2 presents
the details of the learning algorithm. In Section 3.3, we discuss how the features that will be included in
the linear dispatching rule are determined.

3.1 Linear Dispatching Rule

We develop a Linear Dispatching Rule (LDR) to make the AGV assignment decisions. The LDR assumes
for each AGV in the fleet that the cost of an assignment decision can be represented as a linear function
of a set of problem features (see Table 2 for the list of features considered in our study). At the arrival
of a new transport request, the so-called bid value is calculated for each capable AGV. The bid value for
AGV k is given by

pk =
U

∑
u=1

wuk ·Xuk,

where U is the number of selected features, Xuk is the feature u of AGV k, and wuk ∈ R is the weight
associated with the feature Xuk. The bid values of eligible AGVs are compared, and the AGV with the lowest
bid value (i.e., minimum cost) is dispatched to the incoming transport request, as outlined in Algorithm 1:

Algorithm 1 Assignment decision
Require: Weight wuk and value Xuk of feature u ∈ {1, . . . ,U} and AGV k ∈ {1, . . . ,V}; request r ∈ R

1: VC←{k ∈V | AR
r ⊆ AV

k }
2: for k = 1: |VC| do
3: pk = ∑

U
u=1 wuk ·Xuk

4: end for
5: k∗← argmin{pk | ∀k ∈VC}
6: Assign request r to AGV k∗

Intuitively, assuming the cost can be approximated as a linear function of the problem features, the
LDR can be a promising policy if its parameters wuk, u ∈ {1, . . . ,U}, k ∈ {1, . . . ,V} are chosen such that
the resulting cost function accurately estimates the cost values coming from the simulation model. The
objective of the learning algorithm in Section 3.2 is to obtain the set of weights that leads to the LDR with
minimum expected cost.

3.2 Learning Algorithm

The training procedure relies on the Estimation of Distribution Algorithm (EDA) approach (Kim et al.
2021) to train the weight parameters of all AGVs. It is based on the idea of assuming each unknown weight
parameter follows a univariate normal distribution and learning the parameters of this distribution by using
the cost realizations of the corresponding LDR obtained by simulation.

To be specific, we initialize the process by defining a univariate normal distribution for each weight
parameter wuk with mean µuk and standard deviation σuk. The values µuk and σuk can be initialized arbitrarily,
our goal is to iteratively learn the values of these parameters that minimize the cost under the corresponding
LDR. The EDA approach entails creating a population consisting of N individuals. Let N (a,b) denote
a univariate normal distribution with mean a and variance b. For each AGV k, feature u, and individual
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n, we sample a perturbation value ηn
uk from the distribution N (0,eσuk) and create two weight values wn+

uk
and wn−

uk , where wn−
uk = µuk−ηn

uk and wn+
uk = µuk +ηn

uk. With the set of computed weights, two simulations
are performed, one with wn+

uk and one with wn−
uk . The costs are collected for each individual as f (wn+

uk ) and
f (wn−

uk ) where f (.) represents the costs (Equation 1) that are obtained when the simulation is run based
on the policy defined in Algorithm 1, i.e., when the AGVs are dispatched with sampled weights from that
particular iterations. The costs are then normalized across the population to obtain f̂ (w+

uk) and f̂ (w−uk), as
shown in Equation (2):

f̂ (wn±
uk ) =

f (wn±
uk )− x̄[ f (wn±

uk )]

σ̄ [ f (wn±
uk )]

, (2)

where x̄[.] and σ̄ [.] are the mean and standard deviation of the simulation output data f (wn±
uk ), n = 1, . . . ,N.

With the normalized costs, the gradients of the cost function with respect to the parameters µuk and σuk,
denoted by ∆µuk and ∆σuk, respectively, are calculated as follows (Kim et al. 2021):

∆µuk =
1
N ∑

n∈N

ηuk

eσuk

(
f̂ (wn+

uk )− f̂ (wn−
uk )

2

)
(3)

∆σuk =
1
N ∑

n∈N

η2
uk− eσuk

√
eσuk

(
f̂ (wn+

uk )− f̂ (wn−
uk )

2

)
(4)

We use the gradients calculated by Equations (3) and (4) to update the parameters µuk and σuk as part
of Adam optimizer, which is an extended version of the stochastic gradient descent optimizer (Kingma
and Ba 2015). The training procedure is repeated for a predefined number of training iterations or until
the learned standard deviation parameter converges to 0. Learning parameter α0 in the Adam optimizer
is decayed exponentially, i.e., α = α0 · exp

(
−g−1

δ

)
, where δ is the learning rate decay, α0 is the initial

learning rate, and g is the current iteration number. Learning parameters, including β1 and β2 of the Adam
optimizer, were determined experimentally and are reported in Table 1. Initial µus are set to zero and
initial σus are set to 0.3. Note that the developed simulation model is able to utilize multiple cores of a
workstation, thus greatly increasing the speed of learning by evaluating each individual of the population
on separate processing cores of the workstation.

