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ABSTRACT

Drone delivery is a popular logistics method for e-commerce businesses due to its efficiency and convenience,
especially for last-mile delivery and emergency situations in areas with poor infrastructure. However, the
uncertainty of customer demands can affect transportation costs in the long run, making it vital to design an
effective delivery system. To tackle this issue, we propose a two-stage stochastic model that minimizes the
sum of fixed and expected operating costs. The first stage minimizes the total cost of the delivery system,
including the facilities fixed costs and expected operating costs, while the second stage arranges drones’
routes according to simulated demands to estimate the minimal expected transportation cost and penalty
cost. Since this stochastic programming has infinite scenarios, we deploy a sample average approximation
method to estimate its bounds. Additionally, we use a heuristic simulation framework to find a satisfactory
solution in an acceptable time.

1 INTRODUCTION

The use of drone delivery systems has grown rapidly in the past decade (Floreano and Wood 2015). Due to the
composition of individual orders with different destinations, last-mile delivery generates disproportionately
high costs and is often regarded as the most inefficient segment of the supply chain (Macioszek 2017).
However, the emergence of drones, with their high speed and few traffic concerns, presents a potential
solution that is both more efficient and cost-effective. This has led to a growing interest among logistics
companies in establishing and maintaining drone delivery systems for last-mile delivery. Leading companies
such as Amazon (CBS News 2013), Google (John Koetsier 2021), and FedEx (FedEx 2019), are investing
heavily in the research and development of these systems to revolutionize last-mile delivery and improve
the overall profitability and efficiency of the supply chain.

The drone delivery system has different features from traditional grounded delivery. Considering drones’
limited capacity and flight range, researchers have approached the drone delivery problem from various
perspectives. One of the most commonly studied scenarios is the drone-truck tandem delivery, where a
drone is launched from a delivery vehicle, delivers a package, and returns for a new payload (Patchou
et al. 2019). Other variations of this scenario include a larger drone, known as a mothership, that can carry
smaller drones which then launch from the mothership to deliver packages and return for reassignments and
charging (Wen and Wu 2022). This is also known as the mothership and drone routing problem (MDRP)
(Poikonen and Golden 2020). Some systems also suggest using charging stations to extend the flight range
and payload capacity, allowing drones to reach more customers, especially in sparsely populated areas such
as rural regions (Huang and Savkin 2020).
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Considering the uncertain drone performance, some researchers design drone delivery systems with
uncertain flight distances and battery consumption. Chauhan et al. (2021) model the uncertain flight range
by the availability and consumption of battery. Similarly, Kim et al. (2019) build a stochastic modeling
framework to design a drone delivery system in humanitarian logistics. Besides, the customer demand is also
unpredictable, which brings challenges to optimize facility locations. To address these issues, a two-stage
approach was proposed by Cheng et al. (2021). They develop a column-and-constraint generation algorithm
to solve the two-stage model, where the first-stage decides which locations are chosen, and the second-stage
optimizes the worst case in uncertain customer demands and facility disruption. The assumption on the
stochastic has two parts: the customer demand has a maximal deviation from the normal value and some
facilities will be randomly disrupted.

In order to make good decisions with uncertainties in an acceptable time, simulation can be a useful
tool (Kellner et al. 1999). Additionally, simulation can evaluate the performances of different optimization
techniques and find better and faster solutions by being combined with other heuristic algorithms (Li et al.
2011). Considering NP-hardness, heuristic algorithms are proposed as solution methods. Shavarani et al.
(2019) built a drone delivery network with fuel stations and warehouses by a Genetic Algorithm. They
use fuzzy variables to model the nondeterministic factors and a multi-level facility location approach to
deal with the different levels of the facilities. Besides, the solutions generated by heuristic algorithms are
usually based on certain problem settings and assumptions, which may not be suitable if the environment is
changed or some parameters are stochastic. For example, some routes decided in a determined environment
may not be reachable due to the stochastic flight range of drones in reality (Kim et al. 2019).

