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ABSTRACT

Semiconductor manufacturing is a complex, costly process involving a long sequence of operations on
limited, expensive equipment. Recent chip shortages and their impacts have highlighted the importance
of semiconductors in the global supply chains and how reliant on those our daily lives are. Due to the
investment cost, environmental impact, and time scale needed to build new factories, it is difficult to ramp
up production when demand spikes. This work introduces a method to successfully learn to schedule
a semiconductor manufacturing facility more efficiently using deep reinforcement and self-supervised
learning. We propose the first adaptive scheduling approach to handle complex, continuous, stochastic,
dynamic, modern semiconductor manufacturing models. Our method outperforms the traditional hierarchical
dispatching strategies typically used in semiconductor manufacturing plants, substantially reducing each
order’s tardiness and time until completion. Consequently, our method yields a better allocation of resources
in the semiconductor manufacturing process.

1 INTRODUCTION

Modern semiconductor manufacturing is one of the most complex industrial processes to date (Ravi 2021).
Typical production sequences involve a multitude of complex elementary operations handled by highly
specialized tools that require specific setups according to variable product and process designs (Yugma et al.
2015). Over the years, Moore’s Law has pushed the economic and manufacturing limits of industry by
approximately doubling the number of transistors per given area every two years. On the other hand, the costs
for research and development, manufacturing, and testing become increasingly elevated with each new chip
generation (Rupp and Selberherr 2010). Thus, increasing semiconductor production capacities takes time,
and it is impossible to ramp up chip output overnight (Ravi 2021). In this regard, optimizing production
processes is an important prerequisite for mitigating the current critical market situation. Beyond the
economic and manufacturing challenges, increased production facilities have a negative ecological impact.
The industry is very resource-intensive, especially in terms of electricity, land, and water consumption
(Kuo et al. 2022). In 2010, the semiconductor industry accounted for 1.3–2.0% of the total US electricity
consumption in the manufacturing sector (Gopalakrishnan et al. 2010). The chip-making process is also
water-intensive, and an average semiconductor factory consumes around 20000 tons of water a day with
an estimate of 97.26% used during manufacturing (Frost and Hua 2017). Increasing semiconductor fab
efficiency has thus been identified as one of the ways to achieve ecological benefits while reducing the
environmental impact of semiconductor manufacturing (Infineon Technologies AG 2022).

Applying machine learning techniques to combinatorial optimization problems like planning and
scheduling has recently emerged as a prospective research area (Bengio et al. 2021). As most of these
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problems are NP-complete or even harder (Garey et al. 1976; Sotskov and Shakhlevich 1995), exhaustive
search methods do not scale and quickly become inefficient. Applying machine learning techniques to
scheduling problems has been shown to be a promising approach to generate good approximate solutions
in reasonable time (Park et al. 2021; Zhang et al. 2020; Stricker et al. 2018). Recently, Tassel et al.
(2022) suggested an RL-based method that can handle very large instances of the resource constraint
scheduling problem. However, previous work focuses on scenarios that significantly simplify real-world
problems (Stricker et al. 2018; Tassel et al. 2021). That is, considered problem instances represent finite,
deterministic, and static scheduling problems with predefined sets of machines, jobs, and their operations,
which remain constant during the scheduling process. Therefore, our work is the first to consider the
continuous, stochastic, and dynamic scheduling process of a semiconductor fab, addressing a wide range
of challenges encountered in large-scale production environments.

Contributions. In this paper, we propose a novel adaptive scheduling method to improve the
yield and reduce customer order delays in a realistic semiconductor manufacturing environment. Using
Reinforcement Learning (RL) and Self-Supervised Learning (SSL), we train a single RL agent’s Neural
Network acting as a global dispatcher. Our contributions can be summarized as follows:

RL Training Approach. Due to the specificities of the semiconductor manufacturing process and our
model’s architecture, we have developed a training loop using Self-Supervised Learning to pre-train part
of our network and derivative-free Evolution Strategies to train another part of the network.

Feature Set. For each wafer lot, we have designed a feature set that can efficiently represent the current
status of the lot in the manufacturing process.