Table 1: Parameter values of the learning algorithm.

Parameter Description
Number of individuals, N U +3
Initial learning rate, α0 0.1
Learning rate decay, δ 1000
Adam parameter 1, β1 0.9
Adam parameter 2, β2 0.999

3.3 Feature Selection

We conduct a feature selection analysis to identify contributing features since using all available features
can slow down the learning process while including too little may result in inefficient learning. Table 2
highlights the available features that are provided by the simulation model for assignment decisions.

We carry out a statistical analysis on available features reported in Table 2. We exclude each feature
one at a time and report the percentage improvement in the costs of the corresponding trained model.
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Table 2: Features considered by the LDR.

Feature Description
DTR Distance between AGV’s current location and transport request’s pickup location

CH Charge level of the AGV when it is available to carry out the transport request
TC Travel cost of the AGV

DTC Distance between the AGV’s current location to the center of the layout
LOC Location of the AGV
ETA Expected time of arrival at the transport request’s pickup location
CTR Penalty cost of the transport request

TS Time of the day
LDT Time until the latest delivery time of the transport request

The results are presented in Table 3. The outcome of each configuration with respect to the first row is
reported as Gap and a negative value indicates an improvement in the objective value (lesser cost). First,
we remove each feature one at a time and report the gap. Then, if the exclusion of one feature leads to an
improvement in our objective, we analyze removing all possible combinations of those features. Finally,
the best-performing set of features is selected. Note that since the learning process can be sensitive to the
scale of input features, we normalize feature variables such that they take continuous values between zero
and one. Following this procedure, we selected feature set 20 from the set of available features.

Table 3: Statistical analysis of features.

DTR CH TC DTC LOC ETA CTR LDT TS Gap [%]
1 • • • • • • • • • -
2 • • • • • • • • 3.79
3 • • • • • • • • -1.16
4 • • • • • • • • 0.43
5 • • • • • • • • -0.96
6 • • • • • • • • -3.31
7 • • • • • • • • -0.77
8 • • • • • • • • -4.53
9 • • • • • • • • -1.62

10 • • • • • • • • -0.55
11 • • • • • • • -2.81
12 • • • • • • • -1.76
13 • • • • • • • -5.58
14 • • • • • • • -1.08
15 • • • • • • • -4.73
16 • • • • • • • -5.79
17 • • • • • • -3.33
18 • • • • • • -3.17
19 • • • • • • -1.56
20 • • • • • -6.69
21 • • • • • • -4.09

(•) Feature included in analysis

4 COMPUTATIONAL EXPERIMENTS

In Section 4.1, we discuss the simulation model which has been designed for this study. We show the
training behavior of the proposed solution method in Section 4.2. Finally, we conduct a sensitivity analysis
in Section 4.3 and highlight the performance of the proposed method on industry-sized instances.
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4.1 System Description

The layout used in our study is shown in Figure 1. This layout is of the production facility of our industry
partner KMWE. Each blue square, marked as P/D, represents a pickup and delivery node, i.e., a transport
request always originates and concludes at one of these nodes. Each green square, marked as C, represents
a charging node. There are 61 P/D nodes and 18 charging nodes in this layout.

Figure 1: Layout of our industry partner.

Transport requests randomly arrive over time and between randomly generated pick-up and delivery nodes
in the layout, and are categorized as low, medium, or high priority. High-priority requests are production
critical and incur higher tardiness costs than medium and low-priority requests on being delivered late.
Low-priority, medium-priority, and high-priority requests incur a penalty of $0.01, $0.02, and $0.03 per
second, respectively if they are delivered after the latest delivery time. A new transport request r has a
capability requirement set AR

r ∈ {{A, B}, {B, C}, {C}, {C,D}, {E}} and a tardiness cost, cV
k ∈ [$0.01,$0.1].

The AGV fleet consists of three types of AGVs with different capabilities. For example, one particular
type of AGV has capabilities {A, B, C} in which A represents the capability to lift a load, B to handle heavy
loads, and C to handle light loads. Capabilities D and E mean the ability to tow loads and to handle loads
with a robotic arm mounted on the AGV, respectively. Therefore, when a request arrives with capability
requirements {A, B}, i.e., a heavy load that needs to be lifted, the dispatcher must assign it to an AGV
that contains these capabilities. The AGVs incur a travel cost of $0.01, $0.02, $0.03 per second which
are representative of their real-life operational and maintenance costs, but their exact values have been
modified due to confidentiality. The data used in this study for the AGV fleet is shared in Table 4.

