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ABSTRACT 

Accelerated with the developments in the context of Industry 4.0, a new trend has established itself in the 
manufacturing industry within the last two decades. Companies started to offer integrated solutions such as 

Product-Service Systems (PSS). While the provision of PSS enables benefits like business model 
innovation or strengthening competitiveness, the exploitation of these benefits depends heavily on the 
decisions in the operative service delivery planning. This, however, is a complex task due to the huge 
solution space. Analytical methods reach their limitations when trying to find the optimal solution. Though 
different optimization algorithms were elaborated for this problem, the evaluation of their solutions is 
overly simplified, and thus, their expressiveness for the uncertain and dynamic reality remains questionable. 

This paper addresses these issues by demonstrating the modeling of an adaptive simulation model that can 
be used to gain a realistic evaluation of operative service delivery plans in PSS. 

1 INTRODUCTION 

In light of globalization, intense competition, and declining profitability, manufacturing firms are 
reconsidering their product portfolios (Brissaud et al. 2022). At the same time, the emergence of 
Industry 4.0 and the rapid advancement of information and communication technologies enabled 

manufacturers to follow new ways to enhance their competitiveness. One strategy that has gained traction 
is the adoption of Servitization. Manufacturing firms started to add services to their physical products in 
order to create a higher customer value (Mahl et al. 2021). In literature, such combinations of services and 
products are called Product-Service Systems (PSS). PSS are integrated solutions that aim to fulfill customer 
needs. They are often offered in innovative business models, where the focus is not on the product itself, 
but on its benefits for the customer (Moro et al. 2022). Such business models also highlight the importance 

of digital technologies. Even when the technical product is in operation at the customer´s site, the provider 
must, ideally, track the status of the product via intelligent sensors in order the ensure its usability by 
delivering suitable services (Pirola et al. 2020). 

With high efficiency during the use phase of PSS, providers can achieve economic and environmental 
benefits by offering such innovative business models (Kim et al. 2023). Nevertheless, this phase presents a 
significant challenge for PSS providers, particularly concerning the operative service delivery planning. 

Here, the task is to create plans by allocating resources to customers´ orders and scheduling their execution. 
Due to the huge solution space of this task, it can be formulated as an optimization problem (Dorka et al. 
2014). Despite its inherent complexity, many dispatchers rely solely on their experiences, eschewing the 
use of decision support systems (Sala, Pirola et al. 2021). Approaches in the literature aim to automate 
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decision-making by evaluating created plans with analytical models (see Subsection 2.3). However, reality 
is characterized by uncertainties and dynamic changes, which makes it difficult to rely solely on analytical 
models. Therefore, there is a need for evaluation tools that are capable of incorporating uncertainties in 

service delivery. 
One approach to address this need is to conduct a simulation-based evaluation of the created plans, as 

simulations are capable of considering uncertainties in complex systems (Chica et al. 2017). Such an 
approach allows dispatchers and automated decision-makers (optimization algorithms) to test different 
scenarios and evaluate the quality of the plan under various conditions. Thus, the paper at hand seeks to 
answer the following research questions (RQ): 

 
RQ 1: How can the service delivery be modeled and simulated to evaluate operative delivery plans? 

1.1: What agents are needed and what are their characteristics? 
1.2: How can different service processes be modeled and implemented? 
1.3.: How can the dispatching and scheduling be modeled and implemented?  

RQ 2: How can the model be designed to be adaptive? 

 
The remainder of this paper is structured as follows. Section 2 provides foundational information on 

PSS and their business models, as well as an introduction to the challenges in the operative service delivery 
planning. In Subsection 2.3, the need for a simulation-based evaluation tool for operative service delivery 
plans is highlighted. Section 3 describes the formalization of our model and design decisions. In Section 4, 
the implementation of the model and its key features are explained. Section 5 outlines the experiments 

conducted to evaluate the model. Finally, in Section 6, concluding remarks and an outlook for future 
research are given. 

