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ABSTRACT

We study a highly complex scheduling problem that requires the generation and optimization of production
schedules for a multi-product biomanufacturing system with continuous and batch processes. There are two
main objectives here; makespan and lateness, which are combined into a cost function that is a weighted
sum. An additional complexity comes from long horizons considered (up to a full year), yielding problem
instances with more than 200 jobs, each consisting of multiple tasks that must be executed in the factory.
We investigate whether a rolling-horizon principle is more efficient than a global strategy. We evaluate
how cost function weights for makespan and lateness should be set in a rolling-horizon approach where
deadlines are used for subproblem definition. We show that the rolling-horizon strategy outperforms a
global search, evaluated on problem instances of a real biomanufacturing system, and we show that this
result generalizes to problem instances of a synthetic factory.

1 INTRODUCTION

Efficient bioprocess industries can play a crucial role in feeding the world population in a sustainable way.
Production sites for the process industries are often multipurpose, highly flexible systems. The number
of different products using (partially) the same machines in their production process has been increased
due to market pressure. Given long-horizon demand up to a full production year, factory operators want
to optimally use their resources, while ensuring that deadlines for customer orders are met. Using these
deadlines as hard constraints makes the scheduling too restrictive; instead a lateness objective can be defined
which sums the lateness of all customer orders. Efficiency of a schedule can be evaluated by measuring
the makespan. Intuitively, makespan minimization also contributes to reducing lateness of customer orders.
On the other hand, not considering deadlines can potentially lead to schedules with lower makespan values.
To illustrate this; ignoring deadlines allows clustering products in such a way that shared resources are
used in a more efficient manner. For example, the same products for different customers can sometimes
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be produced in a single batch, or when subsequent batches are for the same or similar products, machine
set-up and cleaning times can be shorter. The trade-off between the lateness and makespan objective makes
the optimization therefore challenging.

Schedulers in these industries are facing highly complex scheduling problems, which are in general
NP-hard (Pinedo 2016; Georgiadis et al. 2019a). Therefore, the development of efficient algorithms
to optimize scheduling decisions in large-scale bioprocessing industries is challenging. Several studies
are dedicated to exact optimization methods, such as linear programming, for this type of scheduling
problem, which are summarized by Georgiadis et al. (2019a). The main conclusion is that for the
optimization of large-scale, long-horizon scheduling problems, the only successes can be achieved with
help of decomposition, heuristics, and simplifications because linear programming models become otherwise
intractable. Especially in biomanufacturing, such as performed by DSM (a global company in Nutrition,
Health and Bioscience), details of the operation constraints are extremely important for the generation of
feasible production schedules. Oversimplification should preferably be avoided in the solution strategy.
Ideally, we have algorithms that can produce optimal solutions for very detailed models of such scheduling
problem, but for problems of this complexity (NP-hard) and size, this may never be possible (Garey and
Johnson 1990).

Simulation-based methods are more suitable than linear programming approaches for the consideration
of interdependent processes, constraints, and interactions in manufacturing systems. We observe that
detailed Discrete Event Simulators (DES) are already used in practice for scenario analysis and manual
scheduling. Currently, DSM schedulers aim for a good production sequence, which is then later augmented
by a highly-detailed DES that contains heuristic rules for machine selection, and timing, to evaluate different
production sequences. Mimicking detailed processes of a factory can be done with help of sophisticated
simulation software, while including all these details in a linear programming model results in intractable
models. These DES are often very specific to the manufacturing system they represent. Algorithmic
techniques that support scheduling decisions are more generic. One prime example of this are simheuristics
(Juan et al. 2015), which are defined as metaheuristics combined with a simulation tool for cost function
evaluation. Only a few studies have been dedicated to the design of such simheuristics integrated with
industry-proven DES for long-horizon scheduling of large-scale biomanufacturing systems.

