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ABSTRACT

To facilitate a rapid response to pandemic threats, this paper focuses on developing a mechanistic simulation
model for in vitro transcription (IVT) process, a crucial step in mRNA vaccine manufacturing. To enhance
production and support industry 4.0, this model is proposed to improve the prediction and analysis of
IVT enzymatic reaction network. It incorporates a novel stochastic molecular reaction queueing network
with a regulatory kinetic model characterizing the effect of bioprocess state variables on reaction rates.
The empirical study demonstrates that the proposed model has a promising performance under different
production conditions and it could offer potential improvements in mRNA product quality and yield.

1 INTRODUCTION

In recent years, we have experienced several viral outbreaks, including the COVID-19 pandemic caused by
the SARS-CoV-2 virus. Vaccines are highly effective in stopping epidemics and pandemics, but traditional
vaccine production methods are too slow to respond to new viral outbreaks (Gebre et al. 2021). To overcome
this issue, a rapid-response vaccine production platform is urgently needed. Compared to traditional vaccines,
mRNA vaccines offer several key benefits. First, they can be produced rapidly at a large scale, making
mRNA vaccines ideal for responding to new viral outbreaks. Second, they are highly effective in preventing
infection, as shown with the success of new mRNA vaccines developed for COVID-19. Third, mRNA
vaccines are safe and well-tolerated, with few side effects reported.

The mRNA manufacturing involves key steps, i.e., RNA synthesis, purification, and formulation.
Basically, the synthesis of RNA strands encodes the desired antigenic protein. For mRNA and self-amplifying
RNA (saRNA) vaccine platforms, cell-free DNA-templated RNA synthesis is used for this purpose. It
utilizes in vitro transcription (IVT) reactions that are often catalyzed by the T7 RNA polymerase enzyme
(T7RNAP). The synthesized RNA substance is then purified and formulated with a delivery system (such
as lipid nanoparticles), which are filled into vials or other containers to create the final vaccine product.

This paper focuses on developing a mechanistic simulation model for the IVT process. Similar to the
classical assembly lines, the IVT process synthesizes RNA chains based on the DNA templates. It is a complex
reaction network involving many factors (such as enzymes, DNA templates, nucleoside triphosphates (NTPs),
temperature, and pH) that interactively impact on the production outputs, including yield and product quality.
Developing a mechanistic simulation model for the IVT process is crucial in advancing the understanding
of underlying mechanisms, identifying key reaction parameters, and optimizing the manufacturing process.
The existing partial differential equation/ordinary differential equation (PDE/ODE) kinetic models for in
vitro mRNA synthesis (Arnold et al. 2001; van de Berg et al. 2021) incorporate mechanisms from multiple
phases, i.e., enzyme binding, initiation, elongation, and termination. They take into account the dynamic
changes in enzyme activity, DNA template availability, and substrate concentration and also consider the
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effect of factors such as temperature, pH, and ionic strength. However, the existing kinetics modeling
approaches are typically deterministic and ignore the intrinsic stochasticity of the IVT process. While there
exist stochastic simulation models for therapeutic protein production (Wang et al. 2019; Xie et al. 2023)
and mammalian cell culture (Zheng et al. 2023; Wang et al. 2023), a novel stochastic simulation model
for the IVT process is currently lacking in the literature.

To support mechanism learning and accelerate automation of mRNA vaccine manufacturing, we
propose a stochastic molecular reaction queueing network model for the IVT process with the regulatory
mechanism accounting for the impact of state variables (e.g., the concentrations of DNA template and
enzyme, environmental conditions) on the reaction rates. We establish a relationship between outputs (e.g.,
RNA yield, and product critical quality attributes (CQAs)) with key input factors, such as initial NTP,
Magnesium (Mg) concentration, and buffer profile. The proposed model can improve the IVT process
predictions through advancing the understanding of underlying reaction regulation mechanisms.

Therefore, the objective of this study is to develop a stochastic mechanistic model to support IVT
process prediction and decision making, which can improve product quality consistency and increase yield.
The key contributions are threefold. First, we develop a molecular reaction queueing network model to
simulate the RNA synthesis process, accounting for inherent stochasticity. Second, we create a regulatory
mechanistic model characterizing the dynamic impact of bioprocess state on the reaction rates. Third, the
empirical study demonstrates that the proposed model can enhance mRNA product quality attributes and
improve yield. Along with the advanced sensors, the proposed model has the potential to accelerate the
development of flexible intensified mRNA vaccine manufacturing processes and support Industry 4.0.

The paper is organized as follows. We provide a brief introduction of the IVT process in Section 2,
and describe the state variables and their relationships in terms of mass balance and equilibrium Section 3.
Then, we propose a stochastic molecular reaction queueing network and model the regulatory mechanism of
reaction rates in Section 4. This IVT process model is validated by using literature data and its performance
is studied under various conditions in Section 5. Finally, we conclude the paper in Section 6.