2 BACKGROUND AND FOUNDATIONS 

2.1 Product-Service Systems 

The phenomenon of Servitization (Kowalkowski et al. 2017) and the adoption of PSS in the manufacturing 
sector have been accelerated with the emergence of Industry 4.0. Technological innovations like the 

Internet of Things, cyber-physical systems, big data, artificial intelligence, and digital twins enabled 
manufacturing companies to offer new hybrid solutions in the sense of PSS (Kim et al. 2023). PSS can be 
defined as “a marketable set of products and services capable of jointly fulfilling a user´s need” (Goedkopp 
et al. 1999). Thus, the focus shifts from the product itself to the realization of a customer-centric value 
proposition. By offering PSS, companies target to achieve higher revenues, stronger customer relationships, 
and better environmental performance (Li et al. 2020).  

Usually, PSS are provided in innovative business models. Depending on the proposed value and the 
way revenues are generated, PSS business models can be divided into three main categories: product-
oriented, use-oriented, and result-oriented business models. In product-oriented business models, customers 
buy the product and agree on additional services, e.g., maintenance or recycling. In use-oriented business 
models, customers do not pay for the product itself but for its availability or usage of it. The ownership of 
the product remains at the provider, and he becomes responsible for achieving the agreed availability and 

paying a penalty if not. The responsibilities of the provider are increased in result-oriented business models. 
In these business models, the provider promises to deliver a particular result or outcome with the product 
(Reim et al. 2015). Compared to traditional business models, the characteristic feature of these innovative 
business models is that activities that were conducted by the customer before are now transferred to the 
providers' area of responsibility. In this way, customers can concentrate on their core competencies and 
profit from avoiding high investment risks in purchasing products. On the other hand, providers benefit 

from higher customer proximity, long-term customer relationships, and continuous revenues (Meier, Roy, 
Seliger 2010). 
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Although, the advantages of adopting PSS are obvious for the providers and customers, exploiting these 
advantages remains a complex challenge. This is because it is no longer sufficient for manufacturers to 
efficiently produce a high-quality product. Rather, being a PSS provider demands an efficient and satisfying 

delivery of the necessary services in order to realize the value proposition. This is particularly important 
when having customers with use-oriented business models. If the efficiency of the service delivery is low 
in this kind of business model, not only does the provider have to expect to pay penalties and have additional 
costs, but the trust and satisfaction of the customer will decrease which will lead to a negative impact on 
the relationship (Sala, Bertoni et al. 2021). Consequently, decisions that are made in the operative service 
delivery planning play a crucial role in the success of PSS business models (Alp et al. 2022). 

2.2 Operative Service Delivery Planning in Product-Service Systems 

Service planning in PSS can be differentiated into strategic and operative planning. Strategic planning 
involves making long-term decisions in order to build up the necessary quantity and quality of resources. 
The capacities determined here frame the decisions in the operative planning (Lagemann and Meier 2014). 
Operative planning is a short-term planning process, typically managed by a dispatcher (see Figure 1). His 
aim is to allocate the right resources to specific orders, schedule the delivery of services, and determine 

suitable routes for delivery (Dorka et al. 2015). 

 

Figure 1: Operative Service Delivery Planning in Product-Service Systems (Alp et al. 2022) 

Orders are generated by geographically dispersed customers, vary in duration and complexity of the 
requested processes, and must be completed within a specified time window. In the allocation of resources 

to the tasks, technicians who execute the tasks turn out to be the most critical resource in the pool. Their 
working time is limited. Overtime and overnights can be planned but lead to additional costs and are not 
preferred for reasons of employee satisfaction. Besides, technicians differ in their qualifications and 
competencies which affects their effectiveness and efficiency during service delivery. Inexperienced 
technicians with low qualifications can deliver simple standard processes but are not suitable for executing 
complex tasks whereas expert technicians are able to deliver all kinds of tasks (Sala, Pirola et al. 2021). 

Moreover, they can also assist the inexperienced technicians remotely by staying at the headquarter and 
using e.g., augmented, or virtual reality. In this way, their travel times can be minimized so that a higher 
effective working time is achieved (Aquino et al. 2023). Not all tasks may require spare parts and certain 
tasks may demand the use of specific tools. Depending on the urgency of the tasks, the dispatcher could 
choose to assign different vehicles e. g. cars or trains (Meier, Funke, Boßlau 2011).  