In this research, we focus on the development of simheuristics for sequencing of customer orders. The
employed DES translates a production sequence into a feasible schedule, and evaluates the corresponding
objectives. We investigate which optimization strategies are efficient for scheduling with long production
horizons in the (bio)process industries. Inspired by the manually constructed schedules, for which deadlines
are used to construct a reasonable production sequence, we wonder how much better results could be obtained
by a global simheuristic, or by a rolling-horizon simheuristic that uses the deadlines to reduce the search
space. We aim to get insight in how this search space reduction affects the solution quality and run
time. Given a weighted sum of the makespan and lateness as cost function for optimization, the research
examines whether the same weights should guide the subproblem optimizations within the rolling-horizon
simheuristic.

We observe that employing product deadlines to construct a rolling-horizon simheuristic is beneficial
for improving costs and computation time of the algorithm, compared to a global strategy. Surprisingly,
the rolling-horizon strategy performs even better (by a significant margin) than a global simheuristic that
begins with a production sequence sorted by deadline, when both simheuristics are given an equal budget.
Although we expected that it would be better to increase the makespan weight in the rolling-horizon
simheuristic, we observe that the differences in obtained objectives are minor compared to using the true
weights in the subproblem search.

In Section 2, we give an overview of related work. The formal problem description is described in
Section 3, which is inspired on an industrial use case, provided by DSM. The employed DES are discussed in
Section 4, which comprises the industry-proven model of the DSM factory (Rockwell Arena), and a model
for a synthetic factory implemented in SimPy, which we make publicly available. The latter is developed
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to show that our algorithms work independently of the DES, and can be generalized to other factories.
Additionally, we discuss the optimization strategies in Section 5, which includes the rolling-horizon. For
the experiments and results, we refer to Section 6 and Section 7.

2 RELATED WORK

Scheduling decisions in the process industries include batching, sequencing, routing, machine assignment,
and timing. Over the past decades, generic optimization-driven methods for these problems have been
studied (Kondili et al. 1993; Pantelides 1993), and a comprehensive overview is provided by Georgiadis
et al. (2019a). In the process industries, it is often the case that the system cannot be modelled with jobs
and operations, like is usually done in discrete manufacturing (Pinedo 2016). This is caused by the fact that
operations such as mixing and splitting of batches can exist, which means that a product batch does not
necessarily keep its identity throughout the process. Other examples of complicating factors are processing
times that depend on the batch size, and the presence of continuous, and semi-continuous processes. Due to
the large scale, long horizon, and industry-specific operation constraints, the potential of exact optimization
methods is limited (Chica et al. 2020). Some examples where either Mixed Integer Linear Programming
(MILP), or Constraint Programming (CP) models are employed for short-horizon industrial problems, can
be found in (Awad et al. 2022; Georgiadis et al. 2019b). It was pointed out that even for short-horizon
problems, simplifications are needed for linear programming (Georgiadis et al. 2019a), and there is a
chance that manufacturers will not accept the proposed schedules because of infeasibility caused by an
insufficient level of detail (Klanke and Engell 2022).

Simulation optimization (SO) is considered as a suitable alternative for exact optimization, since
industry-strength simulation models could be integrated with optimization algorithms that interface with
the simulation model as an external component. Simulation is powerful for the evaluation of stochastic
components, but can also be used to model complex systems with interdependent processes and constraints.
More specifically, the value of simheuristics for realistic combinatorial optimization problems has been
widely recognized (Juan et al. 2015; Chica et al. 2020; Juan et al. 2022). A recent tutorial on how
to connect Python with DES software for the development of simheuristics was given by Peyman and
Dehghanimohammadabadi (2021). A simulation tool can be used to translate input scheduling decisions
into an actual schedule (gannt chart), as well as to estimate objective values. Simheuristic applications in
scheduling comprise various job shop problems combined with Monte Carlo Simulation (Juan et al. 2014;
Gonzalez-Neira et al. 2017; Hatami et al. 2018). Research in the field of simheuristics for scheduling in
process industries is limited, especially for multi-objective, long horizon problems. Piana and Engell (2010)
developed a simheuristic method for a chemical engineering plant, where the makespan was considered
as objective. Klanke et al. (2021) proposed an evolutionary algorithm (EA) combined with a DES tool
to optimize an industrial formulation plant. They evaluated their method on problem instances for the
medium-term.