Table 4: AGV fleet charecteristics.

Type Speed (m/s) rV
k (%/s) dV

k (%/s) bV
k (%) AV

k cV
k ($/s)

1 1 0.02 0.01 20 A, B, C 0.05
2 1.5 0.02 0.01 20 B, C, D 0.01
3 2 0.02 0.01 20 C, D, E 0.1

The simulation model is a continuous-time finite-horizon model with a decision moment at each new
request arrival and is based on inputs from our industry partner at BIC. The simulation model captures
varying requests arrival scenarios, AGV fleet size scenarios, and time window tightness scenarios. A given
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replication of the simulation model starts at 7:00 am, corresponding to the start of a working day, and
lasts for a total simulation duration of 24 hours. The number of AGVs, |V | may vary in {3,6,12}, and are
located randomly at one of the charging nodes, with an initial charge drawn uniformly from [bV

k , 100], at
the start of the simulation. The number of requests |R| ∈ {450,900,1800} represent not-busy, typical, and
busy arrival scenarios (the requests are first generated from a Poisson process and then the specified number
of requests are sampled randomly). At each dispatching moment (i.e., the arrival of a new request), the
simulation model provides a list of features (described in Section 3.3), representing the state of all AGVs
in the fleet at that moment to our method and receives an assignment decision from the LDR.

4.2 Training Behavior

Figure 2 highlights a typical training curve observed during our experiments. We let µ denote the cost
associated with the LDR. We report the objective of each training iteration as well as a moving average over
the last 100 iterations. It can be seen that the costs go down faster during the initial phases of our training.
After 600 training iterations, the learning becomes relatively stable with almost no further reductions in
costs. The proposed method was trained for 1000 training iterations and further validated on 100 iterations.
We note that 100 iterations are sufficient to obtain a width of around 2-5%

The training time with a population size of 8 was about 13 hours, however, the training time can be
reduced by using multiprocessing for simulation evaluations. With 8 parallel cores, one for each individual
in the population, the training time was recorded to be around 3 hours on a computer with AMD Ryzen
3970X CPU @ 4.50GHz CPU and 128GB RAM.

Figure 2: Training curve observed during experiments along with a rolling average over 100 training
iterations.

An AGV-specific LDR is an efficient approach where each AGV in the fleet could have a distinct
role, or, could prioritize certain features over other. Figure 3 highlights the progression of weights for
each AGV in a given training experiment. Weight values become more stable as the training progresses,
indicating that each AGV has developed a certain priority for each available feature. Note that each AGV
has different weights for each feature indicating that each AGV could have a different purpose in the fleet,
i.e., one could give more priority to its distance from the transport request and thus prioritizing travel costs,
another could prioritize its distance to the center thus prioritizing serviceability. Some AGVs could have
weights closer to zero for a certain feature, signifying that it is not a contributor to its bid, while another
AGV might have a significant weight value for the same feature. We would like to note that in Figure 3,
AGV 1 and AGV 2 are of type 1, AGV 3 and AGV 4 of type 2, and AGV 5 and AGV 6 of type 3 (AGV
types are given in Table 4). It is interesting to see that AGVs of the same type learn to prioritize different
feature values, thus playing a unique role in the system.
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DTR TC DTC ETA LDT

Figure 3: Development of weights for each AGV in the fleet during the training phase.

4.3 Sensitivity Analysis

We present the experiments for evaluating the proposed LDR method with a benchmark heuristic used in
practice referred to as Earliest Due Date based BIDding (EDDBID). Details of this benchmark heuristic
can be found in Singh et al. (2022). In short, in EDDBID a transport request is sent to the dispatcher when
the material to be transported is ready at its pickup location. This rule makes use of the earliest due dates
to prioritize requests for assignments on eligible idle AGVs. An AGV is considered idle when it has a
sufficient charge (bV

k ≥ bV
k ) and is not assigned to any request. The dispatcher then selects the idle AGV

that is closest to the source node of that request. Note that due to the dynamic setting of this study, this
rule is equivalent to assigning the nearest idle AGV when the transport request arrives.