Except for the heuristics, another wildly used method to deal with stochastic factors in the routing
problem is sample average approximation (SAA), which is an approach for solving stochastic optimization
problems by using Monte Carlo simulation (Verweij et al. 2003). Specifically, in the drone delivery
problem, there are stochastic factors in both drone performance, such as speed, capacity, flight range, and
the customer demand. Juan et al. (2019) provided a case study on a stochastic team orienteering problem.
Considering random traveling time and reward, they compare SAA with simheuristics. A conclusion is
made that SAA can efficiently solve small-scale instances while simheuristics performs better in large-
scale instances. Besides, Panadero et al. (2023) hybridized biased-randomized heuristics with a variable
neighborhood search and Monte Carlo simulation to solve the stochastic team orienteering problem which
performs better within a shorter time than SAA.

According to the previous literature, drone-aided delivery and its variant problems are widely studied
(Macrina et al. 2020). Additionally, considering uncertain factors in the real world, some papers provide
more robust drone routing plans (Chauhan et al. 2021; Cheng et al. 2021). However, few papers focus on
how to design a drone delivery system with drone features, especially those uncertain factors, which will
have a huge effect on the performance of the delivery system. In this paper, we are going to build a two-stage
stochastic mathematical model to optimize the drone delivery system design and use a simulation-heuristic
solution approach to provide a satisfactory solution for the drone delivery system design in a short time
with consideration of the expected cost in the unpredictable delivery process.

This paper is organized as follows: Section 1 presents an introduction to drone delivery systems and
a literature review of various drone delivery problems, including the features of different types of drones,
facility location problems, and vehicle routing problems. In Section 2, the problem is described, and several
assumptions are illustrated. In Section 3, a two-stage stochastic mathematical model is developed, and
its notations and constraints are explained. Section 4 presents a simulation-heuristic solution approach.
Section 5 provides a numeric experiment and sensitivity analysis. Finally, a summary of the findings is
presented in Section 6.

2 PROBLEM DESCRIPTION

In order to establish a drone delivery system in a specific location, it is important to take into account the
coverage area for each potential customer as well as the associated costs. A common application for this
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type of system is for delivery services to local supermarkets, such as Walmart and Publix, which typically
have multiple locations in a given area and offer similar products (Walmart 2021). When a customer
places an order, the delivery system will assign a particular supplier based on factors such as proximity
and availability, even though all local suppliers are capable of fulfilling the order.

However, the integration of drones into the existing delivery system may require significant changes
to the supply chain and logistics operations, including the need for new technology and personnel training,
which brings extra costs (Sudbury and Hutchinson 2016). Another reason to consider when implementing
drone delivery into the existing supermarket delivery system is that it may not be necessary to establish
a drone depot at every single supermarket location (Shavarani et al. 2019). Additionally, varied ordering
frequencies among customers can create challenges in predicting demand and organizing the daily delivery
route of drones. This uncertainty can impact the decision-making process when selecting locations for drone
depots, as some locations may be more suitable for accommodating demand fluctuations. By strategically
selecting drone depot locations and optimally routing for delivery, the drone delivery system could be more
cost-effective and efficient, while still ensuring that all customers in the area are adequately served.

Our objective is to create a system that can efficiently serve customers with uncertain and real-time
demands while also considering the limitations of drones. As previously mentioned, we have identified
potential drone depot locations, but we must also consider the distribution of potential customers and their
likelihood of making an order. While we cannot make precise predictions for all customers, it is possible
to obtain the locations of potential customers and estimate their probability of placing an order, which are
stochastic parameters in the model.

Figure 1 displays a map illustrating four drone depot candidates. However, only two of them will be
selected as the drone depots while the drone depots with a red cross inside are not chosen. As the figure
shows, the two selected drone depots are able to cover all the potential customers represented by the green
hollow circles. The red points denote customers with varying demands, which may appear differently sized
in the figure. While this selection approach can ensure the coverage of all potential customers, it may not
be the optimal design for the drone delivery system. An alternative solution is to replace the left drone
depot with the middle one, which has a shorter distance to its customers and therefore, results in lower
operating costs in daily delivery tasks. In summary, it is important to consider both fixed and operating
costs in designing such a drone delivery system.