2 IVT PROCESS AND REACTION NETWORK

This section reviews the mechanisms of the IVT process and the associated simplified reaction network.

2.1 In Vitro Transcription Process

RNA molecules can be produced through in vitro transcription, utilizing the RNA polymerase enzymes
(e.g., T7 RNAP), DNA template, nucleoside triphosphates (NTPs) as substrates, and a transcription buffer
solution containing Mg and other factors (Young et al. 1997). The IVT process is typically divided into
three stages: initiation, elongation, and termination (Cheetham et al. 1999; Dousis et al. 2023); see an
illustration in Figure 1. The DNA template includes the RNA polymerase (RNAP) promoter for transcription
initiation, the code for the RNA molecule elongation, and the terminator sequence. RNAP is a group of
enzymes that catalyzes the synthesis reactions of RNA molecules from a DNA template through the process
of transcription (Lodish et al. 2013). T7 RNAP, derived from the T7 bacteriophage, is a popular enzyme
used for IVT process in mRNA vaccine manufacturing (Tabor and Richardson 1985).
(1) Binding and initiation: Initiation is the first stage of the IVT process, during which T7 RNAP enzyme
(denoted as E) binds to the promoter region of DNA template (denoted as D) to form the transcription
initiation complex (IC) (Cheetham et al. 1999). The promoter is a specific DNA sequence that signals
RNAP where to bind upstream of a gene sequence. In the case of T7 RNAP, the initiator nucleotide is GTP,
which is incorporated into the first position of the synthesized RNA molecule. Magnesium ions (Mg2+)
play a critical role in the IVT process by supporting the activity of RNAP, stabilizing the RNAP-DNA
complex, and promoting the binding of NTPs, including ATP, CTP, GTP, and UTP, to the RNAP. The
initiation of enzymatic RNA synthesis reaction network can be written as:

E +D+MgGT P ⇌ E ·D ·GT P+Mg→E ·D ·M1 +Mg
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Figure 1: Topology of the mRNA synthesis mechanism with T7 RNAP in three stages of transcription
(the plot is adapted from Dornell (2022)).

where M1 stands for an RNA transcript with length 1 for simplification, E ·D ·M1 represents an intermediate
enzymatic complex containing the enzyme (E), DNA (D), and the nascent RNA (M1).
(2) Elongation: During the elongation stage, a stable and processive enzyme elongation complex (EC)
is formed. RNA polymerase adds magnesium-complexed NTPs to the growing RNA chain based on the
DNA coding sequence, following the rule of Watson-Crick base-pairing interactions. Each time a new
NTP is added, one phosphodiester bond between the growing RNA molecule and the newly bound NTP is
formed, leading to the release of one pyrophosphate ion (PPi) and one hydrogen ion (H) impacting on the
pH level (Young et al. 1997). Thus, the overall enzymatic RNA synthesis reaction during the elongation
stage of the IVT process can be described as:

E ·D ·M j +MgNT P⇌E ·D ·M j ·NT P+Mg→E ·D ·M j+1 +PPi+H +Mg

where M j stands for an RNA transcript with length j and PPi represents inorganic pyrophosphate.
(3) Termination: At the termination stage of transcription, the interaction between RNAP and DNA template
is disrupted upon encountering a terminator sequence or signal. This halts the addition of complementary
NTPs to the RNA strand, and the RNA transcript is released, marking the end of In-Vitro transcription
process. The enzymatic RNA synthesis reaction during the termination stage can be expressed as:

E ·D ·MJ→E +D+MJ

where MJ stands for the full-length RNA transcript with length J.
The IC is unstable, which can produce short RNA transcripts known as abortive transcripts with 2

to 10 nucleotides in length, in a process called abortive cycling (Dousis et al. 2023). In addition, RNA
degradation is a common issue that can have a negative impact on the yield and the RNA product CQAs.
This process involves the breakdown of RNA molecules into smaller components, which can be caused by
various factors, including inappropriate pH level, high temperature, buffer conditions, and contamination.

2.2 Critical Process Parameters

The RNA product quality is associated with the percentage of impurities coming from the synthesis of
short abortive RNAs and the degradation of the full length RNAs. Based on the study in van de Berg et al.
(2021), Table 1 summarizes the critical process parameters (CPPs) that impact the quality and yield of IVT
production process. These CPPs include the pH level in the bioreactor, as well as the concentrations of
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magnesium, DNA template, T7 RNAP, and NTPs. They are actively involved in the regulatory reaction
network of the IVT process (see Figure 2). The regulatory mechanisms discussed below will be integrated
into the proposed stochastic reaction network model in Section 4.

Table 1: The criticality of CPPs on the product CQAs. The magnitude of the impact is rated from 0 (low)
to 3 (high). The direction and type of CPP-CQA relationship is characterized either by a positive impact
labeled with plus “+”, a negative impact labeled with a minus “−”, or a peak behavior whereby the CQA
increases with increasing the CPP reaches a peak and then decreases, labeled with plus-minus “± ”.