Objective Function. We have designed an objective function to compare the quality of different schedules.
This function aims to reduce the average tardiness and cycle-time, thus increasing the throughput of each
lot type while incorporating their priorities. The function also considers unfinished lots (i.e., the WIP) in
the computation of the score, correcting potential bias in evaluating a continuous production environment.

Model Architecture. We introduce an order- and size-invariant neural network architecture for a
single-agent dispatcher using global self-attention on the features of each wafer lot to be scheduled. Our
architecture can efficiently encode information such as the type of a required tool family without increasing
the dimensions of the input representation.

Empirical Evaluation. We evaluate our method on a large-scale, continuous, stochastic, and dynamic
semiconductor simulation model from the literature (Hassoun et al. 2020), using an open-source event-
based semiconductor fabrication plant simulation (Kovacs et al. 2022). This testbed was designed to
help researchers assess the performance of integrated dispatching strategies and aims to credibly reflect
the complexity of modern semiconductor manufacturing. It includes two models, one representing a
High-Volume/Low-Mix (HV/LM) production scenario and the other a Low-Volume/High-Mix (LV/HM)
production plan. Our approach outperforms traditional dispatching heuristics in both of these scenarios,
achieving so far unmatched state-of-the-art performance.

2 BACKGROUND

The scheduling problem in semiconductor manufacturing can be modeled as a variant of the Job-shop
Scheduling Problem (JSP) (Gupta and Sivakumar 2006). In classical JSP, given n jobs and m machines, each
job operation must be non-preemptively processed by exactly one machine within a minimal makespan,
i.e., the total completion time for all jobs. Although simple in appearance, the problem is NP-complete,
and unless NP = P, it cannot be solved efficiently (Applegate and Cook 1991). Due to the limited practical
applicability of the classical JSP, multiple variants of this problem, which better reflect real-world scheduling
scenarios, have emerged over the years (Potts and Strusevich 2009). For instance, in flow-shop scheduling,
each job has exactly m operations, and an operation i is non-preemptively executed on machine i. In a
flexible JSP, for every operation, there can be several machines able to process it. Complex JSP extends
the flexible variant with batching machines, reentrant flows, sequence-dependent setup times, and release
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dates (Knopp et al. 2017). The term batching is used in the context of parallel processing and/or in that of
sequential processing (often referred to as cascading or serial batching), denoting capacities for overlapping
the execution times of multiple jobs’ operations (Huang and Wu 2017).

However, a realistic model of the semiconductor manufacturing process cannot be directly mapped to
existing JSP variants. Therefore, (Hassoun et al. 2020) presented SMT2020, a set of stochastic semiconductor
fab simulation models, aiming to credibly represent the complexity of modern semiconductor manufacturing.
These models go beyond previously proposed semiconductor simulation testbeds such as MiniFab (Spier and
Kempf 1995), MIMAC (Hassoun and Kalir 2017), Harris (Kayton et al. 1997), and SEMATECH 300mm
(Kiba et al. 2009) by including larger-scale datasets and more realistic characterizations of manufacturing
processes, incorporating the following features:

1. Different Simulation Scenarios: The simulation includes models of Low-Volume/High-Mix (LV/HM)
and High-Volume/Low-Mix (HV/LM) wafer fabs, where mix stands for high/low variety of products, and
volume for small/large quantities, respectively. The LV/HM scenario includes 10 different products with
10 associated routes, reflecting make-to-order (MTO) environments for supplying foundries, producing
logic or memory devices. In the HV/LM setting, 2 high-volume products represent dedicated fabs,
typically producing logic devices in a make-to-stock (MTS) environment.

2. Realistic Scale: Each product has a dedicated route with at least 500 steps, reflecting the complexity
of modern wafer fabs. Similarly, both scenarios contain 106 tool groups organized in 12 families,
sometimes called machine families or work centers. The LV/HM scenario includes a total of 1265
machines, while HV/LM features 1071 machines. At the beginning of the scheduling horizon, there
are 2700 lots in progress for the LV/HM dataset and 3635 for the HV/LM scenario.