For the design of simheuristics, it is advised that the choice for a simheuristic framework should fit the
complexity of the simulation tool, meaning that complex simulation tools work often better with simple
simheuristics, and the other way around (Chica et al. 2020). Iterated Greedy (IG) algorithms have proven
to be successful for sequencing scheduling problems, such as the permutation flowshop scheduling problem
(PFSP) (Ruiz and Stützle 2007), and the hybrid version (HFSP) (Öztop et al. 2018).

When specifically focusing on problems with long horizons, rolling-horizon algorithms could be of
help. With this principle a sequence of subproblems is solved, for which the size can be controlled.
Such strategies have been applied in several studies (Ovacik and Uzsoy 1994; Glomb et al. 2022). A
rolling-horizon principle applied to a batch multi-product production system is provided by Wu et al.
(2021), although the studied system is significantly smaller than the factory of interest. Earlier research
has shown that such principles combined with exact methods can even yield near-optimal solutions (Glomb
et al. 2022).
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We recognize a clear gap in the literature regarding scheduling of bioprocess factories. On the one
hand, we observe that linear programming approaches have shown to be successful on small, short horizon,
and/or simplistic problems. On the other hand, simulation-based methods for large-scale industrial problems
focusing on long horizons are rare. Rolling-horizon principles have been applied to batch manufacturing,
but as far as we know it is not understood whether a rolling-horizon method would lead to better results
in the same time as a global search in such a large-scale, complex system as studied in this research. In
particular, we would like to understand whether the objectives in such a multi-objective problem should
be weighted differently in a rolling-horizon setting compared to the long-horizon objective.

3 PROBLEM DESCRIPTION

The scheduling problem can be described using the standardized framework, provided by Georgiadis et al.
(2019a), complemented with some additional specifications. We observe a multi-purpose, multi-product
network facility, which is a system where different bio-based products are produced according to unique
recipes, and the routings through the plant are product-specific, and flexible. Demand for a full year is
given, which yields a scale of more than 200 jobs per year each consisting of multiple unit operations that
are executed either subsequently or (partially) in parallel. An additional complexity is the mix of batch
and semi-continuous processes.

Currently, DSM schedulers focus on the sequencing of the different products given the production plan
for the full year. Decisions regarding batch sizing are made in advance. Soft deadlines for the different
batches are given per month. A schedule includes assigning resources to tasks, and sequencing and timing
the different tasks, and a feasible schedule satisfies all pre-defined operation constraints. The scheduling
objectives are the total time of the schedule (makespan), and the total lateness of the customer orders which
are combined in a cost function. Factory managers define the cost function as a sum of the two objectives
weighted by weight λ ∈ [0,1] for the makespan objective and 1−λ for the lateness objective. For the
factory of interest, the decision-makers set λ ∗ = 0.5. Given that f j is the finish time of job j, and d j is the
deadline of job j, the cost function is then defined as:

Cλ ∗ = λ
∗ max

j∈ jobs
f j +(1−λ

∗) ∑
j∈ jobs

max(0, f j−d j) = 0.5 max
j∈ jobs

f j +0.5 ∑
j∈ jobs

max(0, f j−d j) (1)

The facility that we study consists of thirteen resource groups, with one up to eleven machines per
group, from which capacities can differ within one group (for an overview, see Table 1). Processing times
are often given in rates (dependent on batch sizes), and are typically long (> 100 hours); this makes the
use of time-indexed models problematic. The availability of raw material, and man hours are left out of
scope. On this manufacturing site, a variety of 55 different end products can be produced. Additional
complexities of the system are:

• compatibility constraints,
• sequence-dependent cleaning times and pre- and post-processes,
• scheduled maintenance,
• changing batch weights/sizes (e.g. due to filtering steps),
• cooling restrictions.