Process parameter RNA integrity and impurities RNA yield
pH in transcription reactor ±2 ±3
Total Mg concentration ±2 ±3
DNA template concentration 0 +2
T7 RNAP concentration ±1 +3
Total NTP concentration +2 ±3

(1) pH: The pH, reflecting the concentration of hydrogen (H) ions, plays a critical role in enzyme
binding to DNA template, enzyme activity, and RNA degradation rate during the IVT process. T7
RNAP exhibits optimal activity at a pH range of 7.9 ∼ 8.1 (Kartje et al. 2021), although it can
still function within a pH range of 7.3 ∼ 8.3. Deviations from this range may potentially decrease
enzyme activity, negatively affecting the yield and RNA product quality. Therefore, it is crucial to
continuously monitor and control the pH level during the IVT process and evaluate its impact.

(2) Magnesium: Mg is an essential cofactor in the IVT reactions. It plays a critical role in stabilizing
T7RNAP-DNA complex and promoting RNA synthesis (Vernon 1988). However, a too high
concentration of Mg2+ also favors RNA degradation.

(3) PPi: As PPi is continuously produced during the IVT process, it can result in the formation and
precipitation of magnesium pyrophosphate (Mg2PPi). This can reduce the available free Mg2+ ions
in the solution and ultimately lead to a decrease in the IVT process yield. To avoid this, an enzyme
called inorganic pyrophosphatase (iPPase) (Tersteeg et al. 2022) can be utilized to hydrolyze the
PPi, preventing the formation of magnesium pyrophosphate and ensuring that magnesium ions stay
in the solution, thereby optimizing T7 RNAP enzyme activity.

(4) T7 RNAP, DNA template, and NTPs: The concentrations of these elements are critical as they
serve as key raw materials to support the RNA synthesis process. Insufficient concentrations and
inappropriate proportions of these key components can result in low yield and poor quality of RNA
product. Therefore, it is essential to carefully control and maintain the concentrations of DNA
template, T7 RNAP, and NTPs during the IVT process.

To ensure consistent RNA product quality attributes and improved yield, monitoring and regulating the
CPPs in the IVT process is essential. For instance, the pH level, influenced by hydrogen generation, affects
enzyme binding to DNA template, enzyme activity, and RNA degradation rate; see the reaction network
in Figure 2. Similarly, while magnesium plays a critical role in promoting RNA synthesis, the generation
of PPi can reduce the free Mg2+ concentration and inhibit RNA synthesis. The control strategies, such as
mechanistic model-based reinforcement learning (Zheng et al. 2022), can support end-to-end IVT process
control so that these CPPs are optimized accounting for complex interactions and long-term effects.

3 STATE VARIABLES

In this section, we identify the system state variables of interest and present the mass balance and equilibrium
equations as the constraints to the concentrations of different media components. Based on the information
from Table 1 and van de Berg et al. (2021), at any time t, the system state variables include the concentrations
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Figure 2: A simple illustration of the regulatory reaction network for the IVT process.

of molecules: T7 RNAP enzyme [T7RNAP]t , DNA template [DNA]t , free species sss f ree
t , complexes ssscomp

t ,
total ssstot

t , synthesized full-length mRNA [RNA]t and undesirable impurities [Impurity]t :

ssst =
{
[T7RNAP]t , [DNA]t ,sss

f ree
t

⊤
,ssscomp

t
⊤
,ssstot

t
⊤
, [RNA]t , [Impurity]t

}⊤
,

where the bracket [·] represents the concentration.
The main free species presented in the solution affecting transcription and degradation kinetics include:

Mg2+, NTP4− (i.e., ATP4−, UTP4−, CTP4−, and GTP4−), H+, HEPES− (buffer) and PPi4−, i.e.,

sss f ree
t = {[Mg]t , [ATP]t , [UTP]t , [CTP]t , [GTP]t , [H], [HEPES]t , [PPi]t}⊤ .

These 8 free solution components can form the 22 complexes: HATP3−, HUTP3−, HCTP3−, HGTP3−,
MgATP2−, MgUTP2−, MgCTP2−, MgGTP2−, Mg2ATP, Mg2UTP, Mg2CTP, Mg2GTP, MgHATP−,
MgHUTP−, MgHCTP−, MgHGTP−, MgPPi2+, Mg2PPi, HPPi3−, H2PPi2−, MgHPPi− and HHEPES.
At any time t, we represent the set of complex’s concentrations as a vector ssscomp

t . Then the total con-
centration of each species, defined as the sum of its free ion concentrations and the concentrations of its
complexes, becomes:

ssstot
t =

{
[Mg]tot

t , [ATP]tot
t , [UTP]tot

t , [CTP]tot
t , [GTP]tot

t , [H]tot
t , [PPi]tot

t , [HEPES]tot
t
}⊤

.