Figure 1: Selection of drone depots.

To achieve this goal, we propose a two-stage model. The objective function is to minimize the total
cost of the delivery system, which includes both fixed costs of facilities and operating costs. The fixed
cost contains the cost for upgrading or building a drone depot, including equipment setting and personnel
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training. The operation cost contains the estimated delivery cost and estimated penalty cost for the unserved
orders in daily delivery. Both types of operating costs will have an effect on the total cost by a given
multiplier. In the first stage, we will choose the optimal locations to serve as drone depots. Then, in
the second stage, we will use these depots to allocate drones to fulfill real-time orders while minimizing
operating costs, including travel costs for the drones and penalty costs for unserved orders.

Here are several key assumptions for the mathematical model:

• Each potential customer can be covered by at least one drone depot candidate.
• The heaviest order does not exceed the capacity limitation of drones.
• The number of drones in each depot is given.
• Each drone has to return to its original depot.
• The time for customers receiving packages and drones changing batteries is ignored.
• In a certain scenario, the order’s weight, location, and time window, are known before delivery.
• The outside conditions, like weather and temperature, are assumed to not affect drone operations.

3 MATHEMATICAL MODEL

Many literature reviews on drone delivery systems have overlooked the uncertain nature of customer demand,
leading to less efficient designs in reality application (Cheng et al. 2021). To address this gap, we propose a
two-stage mathematical model that considers real-time demand from customers when determining suitable
locations for drone depots. We also incorporate constraints such as limited capacity and flight range, which
are often overlooked in similar studies. Furthermore, we recognize that customers may have specific time
preferences for package delivery, such as Walmart’s delivery service. To study the impact of real-time
order fluctuations on delivery decisions, we build a time-window drone delivery model. This model should
be expressed as a two-stage stochastic model. The notations used in the model are shown in Table 1.

The objective function aims to minimize the total cost of this drone delivery system, which includes
the fixed cost of building the drone depots and the estimated operating cost of daily delivery:

minimize ∑
l∈O

Clyl +Eε [F(y,ε)] (1)

Subject to:

∑
l∈O

zil ≥ 1,∀i ∈ N (2)

zil ≤ yl,∀i ∈ N, l ∈ O (3)

zildil ≤ R/2,∀i ∈ N, l ∈ O (4)

In the second stage, certain locations have been selected as drone depots, and customers may have
stochastic orders with weights and time windows, which brings multiple different cases. To simplify the
representation, we use notations i and j for all the selected drone depots and existing customer locations
in a particular scenario. It is important to note that these notations may refer to only a subset of these
locations which is denoted by the constraints. The set of all selected drone depots is denoted by D, which
is predetermined in each certain scenario ε . The set of all locations in scenario ε , including customers and
drone depots, is represented by Gε . M is a very big constant number. The objective function for this stage
aims to minimize the total cost of the drone delivery system and is represented as follows:

F(y,ε) = minimize ∑
i∈N

∑
j∈N

∑
k∈K

∑
l∈Dε

∑
m∈Q

xε
i jklmdi jα + ∑

i∈N
∑
k∈K

∑
l∈Dε

(1− pε
ikl)β (5)
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Table 1: Notations in the model.
Index Definition Type
N The set of all potential locations for customers
O The set of all potential locations for the drone depots
Dε The set of all selected drone depots in scenario ε