3. Machine Availability: Simulation models include scheduled downtime due to planned tool maintenance
and unscheduled downtime due to machine breakdown.

4. Batching and Cascading: SMT2020 scenarios involve batch and/or cascade processing for certain
tool groups.

5. Loading and Transportation: Loading and unloading times on the tools and transportation times
between the different tool groups are considered in the simulation.

6. Machine Setup: Tools can have operation- and sequence-dependent configurations, which must be
set up on a machine before processing operations. A configuration might imply a minimum/maximum
number of operations to be performed before it can/must be changed. Moreover, some operations
require reconfiguring a machine, even if the same configuration was in place before.

7. Tool Family Specificities: Certain functional areas of a fab have specific constraints. For instance,
steppers in the photolithography area have an lot-to-lens dedication, forcing the product to revisit the
same tool in a future step of the route. A production process with some probability can skip metrology
steps performing quality control. Dry etching steps have a Critical Queue Time (CQT) constraint
enforcing the next operation to be performed with no more than a given amount of time delay.

8. Lot Priorities: Lots can have different priorities: Super Hot Lots have the highest and Hot Lots have
a higher priority at all stages of processing than regular lots.

9. Variable Lot Size: The processing time of certain operations might depend on the number of wafers
in a lot, which can vary from one lot to another.

SMT2020 provides hierarchical dispatching heuristics, combining 4 stages in the following order of
significance:

1. Critical Queue Time: Lots with a CQT constraint in the previous operation have the top priority.
2. Lot Priorities: Lots must be scheduled according to their priorities, i.e., Super Hot Lots scheduled

first, then Hot Lots, and finally, the regular lots.
3. Setup Avoidance: Reconfiguration of a tool is time-consuming; therefore, it is preferable to schedule

operations in a way that avoids switching the setup.
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4. Generic Dispatching Heuristic: To break ties, the HV/LM and LV/HM scenarios use First-Come-
First-Serve (FCFS) or Critical Ratio (CR) heuristics, respectively, where CR considers the due date
and the remaining processing time required to complete a lot.

The resulting simulation models are substantially different from the static and deterministic JSP, where
all job and machine parameters are known in advance, and the environment is not changing during the
computation and execution of a schedule. In contrast, the SMT2020 scenarios are dynamic and stochastic as
changes in the environment, like the release of new lots with different priorities or unscheduled downtimes
of machines, might occur with some probability at any point in time.

3 RELATED WORK

The Semiconductor Factory Scheduling Problem (SFSP) is often decomposed into tool scheduling problems
(single machine job-shop), work center scheduling (parallel machine job-shop), or work area scheduling
(flexible job-shop) (Mönch et al. 2011). However, decomposition approaches merely approximate the
SFSP since combinatorial optimization methods, like Constraint Programming (CP) or Mixed Integer
Programming (MIP), do not scale up to the full problem due to the high implementation efforts and long
computation times (Branke et al. 2016). That is, a realistic instance of SFSP contains millions of operations
to schedule each year, thus going far beyond the capabilities of modern optimization algorithms (Kovács
et al. 2021). On the other hand, deterministic approximations of SFSP might reduce the robustness of
schedules in presence of unexpected events, like machine breakdowns or reworks. Finally, SFSP is a
dynamic problem where new customer orders constantly arrive, requiring recomputing a schedule once the
existing one gets inconsistent with new data.

Combined methods try to mitigate scalability issues by applying combinatorial optimization only
for bottleneck machines (often lithographic tools) while using dispatching heuristics for other operations
(Govind et al. 2008; Ham and Cho 2015). Often, such partial optimization approaches only marginally
improve over deterministic heuristic solutions, which have in turn been shown to be less effective than
meta-heuristics constructed for stochastic SFSP-like settings (Nguyen et al. 2013).