In any short time period, we assume that the system is in equilibrium. That means the mass balance
(outlined in Table 2) and equilibrium equations (outlined in Table 3) are used to describe the concentration
constrains on the chemical species. Basically, the mass balance equations given in Table 2 describe the
conservation of mass for each species presented in the system. Each equation defines the relationship
between the total concentration of a species in the system, its free ion concentration, and the concentrations
of its complexes. For example, in Equation M1, the total concentration of magnesium ions is equal to the
sum of the concentration of free magnesium ions, magnesium ions bound to ATP, UTP, CTP, GTP, and their
corresponding hydrolyzed products, and the concentrations of various magnesium-containing complexes.

The equilibrium equations given in Table 3 represent the chemical equilibrium conditions for the
reactions involving various species in the system. Each equation describes an equilibrium constant for the
reaction involving the species on the left- and right-hand sides of the equation. For example, in Equation E1,
the equilibrium constant Keq,1 describes the equilibrium between ATP and its protonated form, HATP, in
the presence of hydrogen ions.
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Table 2: The mass balance equations (adapted from van de Berg et al. (2021))

M1
[Mg]tot = [Mg]+ [MgATP]+ [MgUTP]+ [MgCTP]+ [MgGTP]+2× [Mg2ATP]
+2× [Mg2UTP]+2× [Mg2CTP]+2× [Mg2GTP]+ [MgHATP]+ [MgHUTP]
+[MgHCTP]+ [MgHGTP]+ [MgPPi]+2× [Mg2PPi]+ [MgHPPi]

M2 [ATP]tot = [ATP]+ [MgATP]+ [Mg2ATP]+ [MgHATP]+ [HATP]
M3 [UTP]tot = [UTP]+ [MgUTP]+ [Mg2UTP]+ [MgHUTP]+ [HUTP]
M4 [CTP]tot = [CTP]+ [MgCTP]+ [Mg2CTP]+ [MgHCTP]+ [HCTP]
M5 [GTP]tot = [GTP]+ [MgGTP]+ [Mg2GTP]+ [MgHGTP]+ [HGTP]

M6 [H]tot = [H]+ [MgHATP]+ [MgHUTP]+ [MgHCTP]+ [MgHGTP]+ [HATP]+ [HUTP]
+[HCTP]+ [HGTP]+ [HPPi]+2× [H2PPi]+ [MgHPPi]+ [HHEPES]

M7 [PPi]tot = [PPi]+ [MgPPi]+ [Mg2PPi]+ [HPPi]+ [H2PPi]+ [MgHPPi]
M8 [HEPES]tot = [HEPES]+ [HHEPES]

Table 3: The equilibrium equations (adapted from van de Berg et al. (2021))

E1 [H][ATP] = Keq,1[HATP] E2 [H][UTP] = Keq,2[HUTP]
E3 [H][CTP] = Keq,3[HCTP] E4 [H][GTP] = Keq,4[HGTP]
E5 [Mg][ATP] = Keq,5[MgATP] E6 [Mg][UTP] = Keq,6[MgUTP]
E7 [Mg][CTP] = Keq,7[MgCTP] E8 [Mg][GTP] = Keq,8[MgGTP]
E9 [Mg][MgATP] = Keq,9[Mg2ATP] E10 [Mg][MgUTP] = Keq,10[Mg2UTP]
E11 [Mg][MgCTP] = Keq,11[Mg2CTP] E12 [Mg][MgGTP] = Keq,12[Mg2GTP]
E13 [Mg][HATP] = Keq,13[MgHATP] E14 [Mg][HUTP] = Keq,14[MgHUTP]
E15 [Mg][HCTP] = Keq,15[MgHCTP] E16 [Mg][HGTP] = Keq,16[MgHGTP]
E17 [Mg][PPi] = Keq,17[MgPPi] E18 [Mg][MgPPi] = Keq,18[Mg2PPi]
E19 [H][PPi] = Keq,19[HPPi] E20 [H][HPPi] = Keq,20[H2PPi]
E21 [Mg][HPPi] = Keq,21[MgHPPi] E22 [H][HEPES] = Keq,22[HHEPES]

By solving these mass balance equations and equilibrium equations, the concentrations of any group
(i.e., sss f ree

t , ssscomp
t , ssstot

t ) and equilibrium constants can be used to calculate the concentrations of the other
two groups. Typically, the initial concentrations of the total group are known except for [H]tot

t . However,
the concentration of free hydrogen ions [H]t can be determined by using the measured pH value, i.e.,
pH = − log([H]). It should be noted that the choice of free components and complexes is dependent on
the specific IVT reaction and can be adapted based on the particular experimental setup. The modeling
approach presented in this paper can be extended to incorporate additional or alternative components.