Even though the operative service delivery planning in PSS has a large intersection with the classical 

field service planning like in (Lin et al. 2002) or the Vehicle Routing Problem with Time Windows 
(Kallehauge et al. 2005), there are also some peculiarities due to the innovative business models. In the 
context of PSS, orders and service processes can also be initiated by the provider himself. Due to the high 
level of customer proximity, the uncertainties regarding unexpected events such as machine failures are 
less. At the same time, the flexibility in fulfilling orders is higher. The fact that the value proposition in 
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use-oriented business models, for instance, is the monthly availability of the technical asset enables the 
provider to decide how to realize this availability. He could decide to repair, or replace certain parts or even 
exchange the whole technical asset with another one (Meier, Völker et al. 2011). Moreover, the provider 

could also decide to integrate external partners like additional service providers to execute certain tasks. 
Besides, the business model characteristics not only increase the flexibility but also the requirements for 
the planning solution since penalties due to low availability and reduction of customer trust and satisfaction 
must be prevented (Meier, Uhlmann et al. 2010).  

The main goal in operative service delivery planning is to create a plan that leads to minimal costs, 
maximal punctuality, and a leveled utilization of technicians. Reaching this goal is a highly complex task 

because the solution space of possible plans is enormously large (Meier, Funke, Boßlau 2011). To give an 
example, for the determination of the sequence of 30 tasks, there are 30! = 2,65 * 1032 possibilities. This 
number is further increased by the various flexibility option in the context of PSS business models. 
Accordingly, the main challenge in operative service planning is to find the optimal or at least a “good-
enough” plan (Meier, Völker et al. 2011). 

While it is evident that decision-making plays a crucial role in the service delivery phase (Sala et al. 

2019), many decisions during the resource allocation and order scheduling are still made manually based 
on the experiences and knowledge of the dispatcher by e.g., using Excel spreadsheets (Sala, Pirola et al. 
2021). This arises the need for advanced decision support tools that are capable of evaluating these decisions 
or even automating the task of allocation and scheduling (Vössing et al. 2018). 

2.3 Related Work and Motivation 

The issue of operative service delivery planning in PSS gained higher interest in recent years. The proposed 

approaches mainly focus on the automation of decision-making and optimizing delivery plans regarding 
different constraints. Ding et al. (2017) present a metaheuristic algorithm working on a mathematical 
problem formulation to optimize operative service plans toward environmental and economic sustainability. 
Dan et al. (2018) also start with a mathematical formulation of the problem and develop a Mixed-Integer 
Linear Programming algorithm for the optimization. Zhang et al. (2019) develop and compare three 
different metaheuristics for the optimization of order scheduling based on a mathematical formulation. Sala, 

Pirola et al. (2021) present an approach for optimizing the tardiness of service delivery using mathematical 
optimization in the software Cplex. 

The analysis of existing approaches leads to the insight that these decision support systems are typically 
composed of two main components. The first component, the plan generator component, involves the 
automation of dispatchers´ work by running intelligent algorithms to generate new plans. The second 
component, the plan evaluator component, is responsible for evaluating the generated plans regarding 

their quality and optimality and sending feedback to the first component. By the iteration of both 
components, the optimization of the operative service delivery planning is realized.  

In the existing approaches, the plan evaluator component used mathematical formulations of the 
problem to assess the given plans in a deterministic manner. However, in reality, the execution of plans is 
associated with many uncertainties. To have a more realistic evaluation of a plan, the evaluation method 
should be capable of considering stochastic elements especially, regarding the duration of service delivery. 

According to Chica et al. (2017) ,the best approach for dealing with uncertain complex systems is simulation 
modeling since it allows the representation of the real system in the desired level of detail. The execution 
of the plans can be evaluated in different scenarios causing different boundary conditions. Moreover, 
simulation modeling enables the evaluation of plans using real maps which not only makes the driving 
distances more accurate but also allows visual analysis of a created plan (Borshchev 2013).  

Castane et al. (2019) developed a similar approach and combined an optimization framework with a 

simulation model for field service planning. While the classification of the problem as a product-oriented 
PSS is debatable, the simulation model described in this study lacks consideration for key aspects of use-
oriented business models typically associated with PSS, such as time windows and penalties. Additionally, 
the model does not incorporate the possibility of remote service, highlighting the need for further work.  
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Thus, a simulation model with specific properties is needed to be utilized as a reliable plan evaluator 
component for manually or automatically generated plans. The simulation model must consider all relevant 
PSS-specific aspects, necessitating its development by the PSS research stream. Furthermore, it should be 

customizable and have the capability to be adapted quickly for use by different PSS providers with varying 
resource pools and order constellations. The model must also enable the collection of relevant statistics and 
performance indicators of planned resources, while also allowing the execution of smart services such as 
remote assistance (Aquino et al. 2023). To address the uncertainties of reality, the model should incorporate 
stochastic elements. 