The drawbacks of combinatorial optimization methods on large and stochastic scheduling problems
made dispatching heuristics a de-facto industry standard. Respective scheduling systems only manage to
approximate optimal solutions, but they compute results in seconds and, therefore, can react to changes in
real-time (Waschneck et al. 2016; Ham and Cho 2015). Any dispatching heuristic is a handcrafted heuristic
designed by experts taking experimental studies and personal experience on typical scheduling scenarios
into account. The quality of different dispatching heuristics is evaluated using SFSP simulators with various
objectives like reducing mean cycle-time, average tardiness, and delayed lots. Although algorithms based
on dispatching heuristics have shown good runtime results, there is no universal set of heuristics that work
best for all evaluation scenarios. For instance, their performance depends on the current Work-In-Progress
(WIP) (Nyhuis and Wiendahl 2012), selected key performance indicators (Uzsoy et al. 1993), and types
of machines used (Fordyce et al. 2015).

Attempts to apply RL to semiconductor manufacturing aim to overcome the issues of dispatching
heuristics in complex SFSP environments. Waschneck et al. (2018) propose a multi-agent RL approach
in which each agent represents a work center, i.e., a tool family. This work models a factory with 4 work
centers and 48 WIP lots to schedule, where transportation times and machine breakdowns are disregarded.
Agents are trained in two phases: (1) only one agent (i.e., a work center) is trained while the others are
controlled by a heuristic, and (2) all agents controlling the 4 work centers are trained together. Results
obtained with the trained agents are comparable to the original dispatching strategy, but as the action space
depends on the number of WIP lots, the approach is difficult to generalize. Stricker et al. (2018) propose
a single-agent RL method for a testbed with 3 work centers and a total of 8 machines, without setup
changes between different kinds of operations. The dispatching agent can select from a set of 12 actions to
decide how to schedule a given lot. Since the action space depends on the number of machines, a neural
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network trained on one fab cannot be reused for others and it might be difficult to apply this approach to
thousands of machines as in SMT2020. However, the trained agent improves the initial dispatching strategy
significantly by 8% better fab utilization.

4 LEARNING ALGORITHM

This work aims at the development of a scheduler for the full SFSP, in which the objective is to efficiently
dispatch the lots to schedule on the machines so that metrics like mean cycle-time, average tardiness, and
the number of delayed lots are minimized.

4.1 Approach Overview

Following the Markov Decision Process (MDP) formulation introduced by (Tassel et al. 2022), the state-
transition function of our deep RL agent considers sequences of lots rather than a fixed number of actions
assigning lots to machines. In particular, at any timepoint when a set of lots must be dispatched, the agent
is trained to order lots in a sequence in which they are assigned to machines using a set-up avoidance
scheme. In the following, we formulate dispatching decisions on lot operations to be scheduled in terms of
an MDP, including the state space S , action space A , reward rt and transition st+1 ∼ p( · | st ,at) functions.

State Space S . A state st ∈ S is given by the set L t of legal lots at timepoint t. A lot l is legal if
its operation sequence Ol = (τ1, . . . ,τn) comprises an operation τ that can be scheduled to free resources
at t. Moreover, each lot l is associated with a set of features: (1) critical ratio, i.e., a ratio of the time
remaining till the due date dl to the expected processing time to finish the job; (2) remaining time until
the deadline dl; (3) total waiting time of the lot since its release; (4) waiting time of the lot since the last
operation; (5) number of lot-to-lens dedications until lot completion, i.e., once a machine is used to perform
a specific operation, it will always be used for remaining operations τi ∈ Ol; (6) lot priority wl; (7) sum
of mean processing times for all remaining operations of the lot; (8) minimum machine setup time to
perform the current operation of the lot; (9) mean processing time pτ ∈N+ of the current operation τ ∈ Ol;
(10) number of available machines with compatible setup; (11) minimum batch size; (12) maximum batch
size; and (13) the family of the required tool group.

Action Space A . The action space A is composed of all legal lots at timepoint t, i.e., A = L t .
Hence, the action space is discrete, and the cardinality of A may vary from one timepoint to another. The
agent receives as input a set of dispatchable lots for the current timepoint t, and provides as output the
order in which to dispatch the given lots. For each lot l ∈ L t , the network produces a scalar representing
the priority of l. The ordered set of lots to dispatch is then obtained by sorting the lots according to their
priority scores.