4 STOCHASTIC MOLECULAR REACTION QUEUEING NETWORK

Building upon recent research studies (Clement et al. 2020; Kloska et al. 2022), this section aims to develop
a stochastic molecular reaction network model for the enzymatic IVT process using queueing theory. In
Section 4.1, we model the IVT reaction process illustrated in Figure 2 as a queueing network producing
the RNA molecule product. The queueing network includes multiple stages with the reaction rates (i.e.,
the number of molecular reactions occurring in unit time) depending on the state ssst . Then, we model the
state transition for ssst characterizing the bioprocess macro-kinetics in Section 4.2.

4.1 Reaction Rate Modeling for Stochastic Molecular Reaction Queueing Network

The IVT process queueing network is composed of multiple steps: binding and initiation, abortive cycling,
elongation, termination, and degradation. The proposed reaction regulation mechanistic model leverages
the information from previously published studies (Akama et al. 2012; Arnold et al. 2001; van de Berg
et al. 2021). After the binding and initiation stage, the initiated enzymatic complexes have two possible
routes to follow: abortive cycling or elongation; see Figure 2. In abortive cycling, the initiated enzymatic
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complexes prematurely release abortive RNA transcripts, before proceeding to the elongation stage. The
probability of having an initiated complex entering abortive cycling, denoted by Pa(ssst), is influenced by
the state variables, such as the pH in the transcription reactor and the concentrations of NTPs. The abortive
RNA transcripts are considered as impurity that reduces IVT product quality as well as yield. If the initiated
enzymatic complex successfully proceeds beyond the initiation stage, it enters the elongation stage. During
this stage, the T7 RNAP enzyme moves along the DNA template, synthesizing the RNA transcript.

(1) Binding and initiation: The synthesized RNA with length j, denoted as M j, is treated as entities
in the queueing system, where j = 1,2, . . . ,J. The generation rate of the nascent RNA M1 depends
on the DNA template and T7 RNAP enzyme binding rate, denoted by λ b(ssst). That means the DNA
template and RNA polymerase are occupied, and GPT is consumed as the entities arriving at a rate
of λ b(ssst). The reaction rate of the binding and initiation phase λ b(ssst) is modeled as

λ
b(ssst) =Vmax,b ×

[DNA]t
KM,DNA +[DNA]t

× [MgGTP]t
Kb

M,MgGT P +[MgGTP]t
× ∏

i∈{MgATP, MgUTP, MgCTP}

KI,i

KI,i +[i]t
,

(1)
where the parameters KI,·, KM,·, and Vmax,· represent the Michaelis-Menten (MM) inhibition constant,
the affinity constant, and the maximum specific reaction rate respectively.
The binding and initiation rate in Equation (1) is formulated as the product of three terms: a) the
rate of promoter DNA binding, which is influenced by the concentration of DNA; b) the rate of
initial GTP-Mg complex binding, which is influenced by the concentration of GTP-Mg complex;
and c) a term that takes into account the competition among substrate NTP-Mg complexes. The
latter term is given by the product of inverse MM constants (KI,i) and the concentration of the
competing NTP-Mg complexes, denoted by [i]t , where i belongs to the set of substrate NTP-Mg
complexes including MgATP, MgUTP, and MgCTP. By appropriately quantifying the impact of
each factor on the binding and initiation rate, Equation (1) can be used to predict the effect of
changes in the concentrations of the various species on the efficiency of RNA synthesis.

(2) Abortive Cycling: The production of short RNA or abortive transcripts can reduce RNA yield
and purity (Dousis et al. 2023). To account for this, we incorporate the routing probability of
abortive cycling into the model and denote it as Pa(ssst). The synthesized abortive RNA transcripts
are considered impurities and reduce RNA product integrity. As shown in Table 1, the pH level in
the transcription reactor and the concentrations of NTPs are the CPPs affecting the abortive RNA
and impurity generation. Since the closed-form expression for the routing probability of abortive
cycling, commonly referred to as the abortive rate, is not available in the existing literature, inspired
from the work in Xie et al. (2022), we constructed a regulation mechanstic model to characterize
the impact of pH (i.e., [H] and [OH]) and the concentrations of NTP-Mg complexes (i.e., [MgATP],
[MgUTP], [MgCTP], [MgGTP]) on the abortive cycling routing probability Pa(ssst), i.e.,

Pa(ssst) = f ([H]t , [OH]t , [MgATP]t , [MgUTP]t , [MgCTP]t , [MgGTP]t) =
1

1+ e−(κt−1) ,

where κt = φ1[H]t + φ2[OH]t + φ3[MgATP]t + φ3[MgATP]t + φ4[MgUTP]t + φ5[MgCTP]t +
φ6[MgGTP]t and the parameters φ1, φ2, φ3, φ4, φ5, φ6 characterize the influence from each CPP
input. We assume no delay in releasing the occupied DNA template and enzyme during abortive
cycling, i.e., making resources immediately available for other reactions.