Given this large-scale, NP-hard scheduling problem with a comprehensive set of detailed operation
constraints, we wonder which optimization strategy is suitable for the generation, and improvement of
production schedules. We emphasize that oversimplification is undesirable, because it can lead to schedules
that will be rejected by factory managers. We are particularly interested in how to handle long horizon
problem instances up to a full production year because 1) this is highly relevant for our industrial partner,
and 2) there is a clear gap in the literature, in which the majority studied short to medium term horizons.
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Table 1: Resource groups.

Resource group Number of machines
Fermenter 1 - 5 5
Harvesting tanks A 4
Harvesting tanks B 8
Filters A 3
Filters B 1
Buffer tanks 6
Filters C 5
Filters D 6
Stabilization tanks 11

4 DISCRETE-EVENT SIMULATION

Given our interest in scheduling a highly detailed process, simulation optimization (SO) emerges as a
suitable approach for modelling all operational constraints and interdependent processes (Juan et al. 2015;
Klanke and Engell 2022). As discussed earlier, finding optimal solutions in time for this problem is not to
be expected because of its size and complexity. To address this challenge, we employ two deterministic
Discrete Event Simulators (DES) that translate a production sequence, representing the ordered products
based on demand, into a feasible schedule. The simulation model mimics the flow of batches through
the factory while respecting all scheduling rules given by the product specific recipes. The simulation
incorporates heuristic rules to determine machine assignments and precise timing of operations. Therefore,
it should be noted that some sub-optimality cannot be avoided. Nonetheless, this approach facilitates the
use of simheuristics that solely optimize the production sequence without having to consider all the complex
interactions modeled in the DES.

Currently, DSM schedulers use a DES that is implemented in Rockwell Arena software (see Drevna
and Kasales (1994)). This tool is validated, and is now integrated in a simheuristic framework. To test
whether our proposed methods can be generalized, we create a synthetic factory, and developed a DES
with help of the open-source Python package SimPy (see Matloff (2008)). Both models take as main input
a production sequence, and output a feasible schedule, which can be visualized as Gannt chart, such as is
shown in Figure 1, and Figure 2.

1. DSM Factory (Arena): The Arena model is a highly-detailed DES, which is developed by
Systems Navigator consultants. The communication between Arena, and Python is realised with text
files, and Arena replications. The model reflects the DSM factory including all product flows, mandatory
cleaning times, scheduled maintenance, cooling constraints, and measures the required objectives. Given a
production sequence, it keeps tracks of resource utilization at discrete time steps, including batch weights,
and information about intermediate and semi-finished products. The simulation tool also deterministically
translates the input sequence into the objectives.

2. Synthetic Factory (SimPy): We developed a synthetic factory with help of the open-source Python
library SimPy (Matloff 2008). For the design of the SimPy simulator, we copied the combinatorial size of the
real factory, i.e. we use a similar number of resource groups, resources, and unique products. Some of the char-
acteristics of the real factory are left out, such as the exact flow of liquid volumes, maintenance, and change-
over times. The simulation tool is accessible via https://github.com/kimvandenhouten/SimPyManufacturing.
This tool is currently used in a deterministic mode.

5 OPTIMIZATION STRATEGY

This section presents two simheuristic strategies for sequence optimization: a global search approach and a
rolling-horizon approach. We investigate which strategy is more effective for the considered long-horizon
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Figure 1: Example Gannt DSM Factory Figure 2: Example Gannt Synthetic Factory

problem instances. The search space is defined as the permutation space Sn, which represents all possible
permutations of an unordered set of values [n]. The budget refers to the number of cost function evaluations
or different sequences evaluated using the DES in a single algorithm run. To compare the different
optimization strategies, we fix the number of cost function evaluations.