3 MODELING THE SERVICE PLANNING OF PRODUCT-SERVICE SYSTEMS 

To answer the need for a new plan evaluator tool for the operative service delivery planning in PSS, a 
simulation model was systematically developed following the procedure model in (VDI 3633) which 
comprises the phases of task definition, system analysis, model formalization, implementation, and 
experiments and analysis. While the first two phases are covered in the previous section, the results of the 
model formalization phase are shown in the following subsections. 

3.1 Formalizing the Model 

Figure 2 visualizes the main classes and their attributes in the operative service delivery planning in PSS in 
the form of a UML-class diagram based on the descriptions in Subsection 2.2. The blue classes represent 
the provider side, and the green one the customer. The violet class for the technical asset stands for the 
tangible product in the PSS. The red classes symbolize the most relevant classes for the operative planning. 

 
Figure 2: UML-class diagram of the operative service delivery planning 

3.2 Identifying the Agents 

In the UML diagram above, active and passive objects can be identified. To create a deeper understanding 
of the system as well as the behaviors of each individual element, the Gaia Methodology, a methodology 
for the agent-oriented analysis and design by Woolridge et al. (2000), was followed. Focusing on the 
planning process itself, the main roles in the system are identified as the Delivery Planner, Order 

Information Holder, and Order Deliverer which leads to an agent-model consisting of the agents: dispatcher 
agent, technician agent, and order agent. Since tools, spare parts, and vehicles are always managed by a 
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technician, they are not modeled as individual agents, rather their properties flow in the technician agent. 
For using the simulation model “only” as a plan evaluator component for short-term plans, the design of 
further agents is not necessary. 

3.3 Modeling the Services 

Although it is possible to distinguish between different processes such as inspection, maintenance, repair, 
installation, and the like, from a modeler’s perspective, these processes are abstracted to delays of an agent 
in the model. Consequently, the service processes that need to be delivered in order to fulfill an order are 
characterized by their duration and complexity whereby the actual duration can be determined by the 
matching of technician competencies and required qualifications. As mentioned before, not all technicians 

can perform all tasks (DIN EN 13306). At the same time, there is a possibility to remotely assist an 
inexperienced technician. This can lead to a virtual increment of the experience, however, cannot substitute 
an expert self (Aquino et al. 2021). Figure 3 depicts the matching between service process complexity and 
technician qualification with the resulting durations.  

 

Figure 3: Complexity and Qualification matching 

4 IMPLEMENTING THE MODEL 

For the model implementation, AnyLogic University 8.8.2 (Borshchev 2013) was utilized, which allowed 
agent-based modeling and the incorporation of GIS maps to accurately calculate distances. The developed 
model comprises three types of agents: main, order, and technician agents. As the dispatcher´s assigning 
and scheduling functions are of greater relevance than their behavior and they only occur at the model start, 
these functionalities were integrated into the main agent. The implemented model represents an offline 
operative service delivery planning for a five-day time horizon. All orders are given at model start-up and 

consecutively planned by the dispatcher. The model can be used to evaluate a given plan by executing it or 
to first generate a plan for the given orders and available technicians using simple heuristics and then 
execute it. For the execution, there were several options modeled. The user can activate the skill factor to 
make the service delivery duration dependent on the complexity of the order and the qualification of the 
executing technician. Besides, the user can activate the possibility for remote assistance during service 
delivery. Another option is to activate the stochastic factor in order to consider uncertainties during service 

delivery. 

4.1 Adaptivity 

To ensure adaptivity, the model was designed in such a way that all agents and their parameters are 
instantiated based on an Excel database. In this way, a user can customize the model easily to his needs.  
By changing the entries in the database, the user can determine the quantity of the orders as well as their 
attributes or the quantity of the technicians and their attributes. This feature makes the simulation model a 

tool that can be used for any operative service delivery planning in PSS. To increase user-friendliness, the 
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data input can be done via a user interface developed in Excel VBA. A further development for the future 
could be the implementation of an interface to the ERP/MES systems of a PSS provider. 