(3) Elongation: In the elongation stage, the T7 RNAP enzyme moves along the DNA template,
synthesizing the RNA transcript. At each elongation step, one NTP unit is added into the growing
transcript, i.e., the nascent RNA chain with length j having an increment rate denoted by λ e j(ssst).
This rate depends on the state variables ssst , such as reactant concentrations and environmental
conditions. As the T7 RNAP enzyme progresses, the added NTP forms complementary base pairs
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with the DNA template, effectively elongating the RNA chain. Throughout this stage, both the DNA
template and enzyme remain occupied, ensuring that the elongation process continues uninterrupted
until the RNA transcript is complete. The per-step-elongation rate depends on the concentration
of the correct NTP-Mg complex, denoted by [i]t with i ∈ {MgATP, MgUTP, MgCTP, MgGTP}, as
well as the concentrations of incorrect NTP-Mg complexes with q ̸= i. We model the elongation
rate as,

λ
e j(ssst) =Vmax,i ×

[i]t
KM,i +[i]t

× ∏
q∈{MgATP, MgUTP, MgCTP, MgGTP}&q̸=i

KI,q

KI,q +[q]t
. (2)

Thus, the elongation rate in Equation (2) is modeled as the product of two terms: a) the rate of type
i-th NTP-Mg complex associated with the ternary complex of T7 RNAP, DNA, and RNA, which
is influenced by the concentration of [i]t ; and b) a term that takes into account the competition
among other substrate NTP-Mg complexes. The latter term is given by the product of inverse MM
constants (KI,q) and the concentration of the competing NTP-Mg complexes, [q]t . The parameter
Vmax,i represents the maximum possible elongation rate, while KM,i is the concentration of the
NTP-Mg complex that allows for half of the maximum elongation rate to be achieved.

(4) Termination: In the termination stage, the T7 RNAP enymze reaches to the end of the DNA
template, signifying the successful completion of the transcription process. Then, the T7 RNAP
enzyme dissociates from the DNA template, and both are released at a rate denoted by λ n(ssst),

λ
n(ssst) =Vmax,n ×

[E ·D ·MJ]t
KM,J +[E ·D ·MJ]t

. (3)

A full-length RNA transcript with the desired length J is synthesized and released, making it available
for downstream applications or analyses. This termination rate in Equation (3) is influenced by
factors including the concentration of enzyme (E), DNA template (D), and mRNA (MJ), which are all
present in the ternary transcription complex. This regulation model contains two parameters: Vmax,n
and KM,J , where Vmax,n represents the maximum possible rate of termination and KM,J represents
the concentration of the ternary complex that allows for half of the maximum termination rate to be
achieved. Equation (3) is structured to exhibit an increasing termination rate as the concentration
of the ternary transcription complex rises. However, there is a saturation point beyond which the
termination rate remains at its maximum level.

(5) Degradation: During the IVT process, the synthesized full-length RNA product inevitably undergoes
degradation at a rate λ d(ssst). We model the degradation rate λ d(ssst) of RNA at time t as follows:

λ
d(ssst) = (kac[H]nac

t + kba[OH]nba
t + kMg[Mg]nMg

t )[RNA]nRNA
t , (4)

where kac, kba, kMg, nac, nba, nMg, and nRNA are model-specific parameters. The RNA degradation
rate in (4) takes into account the effects from two important environmental factors: the pH and the
concentration of magnesium ions (Mg2+). The degradation rate is determined by three separate
factors: a) the concentration of acidic hydrogen ions (H+) with a corresponding rate constant kac
and exponent nac; b) the concentration of basic hydroxide ions (OH−) with a rate constant kba and
exponent nba; and c) the concentration of magnesium ions with a rate constant kMg and exponent
nMg. The RNA concentration at time t is also included in the equation with an exponent nRNA.

In sum, four types of IVT reaction rates are identified and modeled as functions of system state
ssst at any time t: 1) the binding and initiation rate λ b(ssst); 2) the per-step-elongation rate λ e j(ssst) with
j = 2,3, . . . ,J; 3) the termination rate λ n(ssst); and 4) the degradation rate λ d(ssst). The proposed stochastic
model for enzymatic molecular reaction networks can capture the inherent stochasticity of the IVT process
with respect to reactant concentrations and reaction rates, as well as modeling the complex mechanisms
and dynamic interactions of multiple CPPs to improve the prediction of yield and product quality attributes
(PQAs).
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4.2 Macro-kinetic State Transition Modeling

To model the dynamic evolution of the IVT process, at any time t, the reaction rates depend on state ssst ,

λλλ (ssst) = {λ
b(ssst),λ

e2(ssst),λ
e3(ssst), . . . ,λ

eJ (ssst),λ
n(ssst),λ

d(ssst)}⊤.