5.1 Global Search

The global search strategy utilizes the entire search space Sn and aims to minimize Cλ ∗ (see Equation (1)).
We employ relatively simple search procedures, following key advice from the literature for simheuristics
integrated with complex DES (Chica et al. 2020). We therefore use a local search with random swaps.
The initialisation is either random, or sorted by deadline, and we hypothesize that the latter is helpful
for the lateness objective. We furthermore test an iterated greedy algorithm, that has successfully been
applied to sequencing scheduling problems (Ruiz and Stützle 2007). A fixed evaluation budget is given
as hyperparameter, and tuned to the instance size. Due to the randomness in the search algorithms, we
perform multiple restarts and report the minimum costs obtained. Furthermore, we compare all strategies
against a random search baseline.

5.2 Rolling-Horizon

The rolling-horizon strategy aims for an efficient reduction of the search space Sn, and is summarized
in Algorithm 1. Rolling-horizon algorithms have been successfully employed for large-scale problems
(Ovacik and Uzsoy 1994). Our proposed strategy utilizes product deadlines to divide the global problem
into subproblems. We aim to understand how the consequent reduction of the search space affects solution
quality. We aim to investigate the performance difference between the rolling-horizon and global search
strategies. The first step involves sorting the production sequence by deadline. Subsequently, parts of the
sequence are iteratively optimized using a predefined search method. The hyperparameter k determines the
size of each subproblem, and the hyperparameter m fixes the first m items of the just-optimized subsequence.
Different (k,m) combinations control how much the search space is reduced. During subproblem evaluation,
all previously solved and fixed items of the production sequence are included. This means that the length
of the sequence evaluated with the DES increases throughout the algorithm. The optimization task remains
to minimize Cλ ∗ , where the decision makers define λ ∗ = 0.5. However, the search algorithms within the
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rolling-horizon strategy use Cλ with λ ∈ [0,1] as a hyperparameter. This investigation aims to determine
whether the rolling-horizon strategy can achieve better sequences (i.e., lower Cλ ∗ values) while tuning λ .
We again perform multiple random restarts and report the minimum costs obtained as well as the total
runtime for the different restarts.
Algorithm 1 Rolling-horizon strategy

requires search_algorithm: method for sequence optimization, budget: total number of cost function
evaluations, Cλ ∗ : true cost function, Cλ : cost function used for subproblems, demand_list: list of products
including deadlines, n: length of demand list, k: number of products considered per search, m: number
of products fixed after each search
initialize:
production_plan ← sort_by_deadline(demand_list)
nr_searches ← round(n/m)
budget_per_search ← round(budget / nr_searches)
fixed ← []
for i in range(0, nr_searches): do

x ← production_plan[i∗m : i∗m+ k]
xoptimized ← search_algorithm(budget_per_search, Cλ (combine_sequences(fixed, x)))
production_plan[i∗m : i∗m+ k] ← xoptimized

fixed ← production_plan[0 : (i+1)∗m]
end for
return production_plan, Cλ ∗(production_plan)

6 EXPERIMENTS

This section provides details on our experimental setup, including the hyperparameter configurations for
the algorithms. We begin by explaining the tuning process, which involves adjusting the budget and random
restarts for the algorithms. Specifically, for the rolling-horizon strategy, we focus on tuning the weight
parameter λ . Given that the rolling-horizon simheuristic implicitly considers the lateness objective, we
hypothesize that it could be beneficial to increase the makespan weight λ during the rolling-horizon. We
furthermore explain how we evaluate the different search algorithms, where we first test the methods
on short horizon problems to identify the most promising search strategies. Subsequently, we conduct
experiments that compare the effectiveness of global and rolling-horizon strategies for long horizon instances
and optimize tuning for the rolling-horizon approach.

6.1 Evaluation

We evaluate our algorithms on the two different factories, which are introduced in Section 4. All experiments
involving the Arena model are done on a Dell Latitude E7450 with Intel Core i7 5600U. The SimPy
experiments are done on a virtual server that uses an Intel(R) Xeon(R) Gold 6148 CPU with two 2.39 GHz
processors, and 16.0 GB RAM. We generated test instances for both problems that are representative for
the problem faced by our industrial partner. In the DSM factory, on average 20 products per month are
produced. We used historical data to make problem instances (one particular combination of parameters
for the scheduling problem) of different sizes that have product mixes that are representative for the real
factory.

