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ABSTRACT

COVID-19 resulted in some of the largest supply chain disruptions in recent history. To mitigate the impact
of future disruptions, an integrated hybrid simulation framework is proposed to couple nonstationary demand
signals from an event like COVID-19 with a model of an end-to-end supply chain. First, a system dynamics
susceptible-infected-recovered (SIR) model is created, augmenting a classic epidemiological model to create
a realistic portrayal of demand patterns for oxygen concentrators (OC). Informed by this granular demand
signal, a supply chain discrete event simulation model of OC sourcing, manufacturing, and distribution is
developed to test production augmentation policies to satisfy this increased demand. This model utilizes
publicly available data, engineering teardowns of OCs, and a supply chain illumination to identify suppliers.
The findings indicate that this coupled approach can use realistic demand during a disruptive event to enable
rapid recommendations of policies for increased supply chain resilience with controlled cost.

1 INTRODUCTION

The recent reaction to the COVID-19 pandemic demonstrated the fragility of supply chains to disruptions
of supply, and corresponding difficulty in reacting to non-stationary demand (i.e., exponential growth in
demand over a short period of time). In a survey, the majority of manufacturing respondents reported
increased lead times and lead time churn as a result of the COVID-19 pandemic (Boyd 2020). In addition,
freight networks were disrupted causing delays in supply chain operations (Camur et al. 2022). Coupling
these supply disruptions to equally significant demand shocks, the result has been significant material
shortages in wide-ranging product categories, from healthcare supplies and equipment to basic goods.

In response to these linked shocks, the Robotics and Automation Decision Framework for Agility
and Resilience (RADAR) project is developing a decision system for deploying robotics and automation
in a stressed supply chain in order to mitigate the effects of these shocks, and enhance supply chain
agility, resilience, and preparedness. The RADAR framework addresses supply chain competitiveness and
resilience through three core thrusts: macro-scale modeling of a pandemic-related supply chain, micro-scale
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modeling of robotics within a manufacturing facility, and physical demonstration of enhanced response.
This paper plays a significant role in the project by contributing to the macro- and micro-scale modeling
components of the proposed end-to-end framework.

To demonstrate this framework, the RADAR project selected Oxygen Concentrators (OCs) as a man-
ufacturing and supply chain use case, due to both the COVID demand shocks that affected OC supply
chains, as well as the opportunity to augment OC manufacturing with the rapid introduction of robotics
in manufacturing facilities. OCs are medical devices that filter nitrogen from the air and provide a higher
amount of oxygen to a patient. Both hospitalized and home patients may require oxygen support due
to potential respiratory complications after being infected by COVID-19. The demand for OCs surged
exponentially during the pandemic, while also experiencing supply disruptions. OCs were reported as
scarce health resources in many states in the U.S. (Devereaux et al. 2023). Thus, it is vital to understand
the demand behavior for OCs and how / where those demands may be met during a healthcare crisis.
Similar models can be developed for other critical healthcare supplies, provided data on market size and
pandemic usage are available.

While significant disruptions such as the COVID-19 pandemic are inevitable, an over-reliance on
standard supply chain models of consumption and lead time, which do not take into account the probability
and impact of these significant disruptions, leave these models exposed to significant shortcomings during
a non-stationary event. Additionally, models which may assist in helping supply chain managers react to
these events (e.g., epidemiological models), tend to suffer from an over-reliance on expert assumptions.
The result is a fragmented approach that fails to ensure sufficient supplies are available during a disruptive
event. Thus, there has been significant interest in three fundamental simulation-based modeling approaches
to understand the spread of COVID-19 in communities as discussed below.

1. Susceptible-Infected-Removed (SIR) models: This is the most common methodology that groups
a population of a specific region into different categories (i.e. Susceptible, Exposed, Infected, and
Recovered) and applies mathematical ratios or rules about how individuals in the population move
from one category to another using scientific assumptions about the disease (Salimipour et al. 2023).

2. Extrapolation models: This methodology infers trends about a pandemic in a specific area by
observing the historical and current state of the spread and then applying an estimate of the
possible future pandemic spread path, while also using information from other locations with
similar characteristics (Ho et al. 2023).