Let NNN be a m× (J +2) stoichiometry matrix that characterizes the structure of the IVT reaction network
with m denoting the dimension of species or state ssst . The (p,q)-th element of NNN, denoted as NNN(p,q),
represents the number of molecules of the p-th species that are either consumed (indicated by a negative
value) or produced (indicated by a positive value) in each random occurrence of the q-th reaction.

Consequently, during the time interval [0, t], the change in the solution mixture profile is derived as:

st = s0 +NNN ·RRRt ,

where RRRt is a (J + 2)-dimensional vector representing the accumulated number of occurrences of each
reaction k until time t for k ∈ {b,e2,e3, . . . ,eJ,n,d}, i.e., RRRt = (Rb

t ,R
e2
t ,Re3 , . . . ,ReJ

t ,Rn
t ,R

d
t )

⊤, and NNN ·RRRt
represents the net amount of IVT reaction outputs up to time t. Inspired by Anderson and Kurtz (2011),
we assume that the occurrence times Rk

t for each reaction k follows a nonhomogeneous Poisson process.
The intensity of this process is determined by the reaction rates. Therefore, the probability that the k-th
reaction occurs r times during time interval (t, t +∆t] becomes,

P
(

Rk
t+∆t −Rk

t = r
)
=

e−
∫ t+∆t

t λ k(sssx)dx(
∫ t+∆t

t λ k(sssx)dx)r

r!
≜ Poisson

(∫ t+∆t

t
λ

k(sssx)dx
)
.

5 EMPIRICAL STUDY

In this section, simulation experiments were conducted to evaluate the performance of the proposed stochastic
molecular reaction queueing network model. The proposed model was first validated in Section 5.1 with the
data and observations from the study (Dousis et al. 2023) to ensure that it provides a reliable representation
of the IVT process. In Section 5.2, a series of simulation experiments were performed to assess the
performance of the IVT system under different conditions.

5.1 Model Validation

This section presents the validation of the proposed stochastic mechanistic model in terms of its ability to
predict the purity and yield of RNA products by using a batch-based IVT process with a duration of 150
minutes (i.e., T = 150). The study conducted by Dousis et al. (2023) investigated the IVT process purity
profiles by using eight different mRNAs with varying lengths and sequence compositions. The results
revealed that the impurity levels for all eight mRNAs fell within the range of 10% to 20%. Our model
considers two primary sources of impurity: the entry of initiated enzymatic complexes into abortive cycling
and the degradation of RNA products.

The kinetic parameters of the proposed model were determined based on the existing research (Arnold
et al. 2001; van de Berg et al. 2021). The values of dissociation equilibrium constants were taken to
be 10−6.95 for Keq,1 to Keq,4, 10−4.42 for Keq,5 to Keq,8, 10−1.69 for Keq,9 to Keq,12, 10−1.49 for Keq,13 to
Keq,16, and 10−5.42, 10−2.33, 10−8.94, 10−6.13, 10−3.05, 10−7.5 mol/L for Keq,17 to Keq,22 respectively. The
maximum specific reaction rates Vmax,· were set as 1.8× 10−6. The Michaelis-Menten affinity constant
KM,DNA, Kb

M,MgGT P, KM,MgAT P, KM,MgUT P, KM,MgCT P, KM,MgGT P were determined as 6.3×10−9, 98×10−6,
88×10−6, 44×10−6, 44×10−6, and 88×10−6 respectively. The Michaelis-Menten inhibition constants
KI,· were assigned a value of 2×103. The parameters related to abortive rate were set as 25×106, 0.3×106,
0.5, 0.5, 0.5, 0.5 for φ1, φ2, φ3, φ4, φ5, φ6. For degradation rate, nac, nba, nMg and nRNA were set to 1 and
kac, kbc, kMg were determined as 1.2×106, 0, 0 respectively.
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The full length for the target RNA product is set at 50 NTPs. To simplify the analysis, we assume that
abortive cycling only occurs when the length of the growing RNA reaches 9 NTPs, considering the fact
that the typical length of abortive transcripts ranges from 2 to 10 (Dousis et al. 2023). The main reason
for this simplification is the lack of a comprehensive mechanistic model that accurately characterizes the
decrease in abortive rate as the synthesized mRNA length increases. We conducted R = 30 replications
of the IVT process and each simulation run has run-length equal to T = 150 minutes. Considering the
relatively higher cost of NTPs compared to other raw materials (van de Berg et al. 2021), we conducted the
simulation experiments with limited NTP resources, specifically 0.075 M Mg, 0.0015 M ATP, 0.0015 M
UTP, 0.0015 M CTP, 0.0015 M GTP, 10−5 M DNA template and 10−5 M T7RNAP. The reactor solution
was initially set at a pH level of 8. Figure 3 depicts the characteristics of 3 representative samples out of
the 30 simulated processes.

Figure 3: Batch-based IVT process characteristic prediction. (A) Synthesized RNA Concentration,
(B) Impurity Concentration, (C) NTP Concentration, (D) T7 RNAP concentration, (E) pH, and (F) PPi
concentration. Three colored lines denote three representative simulation output scenarios out of the total
30 replications.