Reward rt . Usually, SFSP uses the average cycle-time, tardiness, and the number of delayed lots
for each lot type to compute the quality of a schedule. Unfortunately, evaluations of these criteria provide
meaningful results only when computed for a complete schedule and might be misleading for incomplete
ones. Therefore, we have designed an objective function assigning scores for any (in)complete schedule.
This function penalizes tardiness of a lot and long cycle-times while rewarding high throughputs. Moreover,
the score for each lot is weighted based on its priority.

Our objective function comprises two parts: one for the lots already finished at the time of the evaluation
and another for the lots still in the WIP. Both parts are then summed together to obtain the final result.
Considering lots in the WIP for evaluating a schedule is particularly important in the case of a continuous
scheduling environment such as SFSP, as one potential bias of a method is to only optimize metrics for
the evaluated time windows but risk bringing the fab into a catastrophic state in the future.

The first part, only considering lots finished at the evaluation time t, is defined as:

O f = ∑
ki∈K

1
∥ki∥ ∑

l∈ki

{
wl ∗ (p+(cl −dl)) if cl > dl

0 otherwise
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where K is the set of all lot types, ∥ki∥ the number of lots of type ki, cl the completion date and dl the
deadline for lot l. The constant term p allows penalizing delayed lots independently of whether the tardiness
is large or small. The second part, focusing on lots in the WIP at time t, is defined as:

Op = ∑
ki∈K

1
∥ki∥ ∑

l∈ki

wl ∗ xi,l

xi,l =

{
p+(t − (dl − (ai ∗ el))) if dl − (ai ∗ el)< t

0 otherwise

where ai is the average cycle-time of lots of type ki computed on the finished lots, and el the sum of mean
left-to-process operations’ processing time. The term dl − (ai ∗ el) evaluates the deadline for lots in the
WIP by forecasting the completion date of a given lot based on the average processing time for operations
to be performed until completion. Thus, the minimization of the objective function O = O f +Op leads
to the reduction of tardiness, increase in throughput, and decrease in the average cycle-time for each lot
type, just as the original SFSP objective. Note that, due to the specificities of our training approach, which
employs a derivative-free optimization method, we do not require a continuous and differentiable reward
function.

State Transition. At each decision timepoint t, the simulator provides information about the current
state st of a fab, and awaits an ordered list of lots to dispatch. Similar to static dispatching heuristics,
the ordered list is processed using a hierarchical strategy, first giving higher priority to lots with a CQT
constraint, then lots’ priorities (i.e., Hot Lots), and finally the original order provided by the agent. The
simulator then allocates the lots to their associated free machines in the given order until no free resources
remain or all lots are scheduled. Next, new events from the events stack are handled and the timepoint is
incremented. In SMT2020, lots are assigned to machines using the following heuristic strategy:

(1) If there is a lot-to-lens dedication constraint, assign to the mandatory machine.
(2) If the current operation does not require a setup, assign to a machine without setup, if any. Otherwise,

assign to the machine with the highest waiting time.
(3) If the operation requires a setup, assign to a machine with this setup, if available. Otherwise, assign

to the machine with the lowest setup time.

This strategy is greedy as it merely determines advantageous allocations at a timepoint t, neither backtracks
nor considers future incoming lots, i.e., no "lookahead". However, since SMT2020 supplies information
about the legal lots at timepoint t only, the machine allocation strategy is reused by our agent.

4.2 Policy Architecture

The agent policy is a function πθ (A | st) that maps the current state of the simulator st to the ordered
set A of legal actions (lots) to dispatch for the current timepoint t. πθ is implemented as a deep neural
network of the structure illustrated in Figure 1.