In this section, we highlight the performance of our proposed method on industry-sized instances and
provide managerial insights by comparing it with EDDBID. We introduce τ as the probability of having
tight time windows. The tightness of a time-window is measured by the difference between the earliest
pickup time and the latest delivery time, and a value of τ , e.g., equal to 0.5, indicates that transport requests
have a 50% chance of having tight time-windows, where the τ ∈ [0,1], i.e., with a probability τ , the latest
delivery time of a request r is set as, lRr ← eR

r +(dmax/vmin)× (0.25+0.25× y(0,1]), and otherwise, it is
set as lRr ← eR

r +(dmax/vmin)× (1+0.25×y(0,1]), where dmax is the maximum distance in the layout, vmin

is the minimum speed of the AGVs, and y(a,b) denotes a random number between a and b.
We conduct a sensitivity analysis to investigate the effect of varying fleet size, request arrival rates, and

time window tightness probabilities. We vary |V | ∈ {3,6,12}, |R| ∈ {450,900,1800}, and τ ∈ {0.1,0.5,1.0}
to investigate 27 scenarios. The average costs obtained by LDR and EDDBID are summarized in Table 5.
A negative gap percentage represents an improvement (savings in costs) over current practice, i.e., over
EDDBID. Figure 4 shows trends observed across those scenarios.
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Figure 4(a) shows the effect of varying the fleet size under various request arrival scenarios on average
costs. It can be observed that the performance gaps between LDR and EDDBID increase as the requests’
time windows become tighter. However, the average costs tend to go down when increasing the fleet
size due to an increase in the availability of capable vehicles and, as a result, increasing serviceability.
Figure 4(b), under varying |R|, shows that the LDR outperforms EDDBID in all scenarios, with the biggest
gap in scenarios where the requests arrive with relatively tighter time windows. In Figure 4(c), we see that
costs go steeply upward when time window tightness increases. However, the rate of increase in EDDBID
is more when compared with LDR.

(a) Average costs when varying |V |

(b) Average costs when varying |R|

(c) Average costs when varying τ

EDDBID LDR

Figure 4: Trends from numerical analysis on the heterogeneous fleet.

In summary, we observe an average savings of about 19% across all scenarios. Furthermore, the savings
are pronounced when the available fleet size is large and when requests’ time windows are tighter, which
is also evident from the results in Table 5. Having a larger fleet size allows AGVs to assume distinct roles
allowing them to utilize multiple temporal and spatial information largely ignored by other dispatching
rules. Instances with tighter time windows have more potential for cost savings since, with loose windows,
the benefits of using look-ahead information diminish.
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Table 5: Sensitivity analysis on industry-sized instances.

# |V | τ |R| LDR EDDBID Gap (%) # |V | τ |R| LDR EDDBID Gap (%)
1 3 0.1 450 3185.25 3740.81 -14.85 15 6 0.5 1800 9312.82 11720.34 -20.54
2 3 0.1 900 6417.95 7108.32 -9.71 16 6 1 450 1661.23 2399.89 -30.78
3 3 0.1 1800 12494.96 12917.3 -3.27 17 6 1 900 3336.96 4788.17 -30.31
4 3 0.5 450 2526.36 3094.87 -18.37 18 6 1 1800 6922.37 9400.27 -26.36
5 3 0.5 900 5119.02 5868.51 -12.77 19 12 0.1 450 2796.07 3357.33 -16.72
6 3 0.5 1800 10096.26 10599.84 -4.75 20 12 0.1 900 5578.78 6784.19 -17.77
7 3 1 450 1904.67 2510.83 -24.14 21 12 0.1 1800 11317.68 13647.4 -17.07
8 3 1 900 3870.56 4693.09 -17.53 22 12 0.5 450 2146.77 2746.04 -21.82
9 3 1 1800 7715.3 8392.9 -8.07 23 12 0.5 900 4278.08 5504.61 -22.28

10 6 0.1 450 2873.96 3573.09 -19.57 24 12 0.5 1800 8701.22 11178.75 -22.16
11 6 0.1 900 5797.87 7184.49 -19.30 25 12 1 450 1618.61 2252.24 -28.13
12 6 0.1 1800 11966.52 14233.81 -15.93 26 12 1 900 3212.72 4507.42 -28.72
13 6 0.5 450 2219.36 2913.99 -23.84 27 12 1 1800 6472.98 9059.43 -28.55
14 6 0.5 900 4470.3 5886.44 -24.05

5 CONCLUSIONS

We study the problem of dispatching single-load heterogeneous AGV fleet using AGV-specific linear
dispatching rules. These linear functions are learned by using the data collected from the discrete-event
simulation of the system and can account for heterogeneity in AGVs and transport requests, thus utilizing
spatial and temporal information to achieve an average cost savings of 19% on industry-sized instances.
The proposed solution method relies on a learning scheme that is easily explainable and the resulting linear
dispatching rule can be applied in practice with little effort. The proposed method also facilitates better
utilization of the available fleet thereby reducing the costs at an operational level. An interesting future
research direction is to consider non-linear dispatching rules and learning them with the help of neural
networks.
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