3. Agent-based models: This modeling approach is based on the bottoms up creation of a simulated
population and follow interactions among individuals, called agents, in that region, based on
characteristics, rules, behavior, movement, mixing patterns, risks, intervention policies, and social
networks (work, family, transportation, social interaction, buying patterns etc.) (Shamil et al. 2021).

These models either i) assume that key features of a target disease are known and stationary with high
certainty (e.g., infectivity, mortality rate), or ii) use historical data to project/extrapolate future trajectories.
During the COVID-19 pandemic, the trajectory of cases has been unique in different regions even within
the same country (Sapkota et al. 2021), making a dynamic SIR model with elements of agent-based
modeling, particularly in hospitalizations, the best choice for modeling the COVID-19 pandemic. In this
context, creating a unified approach to tying models of a disruptive event (e.g., pandemic, natural disaster,
humanitarian crisis, war) with that event’s impact on a supply chain, will enable decision-makers to minimize
the risk of material shortage, ensuring a fully functioning supply chain network. Further, robust design
and carefully crafted output of these simulation models enable future integration into optimization models
to make sophisticated and accurate policy decisions (Vogiatzis and Camur 2019; Camur et al. 2023).

Current epidemiological models (and other anticipatory intelligence models aimed at predicting grey
swan events) are generally aimed at informing policy decisions and have little influence on supply chain
response until such events are already underway. This results in a supply chain response that is reactive instead
of proactive. Additionally, current inventory management, procurement, and supply chain practices within
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hospital networks assume stationary, possibly seasonal demand, and do not typically use epidemiological
models (Ali et al. 2021).

A hybrid simulation framework that integrates two simulation models is proposed to understand i) the
realistic demand for OCs that are needed by COVID-19 patients, and ii) how supply chain operations shall
be conducted to meet this demand surge. The contribution includes the design and implementation of a
data-driven decision support framework. This framework captures the realistic baseline of a supply chain
network and the effects of a major disruption event, such as a pandemic, and allows the experimentation
of alternative scenarios in several aspects of the model (demand signal, supply chain disruption, change
of policies, alternate suppliers, etc.) without modification of source code. The technical novelty can be
summarized as follows: i) creation of a high-fidelity supply chain model containing advanced demand
predictions that come from a pandemic model tuned to represent accurately historical captured data, ii)
utilization of multiple simulation methodologies including system dynamics, agent-based modelling and
discrete event simulation to incorporate the advantages of each of these techniques, iii) adoption of a data-
driven approach that enables handling multiple alternatives with the same model without modifying the
source code and iv) creation of a multi-scale supply chain simulation model utilizing supplier illumination.

2 SIR EPIDEMIOLOGY MODEL

In the classical SIR models, it is assumed that the parameters of the epidemiological model are kept
constant, i.e. total population remains the same throughout stages of a pandemic, the susceptible population
converges to zero and the reproduction ratio (R0) is constant or near-constant (Cooper et al. 2020). However,
COVID-19 pandemic has followed different characteristics: mitigation policies and multiple reinfections
make the classical system dynamics approach insufficient, mostly because of the large fluctuations of R0
(Moein et al. 2021). To move beyond these limitations, a modified SIR model that aims to incorporate
the unique spread of the virus is proposed and realistic demand for OCs in each state is modelled. To this
end the model incorporates dynamically changing epidemiological parameters such as contact rates that
change in accordance with regional and state policies.

In addition to this, some agent-based simulation features were added in the model which better captures
the characteristics of the pandemic. Using this model, the following outputs for each U.S. state are created:
i) the daily total number of COVID patients, ii) the total daily OC units to be acquired for hospitals and
homes to support these patients, iii) current state-wide OC hospital inventory, iv) statewide number of OCs
in use at hospitals, and v) the number of OC unit scrapped as a function of usage. All of these signals are
fed into the supply chain simulation model discussed in the next section (See Section 3).

On the starting date of the simulation, an initial number of COVID cases in each state is used based
on the historical CDC data (CDC 2022). It is assumed that a certain percentage of the total population is
hospitalized after being infected by COVID and a certain percentage of this hospitalized population will
also need OC support (Stasi et al. 2020). In the SIR model, five “stocks” that a person may be in at each
time stage in a given U.S. state are defined.

1. Susceptible: The group of people who are at risk of infection, a function of the total population,
average infectivity rate, and a dynamic contact rate.