Machine 
Encoding

State 
Representation + Multi-Head

Attention
+ Feed

Forward
Output

Priorities
α β

Figure 1: Policy network architecture with an embedding encoding, injecting information about the tool
family required for an operation. The network outputs a priority score for each lot representation.
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Before feeding the state representation to the policy neural network, we rescale the features of the legal
lots using a virtual batch normalization from statistics over a 2-months horizon collected before training.
For each lot representation l ∈ st , we inject information about the tool family required to perform the
current operation, using a learned encoding, and keep the first 12 features as the lot representation (i.e.,
the 13-th feature is the tool family index that is only used by the learned encoding). Encodings are often
used to inject positional information via absolute positional embeddings (Vaswani et al. 2017) or relative
bias factors (Shaw et al. 2018), where a positional encoding is either fixed or learned (Haviv et al. 2022).
In our case, the injected information is the family of the tool required to perform the current operation on
a lot. We learn an associate machine encoding for each of the 12 tool families and add it to the input lot
representation. Moreover, we experimented with input embedding before the machine encoding, similar
to (Vaswani et al. 2017), but observed degradation in performance.

The transformed state representation s′t is passed to a double-head self-attention mechanism and a
simple, position-wise, fully connected Feed-Forward Network (FFN). We employ a residual connection
with scaling factor (Szegedy et al. 2017) around s′t and the FFN:

yyy = αxxx+β f (αxxx)

with α and β as two learnable parameters. The multi-head attention layer allows the network to determine
the priority of each lot not only based on the features of the given lot but taking all lots to schedule at
the current timepoint into account. It contains two attention heads, each of dimension dhead = 6. The FFN
comprises three linear transformations of dimension 16 with a tanh activation in between:

FFN(x) = tanh(tanh(xW1 +b1)W2 +b2)W3 +b3

Similar to the transformer architecture (Vaswani et al. 2017), we apply the FFN to each lot representation
separately. The inner layers have dimensionality dFFN = 16, while the network outputs a scalar representing
the estimated lot priority.

4.3 Training

With an average of 7254125 allocated steps per year, training the policy network is challenging since
the search space is highly combinatorial. Also, agents need to be trained with a long horizon since some
products have a long cycle-time with completion up to three months in the future, while disruptions such
as machine breakdown occur relatively rarely. Therefore, we use a training horizon of 6 months, as it
provides a good balance between training runtime and the diversity of events handled by an agent.

4.3.1 Self-Supervised Learning

While the multi-head attention and FFN layers are trained together, the machine encoding is trained
separately using a self-supervised pretext task (Doersch et al. 2015). The goal of the machine encoding
is to inject information about the required tool family into the lot representation. This information is very
important as different tool families have very different processes and constraints; for example, lithographic
tools are usually considered critical due to their scarcity, etching steps often have a CQT constraint with
their next operation, and other tool families also have their specificities. For the machine encoding, we
propose to train a network as shown in Figure 2, having a similar architecture as the policy network. The
network receives a set of lot representations as input and yields a probability distribution over all tool
families as output for each lot.

Therefore, given a set of N training state representations D = {xi}N
i=0 sampled from a 2-months horizon

simulation, the self-supervised training objective that the model must learn to solve is:

min
θ

1
N

N

∑
i=1

loss(xi,θ)+λ∥θe∥2
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Machine 
Encoding

State 
Representation + Multi-Head

Attention
+ Linear Output

Probabilities
Softmax

Figure 2: Self-supervised pretext task architecture. The lot representation is extended with information
about the required tool family, which then must be correctly predicted by the network.

where the loss function loss(.) is the cross-entropy between the predicated and the ground-truth tool family,
θ the parameters of the network, θe the parameters of the machine encoding, and λ the regularization
constant. This L2 regularization is required to prevent the encoding from taking too large values and, thus,
destroying the information about lot features. The λ = 0.2 regularization constant is tuned such that the
performance on the downstream task (i.e., the fab dispatching) is maximized.

The pretext task is trained until convergence using Stochastic Gradient Descent (SGD) and backprop-
agation. The multi-head attention and the linear layer are then discarded, and only the learned machine
encoding weights are kept frozen for the downstream task.

4.3.2 Policy Network Training

Objective functions of scheduling problems and discrete sets of possible job allocations result in learning
environments with non-smooth objectives, which are unsuitable for training by backpropagating gradients.
We overcome this issue by combining two methods: estimating a gradient with the Natural Evolution
Strategies (NES) algorithm (Salimans et al. 2017) and a modern gradient-based optimization algorithm to
update weights of the policy network.