Gε The set of all locations in scenario ε

K The maximal number of drones in each drone depot
Q The maximal number of trips for each drone in a scenario
Variables
xε

i jklm If the drone k in the depot l will visit location j once after visiting location i in its mth trip
in the scenario ε , xε

i jklm=1; Otherwise, xε
i jklm=0

Binary

yl If location l is chosen as a drone depot, yl=1; Otherwise, yl=0 Binary
zil If customer i is covered by drone depot l, zil=1; Otherwise, zil=0 Binary
wε

ikl The weight of total load of drone k in depot l before it visiting location i in the scenario ε Continuous
uε

ikl The left flight range of drone k in depot l after it visiting location i in the scenario ε Continuous
tε
iklm The time for drone k in depot l to arrive the location i in its mth trip in the scenario ε Continuous
pε

ikl If location i is visited on time by the drone k in depot l in the scenario ε , pε
ikl=1; Binary

Otherwise, pε
ikl=0

Parameters
Cl The fixed cost for drone depot candidate l
cε

i The weight of demand in location i in the scenario ε

aε
i The earliest time for location i to receive the package in the scenario ε

bε
i The latest time for location i to receive the package in the scenario ε

di j The distance between location i and j
V The speed for each drone
U The capacity for each drone
R The maximal flight range for each drone
α The cost for each drone to travel per unit distance
β The penalty cost for each order not on time

Subject to:

M ∑
j∈Gε

∑
k∈K

∑
l∈Dε

∑
m∈Q

xε
i jklm ≥ cε

i ,∀i ∈ Gε −Dε (6)

∑
i1∈Gε

xε
i1 jklm = ∑

i2∈Gε

xε
ji2klm,∀ j ∈ Gε ,k ∈ K, l ∈ Dε ,m ∈ Q (7)

xε
i jklm = 0,∀i ∈ Dε , j ∈ Dε ,k ∈ K, l ∈ Dε ,m ∈ Q, i! = j (8)

xε
i jklm = 0,∀i ∈ Gε , j ∈ Gε ,k ∈ K, l ∈ Dε ,m ∈ Q, i! = l (9)

xε
i jklm = 0,∀i ∈ Gε , j ∈ Gε ,k ∈ K, l ∈ Dε ,m ∈ Q, j! = l (10)

wε
ikl = 0,∀i ∈ Dε ,k ∈ K, l ∈ Dε (11)

wε
ikl ≤U,∀i ∈ Gε ,k ∈ K, l ∈ Dε (12)

wε
ikl−wε

jkl ≥ ( ∑
m∈Q

xε
i jklm−1)U + cε

i ,∀i ∈ Gε −Dε , j ∈ Gε ,k ∈ K, l ∈ Dε (13)

uε
ikl = 0,∀i ∈ Dε ,k ∈ K, l ∈ Dε (14)

uε
ikl ≤ R,∀i ∈ Gε ,k ∈ K, l ∈ Dε (15)

uε
ikl−uε

jkl ≥ ( ∑
m∈Q

xε
i jklm−1)R+di j,∀i ∈ Gε −Dε , j ∈ Gε ,k ∈ K, l ∈ Dε (16)

ai ≤ ∑
k∈K

∑
l∈Dε

tε
ikl +M(1− pε

ikl),∀i ∈ Gε −Dε (17)
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bi ≥ ∑
k∈K

∑
l∈Dε

tε
ikl−M(1− pε

ikl),∀i ∈ Gε −Dε (18)

tε
iklm +di j/v−M(1− xε

i jklm)≤ tε
jklm,∀i ∈ Gε , j ∈ Gε ,k ∈ K, l ∈ Dε ,m ∈ Q (19)

tε
jklm ≤M ∗ ∑

i∈Gε

xε
i jklm,∀ j ∈ Gε ,k ∈ K, l ∈ Dε ,m ∈ Q (20)

tε
jklm ≥ l ∗ ∑

i∈Gε

xε
jiklm,∀ j ∈ Gε ,k ∈ K, l ∈ Dε ,m ∈ Q (21)

tε
iklm1
≤ tε

jklm2
+T ∗ (1− ∑

i∈Gε

xε
i jklm2

),∀i ∈ Gε , j ∈ Gε ,k ∈ K, l ∈ Dε ,m1 ∈ Q,m2 ∈ Q (22)

The first stage of the model represents a facility location problem, with the main objective minimizing
the overall cost of the drone delivery system. This cost is composed of a fixed cost and an estimated
operating cost in the second stage. The objective function 1, aims to minimize this total cost.