Throughout the process, the production rate of full-length RNA gradually declines due to several
reasons. Firstly, the accumulation of PPi leads to a decrease in the availability of the cofactor Mg in
the solution. Secondly, the release of hydrogen ions (H) causes T7 RNAP enzyme to deviate from its
optimal activity range. Third, the consumption of NTPs, which are raw materials, contributes to the
reduction in the rate of RNA synthesis. The expected yield η = E [[RNA]T ] with 95% confidence interval
(CI) across 30 replications was reported as 97.56± 0.82 µM. Since the utilized parameters are derived
from existing literature estimation results, the reported results maintain validity and reasonableness. The

expected impurity level ρ = E
[

9×[Impurity]T
9×[Impurity]T+50×[RNA]T

]
with 95% CI was reported as 11.23± 0.19%

weight/weight (w/w), which is consistent with the findings (i.e., 10% to 20%) in Dousis et al. (2023).

5.2 IVT Process Performance Analysis under Different Decisions

In this section, we examine the performance of the IVT process under different decision scenarios for the
CPPs, considering the CPP-CQA relationship summarized in Table 1. It is worth noting that T7 RNAP, Mg,
and NTPs play vital roles as raw materials. Insufficient concentrations of these components can result in
inefficient IVT process performance. Conversely, excessively high concentrations of NTPs or imbalanced
proportions among different types of NTPs can result in substrate nucleotide competition. This leads to a
decrease in the transcription reaction rate. Therefore, we focus on the pH in the transcription reactor and
the concentration of NTPs. We conducted 30 replications (R = 30) for each experimental setting.
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(1) pH: The model was implemented at different pH levels, specifically 7, 7.5, 8, 8.5, and 9. All other
experimental parameters remained the same as described in Section 5.1. The performance of the
IVT process, with respect to the RNA yield and impurity level, is presented in Table 4.

Table 4: Batch-based IVT production system performance at different pH conditions.

pH 7 7.5 8 8.5 9
Yield (µM) 24.38±0.74 84.75±0.38 97.56±0.82 95.44±0.62 71.63±0.50

Impurity (%) 56.01±0.90 16.48±0.22 11.23±0.19 12.72±0.03 23.27±0.18

The efficiency of T7 RNAP is significantly influenced by the reactor environment, and the optimal
condition is pH≈ 8. Under this condition, the process achieves the highest yield of 97.56±0.82
with the lowest impurity level of 11.23±0.19. When the pH is maintained within the range of 7.5
to 8.5, the system demonstrates comparable performance. However, when the pH deviates from
this range, such as pH equal to 7 or 9, the activity of the enzyme declines rapidly. As a result, the
production rate decreases significantly, and impurities accumulate due to the elevated abortive rate.

(2) NTPs: The simulation experiments were performed using different concentrations of NTPs, namely
0.006 M, 0.008 M, 0.01 M, and 0.012 M, with each NTP set at an equal concentration. The results
provide insights into the system’s performance, specifically in terms of RNA yield and impurity
level, as summarized in Table 5.

Table 5: Batch-based IVT production system performance at different NTP concentrations.

NTP (M) 0.006 0.008 0.01 0.012
Yield (µM) 97.56±0.82 118.88±0.77 131.38±1.96 134.38±1.46

Impurity (%) 11.23±0.19 10.95±0.13 10.56±0.38 10.75±0.20

The yield exhibits an increase (from 97.56± 0.82 to 134.38± 1.46) as the NTPs concentrations
increase, emphasizing their crucial role in the IVT process. However, the rate of increase diminishes
due to two potential reasons: a) the higher NTPs concentrations lead to increased competition
inhibition (Arnold et al. 2001), which is incorporated into the regulation mechanistic model in
Equations (1) and (2); and b) the concentrations of Mg, DNA template, or T7 RNAP become
limiting factors, hindering further improvements. Conversely, the impurity level remains relatively
stable and does not show significant changes across the range of NTPs concentrations.

6 CONCLUSION

The urgency of rapid vaccine production has been highlighted by recent viral outbreaks. RNA vaccines,
known for their advantages in terms of speed, effectiveness, and safety, offer a promising solution. In order
to tackle the manufacturing challenges associated with RNA vaccine production, this study develops a
mechanistic model that can support the prediction and analysis for the IVT process. This model combines
a novel stochastic molecular reaction queueing network with a regulatory kinetic model characterizing the
influence of system state (e.g., pH, the concentrations of DNA template, NTPs, magnesium, and T7 RNAP)
on reaction rates and production outputs such as RNA yield and impurity levels. The empirical study shows
that this model has a promising performance across different process conditions. Ultimately, it demonstrates
the potential to enhance RNA product quality consistency, increase yield, and lower production costs.
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