First, we evaluate different simheuristics on small instances, with a horizon of one, or two months.
We test the different algorithms for different initialisation, one that is initialized randomly, and one that
starts from a heuristic rule: sorted by deadline. We analyze which search strategy minimizes the cost
function for the short horizon. The outcome is used to determine which search strategies to use within
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the rolling-horizon algorithm. Then, we test the simheuristics for the long horizon problem instances with
horizons of six months or a full year. Finally, we include an evaluation on one particular problem instance,
for which we know the sequence that was selected by experts in the plant.

6.2 Hyperparameter Settings

The settings for budget, and random restarts are tuned on a subset of problem instances. For the budget,
we use budget = (size/20) · 200, and we decide to use a multi-start with 3 different random restarts for
all algorithms, yielding per problem instance a total budget of total budget = 3∗ (size/20) ·200. For the
rolling-horizon (k,m) and λ are tuned. The tuning for (k,m) resulted in the setting (k,m) = (40,10). While
tuning setting λ , we observed that in the calibration for different problem instances, different λ settings
performed best. Since it was not always the case that the best performing setting was equal to λ ∗, we decide
to include two different rolling-horizon settings in our final experimentation. We both use λ = λ ∗ = 0.5
(the one that is similar to the weights in the costs function), and λ = 0.9 (which performed promising
according to the tuning).

7 RESULTS

To read the results in Table 2, and Table 3, we introduce some abbreviations. We use A, and S to refer
to the Arena, and the SymPy models. We refer to local search with LS, random search with RS, iterated
greedy with IG, and rolling-horizon with RH. Furthermore, i=r refers to a random initialisation, and i=s is
an initialisation sorted by deadline. The different instances are encoded with size_id. The presented costs
are the best value obtained with the different restarts, and the runtime is the total runtime that was used to
finish the algorithm.

7.1 Short Horizon Problem Instances

Our objective is to determine the most effective search strategy in terms of computation time and costs for
the given problem instances. To accomplish this, we compare the performance of three search strategies:
random search, local search, and iterated greedy approach. We specifically focus on short horizon problem
instances spanning one to two production months, as presented in Table 2. These experimental results
determine the search strategy that will be used in the rolling-horizon simheuristic.

We observe that for the short horizon problem instances, the local search strategy with random
initialization outperforms both the random search and the iterated greedy algorithm when applied to
instances of size 20. However, for instances of size 40, the local search strategy with sorted initialization
outperforms all other methods. The differences in runtime are negligible.

7.2 Long Horizon Problem Instances

Based on the outcomes from the short horizon problem instances, summarized in Table 3, we observe
that local search is the most effective approach. However, whether a random or sorted initialization is
preferable remains unclear. We focus on comparing the effectiveness of employing a global simheuristic
versus a rolling-horizon simheuristic for the long horizon problem instances. Additionally, we explore the
potential benefits of adjusting the weights in the cost function used in the rolling-horizon approach.

We observe a clear pattern in the results. In the majority of instances, local search with sorted initialization
outperforms local search with random initialization. However, applying a rolling-horizon strategy is better
than the global search method for all test instances. The tuned setting λ = 0.9 only resulted in better
performance for some of the instances. Overall, our results demonstrate that the rolling-horizon strategy
is significantly faster than the global search strategy when evaluated on all test instances. This can be
explained by the fact that the DES evaluates shorter sequences at the beginning of the algorithm, leading
to improved efficiency.
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Table 2: Results short horizon problem instances.