To ensure that each potential customer is covered by at least one drone depot, we impose the constraint
given by Equation 2. Equation 3 ensures that if customer i is covered by a specific drone depot j, then
there must be a drone depot located at j. Finally, to guarantee that the distance between a customer i and
its corresponding drone depot j does not exceed the maximum service range, which is half of the drone’s
flight range considering the returning trip, we require the inequalities expressed in Equation 4.

In the second stage, the model assumes that certain locations have been chosen as drone depots, denoted
by the set N, while customers have stochastic orders with non-determined weights and time windows. For
simplification, we use the variables i and j to refer to all considered locations, including chosen drone
depots and customers with orders in a particular scenario. The objective function in 5 aims to minimize
both the transportation cost and penalty cost in the given scenario ε .

This model extends the classical vehicle routing problem by incorporating multiple drone depots,
limited flight range, and capacity, as well as time window constraints and associated penalty costs for late
deliveries. To ensure that all customers receive their orders, the Equation 7 confirms the trip of every drone
is round. Constraints 8 – 10 are used to force every drone to return to its original depot rather than change
batteries in other depots. Due to the limitation on the drone’s capacity, Constraints 11 – 13 ensure that
the load never exceeds the capacity during delivery and eliminate subtours at the same time. Similarly,
Constraints 14 – 16 express the limitation of the flight range of drones. Considering the time window
of each customer, we use a pair of inequalities, Equations 17 and 18, to impose a penalty cost for each
package delivered late. Constraint 19 deals with the traveling time of each drone, which includes travel
distance and speed. For Constraint 20, it forces the time for drone k to arrive at location j on its mth trip to
be 0 if there is no such trip. Constraint 21 ensures that each trip should not start before the time episode,
and the last Constraint 22 limits that the later trip will start no earlier than the previous trips, ensuring that
the drones work in the correct sequence in different time episodes.

The whole model contains a facility location problem and a vehicle routing problems, which both
are NP-hard. Additionally, there are an infinite number of scenarios based on the customers’ demands in
the second stage, which makes it impossible to obtain the precise expected operating cost using an exact
algorithm. Due to the combination of these difficulties, finding an exact solution to this model is not
possible. Nonetheless, we employ the sample average approximation method to obtain a good confidence
interval for the solution of this problem on a small scale. For large-scale problems, we propose a method
that combines heuristic algorithms with simulation to quickly obtain a satisfactory solution.

4 SOLUTION METHOD

4.1 Sample Average Approximation

SAA is a popular approach for solving stochastic programming problems that generates random samples of
uncertain parameters and then approximates the expected value of the objective function using these samples.
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This method can help to estimate the optimal solution in cases where the true probability distribution of
the uncertain parameters is unknown or difficult to model (Birge and Louveaux 1997).

In this problem, since it aims to find the minimal objective function, we start with S1 different scenarios
in the second stage to estimate the upper bound of the original problem. We generate S1 scenarios repeatedly
and calculate the objective value M times, resulting in M different solutions for the selection of drone
depot locations, denoted by Fi, i = 1,2, ...,M, and M different estimated total costs of the drone delivery
system, denoted by Ri, i = 1,2, ...,M. The estimated upper bound is then obtained as the average of the M
solutions, which is ∑

M
i=1 Ri
M .

Next, the estimated lower bound is calculated based on the solution Fi from the first stage. We generate
S2 different scenarios of customers’ demand and calculate the total cost with a given Fi. This generates M
different solutions, denoted by ri, corresponding to S2 different scenarios. The estimated lower bound is
then obtained as the average of all ri (Santoso et al. 2005).

As this method is grounded in statistical theory, we can obtain a certain confidence interval for both
the estimated lower bound and upper bound by repeating this process multiple times and recording their
average and variance.

Algorithm 1 shows how SAA works in this problem. The constant k represents the 95 % percentile of
the Student’s t-distribution with M−1 degrees of freedom.