4.2 Agents and their characteristics 

4.2.1 Order Agent 

Figure 4 shows the implemented order agent. On the left side, the parameters defined in the UML-class 
diagram (Figure 2) combined with the attributes of the customer are implemented in the appropriate types. 
In addition, the variables plannedTech for storing the executing technician and timeFinshed for storing the 
timestamp when fulfilling the order have been added. The state chart in the middle defines the behavior of 
the agent. The transitions downwards are triggered depending on the advancing time. If an order agent 

reaches the state waitingOutofTimeWindow the system dynamics variable OutofTimeWindow on the right 
side is set to 1. This leads to the activation of the flow penaltyPerHour. When the order is fulfilled, the 
agent goes into state served and the flow is deactivated.  

 

Figure 4: Order agent 

4.2.2 Technician Agent 

Technician agents are responsible for fulfilling orders by executing a given plan. Figure 5 illustrates the 
basic characteristics of the technician agent with its parameters on the left and its state chart in the middle, 
and further variables and collections containing the assigned orders per day on the right side. For reasons 

of simplification, it is assumed that all technicians have the same vehicle and that the use of vehicles does 
not cause bottlenecks. Moreover, all technicians have the necessary tools for all service processes. Spare 
parts were not integrated into the model since their delivery can also be done by logistic companies.  

In the following, the logic and behavior of the technician agents are explained in the case that the 
possibility of remote-assisted smart services is not activated. At the model start and every 24 hours, the 
event dailyRouteUpdate is triggered and the route of the corresponding day is set as todaysRoute. 

Technician agents start in the state OffWork. If a technician agent has assigned orders for the day, the time 
is over 6:00 AM and the earliest start date of the order will have arrived when traveling there, he goes over 
to the state Working. From the first decision branch (1) he follows the arrow downwards and drives to the 
next customer. If the technician arrives earlier than the earliest start date of the order, he stays in the state 
WaitingAtCustomer. If the current time is later than the earliest start date, the second decision branch (2) 
is reached without waiting. From here, he takes the arrow to the right and enters the state DeliveringService. 

The servicing time depends on the preferences of the user. Either it is deterministic and delivering services 
takes as long as specified in the order itself or the skill factor is activated, and a new duration is calculated 
always based on the properties of each order and the fulfilling technician. Another option is to activate the 
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stochastic factor. In this case, the duration of service delivery is calculated based on probability 
distributions. When exiting the DeliveringService state the servedState parameter of the order is set to true 
and the technician agent reaches the third decision branch (3). If there are more orders to be fulfilled in the 

collection, the technician agent follows the arrow to the right, reaches the first decision branch (1), and goes 
through the same states with the next customer. If there is no unserved customer left in todaysRoute the 
technician agent takes the arrow up from the third decision branch (3) and drives to the headquarter. If his 
working time has not reached 8 hours yet he stays in IdleAtHQ and then leaves for OffWork. 

 

Figure 5: Technician Agent 

In the case that the possibility of remote assistance is activated and there are orders planned to be 

fulfilled with remote assistance, a technician with level 1 qualification (in the following “novice”) is paired 
with a technician with level 3 qualification (in the following “expert”) for the same order. At the first 
decision branch (1), the expert follows the arrow to the left and enters the state WaitingToAssist after the 
novice started traveling to the customer. When the novice reaches the second decision branch (2), he follows 
the arrow down to the state WaitingForAssistance. When entering this state, he sends a message to the 
expert about his state which leads to the expert entering the RemoteAsisstance state and sending back a 

message to the novice in order to start delivering the service. When the service delivery is finished, the 
novice sends a message to the expert and both agents reach the third decision branch (3) where the next 
step for each technician is decided. 

4.2.3 Dispatcher Agent 

As mentioned above, since only the functionalities of the dispatcher agent were relevant, his functionalities 
were implemented as functions (Java code) and placed on the main agent. In the model, these functions 

have the responsibility to iterate over the list of orders and assign them to a technician by adding them to a 
collection of the respective technician. If the user does not enter a completed plan, the dispatcher functions 
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generate a plan following simple heuristics. Thus, a simple plan generator component was implemented 
into the model.  