Costs Runtime (s)
DES I IGi=r IGi=s LSi=r LSi=s RS IGi=r IGi=s LSi=r LSi=s RS
A 20_1 1035 966 614 643 875 209 206 220 219 215
A 20_2 1605 1197 1141 1141 1513 199 204 202 197 220
A 20_3 1084 1360 891 820 1111 192 190 196 196 203
A 20_4 763 644 578 593 766 185 185 192 193 193
A 20_5 1228 1043 945 977 1210 194 194 201 201 201
A 20_6 1132 1128 871 904 1260 197 196 203 202 202
A 20_7 1180 1202 878 935 1138 195 195 203 204 203
A 20_8 1029 1316 972 884 1206 188 189 194 194 195
A 20_9 1274 1472 830 977 1357 194 195 202 203 201
A 40_1 6314 3410 3186 2721 6830 507 482 459 459 460
A 40_2 8014 3481 3012 2876 8083 481 480 473 476 473
A 40_3 7387 4816 3994 3891 8168 467 514 469 467 466
A 40_4 8834 6003 5056 4813 8903 509 490 465 469 467
A 40_5 6929 3474 3253 2589 7145 509 514 476 474 473
A 40_6 6655 3604 2479 2447 5852 490 484 467 473 466
A 40_7 8624 7400 5082 4767 8612 514 521 475 475 477
A 40_8 6814 5663 2897 2811 7004 497 501 462 481 464
A 40_9 6407 4806 2151 2608 5860 502 510 463 464 462
S 20_1 877 912 817 820 829 52 51 39 39 39
S 20_2 547 467 467 467 468 54 51 38 38 37
S 20_3 1491 1403 1303 1306 1321 51 53 39 41 39
S 20_4 735 724 702 702 708 51 54 40 39 39
S 20_5 972 857 857 857 863 36 40 29 30 30
S 20_6 624 628 589 587 593 54 54 39 39 39
S 20_7 976 882 882 882 890 54 59 42 44 42
S 20_8 689 659 659 659 660 48 47 36 35 35
S 20_9 1132 1130 1086 1086 1092 61 61 45 47 45
S 40_1 3991 2413 2300 2323 3068 235 237 181 180 180
S 40_2 3700 2210 1920 1901 2869 266 259 192 193 196
S 40_3 2851 1063 992 984 1689 254 256 188 191 189
S 40_4 2918 1759 1563 1557 2178 257 249 188 193 196
S 40_5 5519 3731 3420 3405 4184 240 231 178 176 181
S 40_6 3144 1547 1402 1404 2162 247 244 183 184 185
S 40_7 3781 2412 2259 2277 3108 250 245 191 187 185
S 40_8 4492 2386 2323 2314 3347 230 231 171 175 175
S 40_9 3090 2126 1860 1848 2824 250 256 190 186 189

7.3 Evaluation on Real Production Plan

As a final evaluation, we test how much we can improve a real schedule that was created by experts
for the horizon July - December 2022, consisting of 122 products. We obtain the best solution with the
rolling-horizon strategy. The total cost reduction is 45%. Looking at the two objectives seperately, this
schedule improved the makespan with 4%, and total lateness with 58%.
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Table 3: Results long horizon instances.