Algorithm 1 Sample average approximation in the two-stage model.
1: Initialize M, S1, S2
2: for i← 1 to M do
3: Randomly generate S1 scenarios in the second stage
4: Solve the two-stage model as a determined model
5: Record the objective value Ri and solution of the first stage Fi
6: end for
7: The estimated upper bound is U = ∑

M
i=1 Ri
M

8: The 95 % confidence interval is [U− kσR√
M
, U + kσR√

M
]

9: for i← 1 to M do
10: Randomly generate S2 scenarios in the second stage
11: Solve the S2 different second stage models with Fi
12: Add the average operating cost with the fixed cost of Fi
13: Record the total ri
14: end for
15: The estimated lower bound is L = ∑

M
i=1 ri
M

16: The 95 % confidence interval is [L− kσr√
M
, L+ kσr√

M
]

4.2 Heuristic Simulation

Heuristic simulation is a problem-solving approach that uses a simulation model to test different scenarios.
It involves creating a simplified model of a complex system or process and then using that model to test
different hypothetical scenarios or decisions in order to determine the likely outcomes.

In this problem, we have infinite scenarios in the second stage model, which can be seen as a drone
routing problem with uncertain customer demands. So we can get an estimated operating cost if given a set
of certain drone depots. Besides, since all the scenarios have the same logic and parameters, excluding the
initial settings of selected drone depots and the stochastic customer orders, we can create an environment
with drone depots and customers as its input and simulate how it works in a time period to have an estimated
operating cost.

Here we use a Genetic Algorithm (GA) to optimize the locations of the drone delivery system with
minimum total cost. Each feasible solution generated by GA, which is called “chromosome”, is encoded as
a set of binary variables to represent the selections of all the drone depot candidates. And this solution will
be used as input data in the simulation model, and we can get a determined fixed cost from the solution. Due

1882



Wang, Jones, and Li

to the uncertainty of customers, we randomly generate N scenarios, in which there are different customers
making orders, and customers have different demands and time-windows. Every simulation scenario will
treat the customers’ information as determined data, and allocate the drones based on certain depots. When
all simulation scenarios are done, the average operating cost in all scenarios is the estimated operating
cost of this set of drone depots. Then we can get the estimated total cost of this solution by adding fixed
cost and operating cost, which is the “fitness value” of this “chromosome” in the GA framework. Since
usually the larger “fitness value” is better, here we set the opposite value of the estimated total cost as is
the “fitness value”.

The GA will have multiple “generations”. Each “generation” has a “population” which contains multiple
“chromosomes”, which are also called “individuals” in the “population”. Based on the “fitness value” of
each “chromosome” in the “population”, we will do “selection” in the “population” and let them “crossover”
and “mutate” to generate a new “population” in the next “generation”. This step will be repeated until
reaching the maximal generation, and the output is the “chromosome” with the largest “fitness value” in
the last “generation”. The framework with input and output of this heuristic simulation method is shown
in Figure 2.

Figure 2: The framework of this heuristic simulation.

Figure 3: Crossover in this GA.

In this particular problem, each “chromosome” is a set of binary variables. To perform “crossover”,
we randomly select a crossover point in the chromosomes of the parents and exchange the genetic material
beyond that point, resulting in two new offspring solutions that are a combination of genetic material from
the parents. This process is illustrated in Figure 3. Since “chromosomes” have varying performances in
this environment, as indicated by their “fitness values”, the probability of a “chromosome” i being chosen
to have offspring is fi

∑i fi
.

However, since this search method depends on the first “generation”, it has a limited region in the
feasible solution. To extend the search area of this GA, we also include a “mutation” step in the process.
In this problem, the “mutation” step involves randomly exchanging some values in the “chromosome”.