NES belongs to a broad family of Evolution Strategies (ES), which are black-box, derivative-free
methods inspired by natural evolution. When applied to the training of a policy network πθ , NES methods
use the parameter vector θ of the policy to generate a population of parameter vectors θ ′

i ∼ N (θ ,σ2I)
by adding noise sampled from an isotropic multivariate Gaussian to the original parameter vector θ , thus
obtaining a set of n successor networks. Then, each of the n networks in the population is used to evaluate
an objective function, the episodic reward function in our case, to estimate the natural gradient for the
policy network:

∇θ F(πθ )≈
1

σ ∗N

N

∑
i=1

F(πθ ′
i
)εi

where εi ∼ N (0,I) is sampled from a Gaussian distribution, θ ′
i = θ +σεi, F(πθ ′

i
) is estimated using a

single trajectory, and σ is a constant defined as σ = 0.005.
The estimated natural gradient is provided to Adam optimizer with β1 = 0.9, β2 = 0.98, and ε = 10−4,

which updates the parameters θ of the policy network. Within the i-th run, we decay the learning rate with
a cosine annealing as follows:

ηi =
ηmax

2

(
1+ cos

(
i

imax
π

))
where ηmax = 0.01 is the maximum learning rate, and imax = 40 the maximum number of iterations.

The training algorithm continues to repeat these steps until convergence. Because NES works with
function evaluations, relying on a continuous reward function is unnecessary. Therefore, we can use the
previously defined unbiased and episodic objective function.
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5 EMPIRICAL EVALUATION

We evaluated our approach against the original SMT2020 hierarchical dispatching heuristics described in
Section 2, using a machine equipped with AMD EPYC 7452 CPU and 128GB of RAM for benchmarking
and training, with the training iterations taking 3 hours on average. As discussed in Section 3, to our
knowledge, there are no CP- or MIP-based approaches in the literature for handling such large problems
of stochastic, dynamic, and continuous nature. Therefore, as a baseline, we rely on proposed heuristic
methods, which are the de-facto standard in the semiconductor industry (Govind et al. 2008; Ham and
Cho 2015).

For each dataset, we run all dispatching strategies with a horizon of 6 months with 100 different
random seeds and report the percentage of lots that meet the deadlines defined at release time as well as
the cycle-time, i.e., the average number of days from release to completion per given lot type. We provide
the mean and the standard deviation of each metric collected for agents trained in a considered scenario.
The penalty constant was set to p = 10 encouraging the learner to prefer fewer delayed lots with a larger
delay over a larger number of delayed lots with a very short delay each. In comparison, experimentation
conducted with p = 5 leads to fewer lots on time but a shorter average cycle-time.

Our evaluation settings are realistic since the production scenario rarely changes during the lifetime
of a fab, and Table 1 reports the aggregated metrics for each lot priority level. As we can see in Table
1(a), for the HV/LM dataset, our approach outperforms the state of the art, obtaining solutions of 16.68%
lower cost when compared to the best-performing dispatching heuristic. Both the average tardiness and the
cycle-time of lots are reduced. While the absolute reduction in solution cost is already significant, as the

Table 1: Comparison against the original dispatching heuristics on the SMT2020 testbed for the HV/LM and
LV/HM scenarios with 6 months of simulation. For each lot priority level, we report the aggregated mean
and standard deviation of the percentage of lots on-time and the cycle-time. Our approach outperforms the
original ones in both scenarios, especially for regular lots, representing the major part of all lots.