One way of dispatching the orders is to analyze the orders regarding their earliest start dates and then 

add them to corresponding collections for each day following a First-In-First-Out-Rule (FIFO). Next, the 
contents of the collections are allocated to the technicians. During the allocation, it is checked whether the 
technician can deliver the order by calling the canDeliver function of the corresponding technician. This 
function calculates how much the addition to the working time would be if the order was inserted into his 
plan. If the maximum working capacity is exceeded with the order, the dispatcher checks the availability 
of the next technician. Another modeled logic for the dispatching is that the orders first get sorted according 

to their earliest start date and then allocated to the resources. In the case that the possibility of remote 
assistance is activated, the dispatcher agent first allocates these orders to a novice and an expert technician 
and then schedules these so that they are planned at the same time and then allocates the remaining orders.  

At this stage of the work, the dispatcher agent was kept simple since the concentration lies in the 
development of the simulation-based plan evaluator component. In future studies, sophisticated 
optimization algorithms such as Genetic Algorithms will be implemented for the functionalities of the 

dispatcher agent by expanding functions and adding Java classes to the model.  

4.3 Model Verification 

The model has been verified through sensitivity analysis. For this, a user interface has been implemented 
on the start page of the simulation which enables the generation of plans manually. Multiple users entered 
different plans and observed model behavior. Any inconsistencies or anomalies identified during the 
analysis were investigated and improved to ensure a logical and realistic behavior of the model. 

5 EXPERIMENTS 

5.1 Scenario 

To test and verify the developed simulation model, a fictive scenario was created. A randomly generated 
list consisting of 25 orders serves as a database for a PSS provider located in Bochum, Germany which has 
three technicians, whereby two of them are novices and the other one is an expert. The orders come from 
25 different customers dispersed in a radius of ca. 200 km from the provider and have different earliest and 

latest start dates. The order durations reach from 1 hour to 5 hours whereby the required qualification is 
represented as an integer between 1 and 3. While some orders provide a time window of a few days for the 
service delivery others only provide a few hours. Four orders can be executed with remote assistance.  

5.2 Running the model  

In automatic planning mode, the dispatcher agent assigns the order to the technicians following the FIFO 
rule. The dashboard in Figure 6 visualizes the locations of the provider (red building) and the customers 

(yellow). When executing the model, the states of the technician agents, symbolized by driving trucks on 
the map, are displayed in the Gantt chart. The evaluation of the entered plan can be taken from the statistics 
at the right bottom. The screenshot shows the planned values (grey), the results of conventional methods 
for evaluating plans, and the actual values (blue), the results of the stochastic simulation model. Based on 
the big differences, it gets evident, that relying on deterministic models can lead to miscalculations. In the 
example below, there is a difference of more than 10.000 € in only one week. Calculating with deterministic 

travel and process durations is particularly problematic if during the execution an order cannot be delivered 
due to delays in the previous one. This highlights again the need for realistic plan evaluation tools.  

To enhance the degree of realism, further investigations can explore the deviations between generated 
plans and the plan execution in a real-world business context, focusing on identifying the most influential 
factors contributing to uncertainty.  
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Figure 6: Dashboard of the simulation model 

6 CONCLUSIONS AND FURTHER WORK 

In this paper, the systematic development of a simulation model for the operative service delivery planning 
in PSS was presented. The model considers the characteristics of PSS and their business models, is adaptive 
and easily customizable, allows the execution of smart services like remote assisted service delivery, and 
is capable of incorporating uncertainties. Thus, the model suits to be used as a plan evaluation tool for 
operative service delivery plans in PSS. Following the approach of Castane et al. (2019), the developed 
model could be combined with suited optimization algorithms in order to create a new decision support 

system. Figure 7 visualizes the concept of such a decision support system.  

 

Figure 7: Concept of the decision support system 

The model is not free from limitations and provides opportunities for further work. First, the model 
represents an offline planning model for 5 days neglecting the possibility of an unforeseen urgent order 
occurring in the middle of the week causing a rescheduling of the plan. Further, the assumption is that the 

technicians have a 100% first-time fix rate, but this is probably not the case in reality. Consequently, the 
model needs to be validated by practitioners to increase its accuracy. In a further step, the model could be 
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connected to the ERP/MES systems of a company in order to obtain a digital shadow or twin for the 
operative service delivery planning in PSS. 

Another opportunity for further work lies in the integration of the developed work into a broader 

simheuristic framework like in Juan et al. (2022). There, the authors presented a three-stage procedure 
model for combining deterministic optimization algorithms with stochastic simulation models in order to 
receive elite stochastic solutions with probabilistic information.  
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