Each “chromosome” can be decoded as a selection of drone depots. So we can randomly generate
different customers to simulate how the selected drone depots work in delivery. When doing simulation,
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we use a greedy method to calculate the estimated operating cost. The following is a description of the
drone delivery system process based on given customer and facility locations:

• Customer Allocation: Each customer is allocated to its nearest drone depot based on distance.
• Sorting: The drone depot sorts all customers based on their respective time windows.
• Drone Allocation: Drones are allocated to customers in sequence until the current drone is fully

loaded or reaches the maximum limit of the flight distance.
• Operating Cost: The drones carry out their allocated tasks and update the traveling cost in delivery

and penalty cost for the orders not on time.

It is important to note that the penalty cost is incurred due to the operational constraints of the drone
delivery system. These constraints may include factors such as drone capacity, flight range, and time
windows. Algorithm 2 shows how the heuristic simulation works.

Algorithm 2 Pseudo code for the heuristic simulation method.
1: Set maximum iteration M and size of population S
2: Initialize the crossover rate p and mutation rate q
3: Set the number of scenarios N for each chromosome
4: Generate S random chromosomes as the first population P1
5: while Generation g≤M do
6: for Chromosome i ∈ Pg do
7: Decode the chromosome into the selection of drone depots Di
8: Calculate the fixed cost of i
9: for Simulation scenario n ∈ N do
10: Randomly generate a set of customers cn
11: Allocate every customer to its nearest drone depot
12: for drone depot j ∈ Di do
13: while There are customers to be served do
14: Update the drones’ availability
15: if The first available drone can serve the next customer then
16: Allocate the next customer to the first available drone
17: else
18: The first available drone becomes unavailable and prepare to start delivery
19: Record the drone’s operating cost and update the total operating cost
20: end if
21: end while
22: end for
23: Calculate the estimated operating cost by the average
24: end for
25: Compute the fitness value
26: end for
27: Generate the next population Pg+1 by crossover and mutation
28: end while
29: Output the chromosome with the largest fitness value in the last generation

5 NUMERICAL EXPERIMENTS

To validate the heuristic simulation method, we conducted five scenarios with different problem scales.
These scenarios are designed with the same drone settings. Specifically, all the drones used in this section
have a maximum carrying capacity of 10 kg and can travel up to 15 km at a speed of 50 km/h in a single
trip. The fixed cost for each drone depot is set to 1,000, and each depot can store a maximum of 3 drones,
with the cost of each drone included in the fixed cost of the depot. Additionally, we assume that the average
transportation cost for a drone to travel 1 km is 1, and there will be a penalty cost of 100 for an undelivered
order that exceeds its time window.
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The five scenarios generated have differences only in the scale of the problem, with varying numbers
of drone depot candidates and potential customers, which is: 5 and 10; 10 and 50; 20 and 100; 50 and
500; and 100 and 1,000, respectively.

In the SAA method, we use the same algorithm provided by (Santoso et al. 2005). Since it is a
minimizing problem, the feasible solutions obtained in the first phase can be treated as an estimated upper
bound. While the lower bound is obtained in the second phase which is the expected value based on the
solutions from the first phase with a larger sample. We set the number of repetitions for each customer
demand data to be M = 10. For the first phase of the method, we set the number of scenarios considered
for the model to be S1 = 10, and for the second phase, we set S2 = 50. These parameters represent the
number of scenarios considered for the model in each phase. However, due to the limited time available,
it may not be possible to obtain the optimal solution for those models. Therefore, we choose the best
solution obtained within 3,600 seconds as our result.

In the heuristic simulation method, we use GA and set the maximum number of iterations to be M = 100,
and the size of the population to be S = 100. We also set the crossover rate to 0.9 and the mutation rate
to 0.1.

The result is shown in Table 2. We use D to represent the number of potential drone depots, C to
represent the number of potential customers. LB and UB mean the estimated mean of the lower bound and
upper bound obtained by SSA.

Table 2: Numerical results in 5 scenarios.