(a) High-Volume/Low-Mix (HV/LM)

Lot Type Ours Hierarchical CR Hierarchical FIFO

Super Hot Lots On-Time 42.50%±13.94 41.84%±12.45 38.06%±10.64
Theoretical Cycle-Time: 24.75 Cycle-Time 33.61±0.51 33.89±0.43 33.99±0.44

Hot Lots On-Time 55.86%±3.58 46.76%±3.77 47.66%±3.74
Theoretical Cycle-Time: 19.65 Cycle-Time 26.54±0.14 26.94±0.13 26.91±0.12

Regular Lots On-Time 44.91%±2.36 0.00%±0.00 0.00%±0.00
Theoretical Cycle-Time: 17.31 Cycle-Time 52.24±1.80 70.80±0.60 72.57±0.61

Cost 33171.37±1655.53 39813.37±899.89 38013.67±1327.73

(b) Low-Volume/High-Mix (LV/HM)

Lot Type Ours Hierarchical CR Hierarchical FIFO

Super Hot Lots On-Time 97.38%±4.63 97.19%±4.72 95.04%±5.44
Theoretical Cycle-Time: 24.75 Cycle-Time 33.64±0.44 33.73±0.42 33.86±0.45

Hot Lots On-Time 96.03%±3.20 96.34%±3.04 95.38%±3.35
Theoretical Cycle-Time: 17.31 Cycle-Time 23.67±0.23 23.71±0.23 23.80±0.23

Regular Lots On-Time 56.47%±2.36 0.00%±0.00 0.06%±0.09
Theoretical Cycle-Time: 17.31 Cycle-Time 44.15±1.80 52.25±0.30 52.38±0.63

Cost 94349.38±2716.51 108855.67±2044.28 102170.71±2497.89
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unknown “optimal” solution (i.e., the optimal solution for each seed) has a cost greater than 0, we have
an even greater relative improvement. Focusing on Regular Lots, the vast majority of all lots, the original
dispatching heuristics are incapable of scheduling them to meet the deadline. In contrast, our approach
meets the deadline for 44.91% of the lots and reduces the cycle-time by 26.21% when compared to the CR
dispatching heuristic, thus substantially decreasing the average time from release to completion of a lot.

Aggregated results for the LV/HM dataset are reported in Table 1(b). As with the HV/LM scenario,
our method outperforms the state of the art, obtaining solutions of 7.66% lower cost when compared to
the best-performing dispatching heuristic. Although the metrics obtained for Hot Lots are very similar, our
approach is always capable of reducing the cycle-time and achieving overall lower tardiness of lots. In fact,
paralleling the HV/LM scenario, the agent vastly outperforms static dispatching heuristics when focusing
on Regular Lots, meeting the deadline for 56.47% of them. In comparison, Regular Lots scheduled by
standard heuristics met their deadlines in almost none of the cases. Furthermore, our approach greatly
reduces tardiness and the cycle-time by about 15.5%, thus making better usage of fab resources.

Additional evaluations, including detailed results per lot type, comparison with additional dispatching
heuristics from the literature, and a 1-year evaluation horizon, have been omitted due to page constraints.
However, we are open to providing additional information upon request. It is worth mentioning that all
scenarios that were evaluated have shown results consistent with those described above. Our approach has
exhibited remarkable performance when compared to existing methods in the literature. We have observed
significant enhancements across various metrics, while incurring only a minimal increase in computation
time. Specifically, our approach increases the decision time per timepoint by an average of 1.02 ms.

6 CONCLUSION

We present a new scheduling method capable of improving the usage of semiconductor fab resources.
Unlike prior works focusing on toy datasets with a handful of products, machines, and constraints, we aim
at realistic semiconductor manufacturing models in full complexity and scale. Using a combination of self-
supervised learning for an embedding encoding information about available tool families and reinforcement
learning to train an attention-based model capable of considering all lots to allocate, we trained an agent
to dispatch lots to machines efficiently. Extensive evaluation against a wide range of dispatching heuristics
in the literature, including those proposed for the considered datasets, shows the ability of our approach
to substantially improve semiconductor scheduling capacities and achieve better usage of fab resources.

While these initial results are encouraging, many challenges remain. Mainly, applying our approach in
production first requires building trust of operators responsible for the production. It can be challenging to
convince operators to follow such a black-box system’s decisions, especially if some might initially seem
counterintuitive. Another challenge is to provide a more global vision of the fab to the agent by including
lots currently processed by a tool in the state representation. It would allow the agent to anticipate which
lots are getting ready next and possibly decide to leave a tool free for a soon-to-be-available lot.
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