Costs Runtime (m)
DES I LS LS RS RH RH LS LS RS RH RH

i=r i=s λ1=0.5 λ1=0.9 i=r i=s λ1=0.5 λ1=0.9
A 120_1 26157 20540 77153 11903 14069 43 43 42 38 37
A 120_2 30402 23217 74626 14958 15740 41 44 41 38 36
A 120_3 32640 23125 82278 15765 17604 40 40 40 36 35
A 120_4 25123 16379 77207 11733 11484 40 39 40 32 30
A 120_5 32416 23968 84219 20328 18215 40 41 40 32 31
A 120_6 30917 23509 84376 17455 18585 40 40 41 32 32
A 120_7 26769 21854 82850 14244 11947 40 40 40 32 33
A 120_8 17555 13239 62741 5496 6967 39 39 39 31 31
A 120_9 20671 12481 69812 5932 7650 40 39 39 32 31
A 240_1 158342 97156 380652 43090 49758 120 118 117 87 86
A 240_2 123525 72521 348745 34820 38030 110 120 126 84 84
A 240_3 120497 89206 343697 53132 38557 111 113 111 86 83
A 240_4 121902 77800 333146 43307 46398 121 118 119 84 85
A 240_5 113269 78149 350476 48115 42695 122 122 119 84 84
A 240_6 110896 71205 361004 26128 26901 124 137 129 84 81
A 240_7 124405 85067 369330 61705 57794 135 145 139 81 81
A 240_8 118431 86317 352642 52791 57862 151 126 159 81 81
A 240_9 111132 86317 345495 43259 44054 119 108 112 80 84
S 120_1 5272 3982 23986 4029 4074 57 56 57 39 40
S 120_2 4705 3640 24463 3675 3670 57 57 57 41 40
S 120_3 2590 2336 19617 2318 2305 48 49 50 36 35
S 120_4 8536 8105 25313 8208 8135 54 54 55 41 39
S 120_5 3900 3282 21076 3316 3264 44 45 45 34 33
S 120_6 4521 3308 24599 3318 3345 51 51 52 37 37
S 120_7 7113 5398 27043 5343 5395 52 51 52 38 38
S 120_8 3521 3004 21048 2984 2979 47 47 48 34 34
S 120_9 5799 4691 22149 4783 4678 54 53 54 39 39
S 240_1 31855 23246 124680 23019 22873 308 309 315 173 173
S 240_2 23204 16701 115122 16127 16337 298 294 300 169 176
S 240_3 11236 5596 99495 5552 5565 307 312 296 170 172
S 240_4 8373 5488 86714 5289 5300 274 294 299 158 158
S 240_5 10386 5412 96277 5375 5405 326 327 328 172 171
S 240_6 8987 6114 92082 6093 6098 313 315 317 163 166
S 240_7 16620 11549 105234 11346 11334 329 327 330 178 174
S 240_8 12416 4728 99579 4692 4691 337 343 341 184 184
S 240_9 18326 12600 109805 12424 12757 331 328 332 174 177

8 CONCLUSION AND DISCUSSION

In this work, we studied a real-world biomanufacturing scheduling problem, which is very computationally
challenging due to high flexibility of the system, two objectives, and a long horizon considered. We
investigated whether a rolling-horizon strategy is better for tackling such long horizon problem instances,
compared with a global search approach. Additionally, we analyze whether adjusting objective weights in
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a rolling-horizon simheuristic yields lower-cost solutions. Our objective was to develop a solution strategy
that avoids oversimplification of the system, a common requirement for exact methods that may result in
infeasible solutions violating essential constraints, which are subsequently rejected by plant managers.

A simheuristic framework integrated with an industry-proven DES turned out to be effective for the
generation of feasible schedules in a reasonable amount of time. We showed that a rolling-horizon principle
results in better solutions than a global optimization strategy given a limited budget, and reduces the
computation time significantly. Furthermore, we showed the generalizability of our methods with help of
the synthetic factory. We discovered that adjusting the weights of the cost function within the rolling-
horizon strategy, particularly by increasing the makespan weight, improved performance for certain problem
instances.

As a valuable contribution, we achieved cost reduction in an actual schedule implemented at the DSM
factory during the period of July-December 2022. For future research, we aim to better understand for
which cases adjusting cost function weights is beneficial within the context of the rolling-horizon strategy.
Future work will involve improving the simheuristics by using more informed metaheuristics, expanding
simulations to incorporate uncertainty, and including additional scheduling decisions beyond sequencing
to reduce the optimality gap. Despite these potential future improvements, this study lays the foundation
for the development of intelligent simulation-based algorithms applicable to highly complex manufacturing
systems in process industries.

To help further research in this domain, we have made the SimPy DES of the synthetic factory publicly
available. We hope this will stimulate the research community to explore this area and contribute insights
that can lead to the creation of a diverse set of benchmark factories for evaluation and algorithm development.
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