D C
SAA Heuristic simulation

LB 95 % CI of lower bound UB 95 % CI of upper bound Obj.
5 20 2,008.21 [2,007.91, 2,008.52] 2,078.41 [2,073.10, 2,083.72] 2,049.53

10 50 2,091.25 [2,077.87, 2,104.64] 2,102.15 [2,044.60, 2,159.70] 2,069.33
20 100 - - - - 2,078.07
50 500 - - - - 7,082.06
100 1,000 - - - - 20,087.37

Table 2 reveals that we can obtain a relatively accurate lower bound for the two smallest scenarios.
For instance, when there are five drone depot candidates and 20 potential customers, the estimated lower
bound for the total cost of the drone delivery system is [2,008.21, 2,078.41]. The heuristic simulation
method provides a solution of 2049.53, which lies between the estimated bounds of SAA. Although the
solution of the heuristic simulation method in the second scenario is not in the estimated bound of SAA
[2,091.25, 2,102.15], it still falls within the 95 % confidence interval of the estimated upper bound [2,044.60,
2,159.70]. In this case, our problem scale is much larger than the first experiment, which means it could
obtain very different estimated bounds based on the random selection of scenarios. Compared with the
estimated bounds of the first experiment, the intervals of both the estimated lower bound and upper bound
are much larger. Besides, the estimated upper bound interval has covered the estimated lower bound, which
makes the estimated bound not very precise. However, since the solution of the heuristic simulation is very
close to the SAA interval, and it is in the 95 % confidence interval of the upper bound, we can say that it
is still a satisfactory solution.

Based on the obtained results, the first three experiments get similar results in the heuristic algorithm.
This can be attributed to the relatively small number of customers involved. However, despite their proximity,
these customers may be dispersed over considerable distances, allowing for the possibility of at least two
depots being capable of serving them adequately, albeit with two depots proving sufficient. In contrast, the
last two experiments entail a significantly larger customer base of 500 and 1,000 individuals, respectively.
Given the substantial increase in the area that needs to be covered, it is reasonable to expect a higher
number of depots to fulfill the demand, resulting in notable differences in the outcomes when compared
to the first three experiments.

However, due to the complexity of this model, SAA cannot find a solution when the number of potential
customers exceeds 100 or when there are more than 20 drone depot candidates. In such cases, the heuristic
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simulation can still deliver a reasonable and satisfactory solution within a limited time. In reality, most
drone delivery systems with multiple drone depots serve far more than 100 customers, making it impossible
for SAA to provide accurate solutions and estimated bounds. Thus, it is more practical to use the heuristic
simulation method to aid in decision-making when constructing a drone delivery system.

6 CONCLUSIONS

In this study, we aim to develop a delivery system solely based on drones. To account for the uncertainty
in customer demands, we propose a two-stage stochastic mathematical model that minimizes the fixed and
operating costs of the drone delivery system. Due to the problem’s complexity, we present two approaches
to solving it. The first method utilizes a sample average approximation technique to address the infinite-
scenario two-stage problem. The second method combines a heuristic algorithm with simulation, where
the genetic algorithm generates a solution that is used as input for the simulation. The fitness value of the
solution is obtained through multiple simulations and then fed back to GA. After iterations and evolution
in GA, we will get a satisfactory solution.

To validate the effectiveness of our proposed methods, we conducted numerical experiments on problems
of varying scales. Specifically, we found that the SAA method can get a relatively good bound when the
problem scale is small, such as when there are fewer than 50 potential customers and 10 drone depot
candidates. However, in real-world scenarios, there are often hundreds or even thousands of potential
customers in a given area. The results show that SAA will not be able to even a feasible solution for the
models in the first phase when the potential customers are more than 100. In such cases, the heuristic
simulation method is able to provide a solution within a reasonable amount of time.

In future research, an exact solution can be attained by dividing the infinite customer demand scenarios
into limited cases. By leveraging historical data, machine learning algorithms can provide a more precise
prediction of customers’ demands, facilitating better decision-making in designing the drone delivery system
and scheduling scheme. Additionally, since this problem is a mixed-integer two-stage problem, it may
be possible to find more efficient methods to obtain the optimal solution based on the problem’s unique
structure.
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