2. Infectious: Proportion of the population currently infected by COVID.
3. Hospitalized: A system dynamic flow from Infectious, the patients hospitalized may also transition

into a) recovered stage based on hospital recovery rate, or b) pass away. The model determines the
total OC needs based on this stock.

4. Deceased: The system dynamics flow from Infectious, the group of people who pass away due
to either infection or after being hospitalized is represented at this stock which is the only stock
without an outgoing flow.

1619



Camur, Tseng, Thanos, White, Yund, and Iakovou

5. Recovered: The group of people who are recovered either come from the infectious state or COVID-
based hospitalization. Importantly, recovered patients face a immunity loss after a fixed period and
return to the susceptible state, capturing the possibility of reinfection.

The user provides a list of states, total population (US Census Bureau 2022) and hospital capacity
(Kaiser Family Foundation 2021) for each state for the baseline model. Although the average infectivity
rate remains the same, the contact rates are dynamic and user-tunable to capture mitigation policies and
seasonal infection rate changes. Note that the model is data driven and could accept any type of regions
with their associated populations and epidemiological parameters to simulate. Table 1 reports the model
details and input information for the baseline scenario that is defined as the original set of experiments
without parameter tuning.

Table 1: SIR Model Parameter Details in the Baseline Scenario.

Parameter / Source Value Details
Illness Duration (Tenforde et al. 2020) 15 days num of days before being recovered
Simulation Time 11-20/3-21 start and end date of the SIR model
COVID Hosp. Rate (Menachemi et al. 2021) 0.01 pct of infected people hospitalized per day in each state
OC Inventory Rate 0.10 prop of OC usage held in stock at a hospital
OC Scrap Rate 0.01 prop of OC scrapped per day at a hospital
COVID Hosp. Stay (Zeleke et al. 2022) X ∼U [8,15] num of days spent at a hospital due to COVID
Pct Population in Workforce 0.5 prop of population in the workforce
Immunity Duration (NIH 2021) 30 days min num of days before reinfection
OC Units Per Hospital Bed 0.1 prop. of existing OCs in each state based on hospital beds
Pre-COVID OC Demand Hospital 171 num of OC needed before COVID at hospitals per day
Pre-COVID OC Demand Home 545 num of OC needed before COVID at homes per day
OC Hospital COVID Usage 0.065 prop. of COVID hospitalizations requiring an OC
OC Discharge COVID Usage 0.01 prop. of discharges requiring an OC after COVID
OC Overflow Discharge COVID Usage 0.02 prop. of overflow discharges requiring an OC

Both “OC Inventory Rate” and “OC Scrap Rate” will trigger the supply chain model to order OC unit
in a hospital region. For example, if the number of OC units required is greater than (1- “OC Inventory
Rate”)%, then the model will order “OC Inventory Rate” of the total demand to replenish the OC inventory.
Since not having granular hospital inventory policies, this is a method for creating a consistent inventory
policy across states. In addition, a couple of agent based simulation features is used within the system
dynamics model. Each unit of flow is treated to the “Hospitalized” stock as an agent and sample from the
user defined distribution individually what will be the length of stay, which changes dynamically when
the Hospitalized population reaches the statewide capacity. Then keeping a memory structure the flow is
set to the “Recovered” stock accordingly. In a similar way, the direct flow from the “Susceptible” stock
to the ”Recovered” stock is being dictated with an agent-based approach. This approach makes the SIR
model more realistic and allows for small spikes that sometimes diverge from the typical ”use the average”
system dynamics approach.

Another important parameter is “Pct Population in Workforce” where the Infectious stock is used to
compute the number of people in the workforce infected by COVID. This result is used to incorporate
degraded performance at manufacturers and suppliers due to workforce illness. Further, both “Pre-COVID
OC Demand Hospital” and “Pre-COVID OC Demand Home” are used to capture baseline non-COVID
related OC demand. These parameters are tuned based on national data from the “Global Stationary
Oxygen Concentrators Industry Market Research Report” published by Maia Research (Maia Research
2022). Lastly, daily COVID cases predicted by the SIR model (i.e., Infectious) and actual COVID cases
reported by CDC are compared across all modeled regions. Figures 1 and 2 compare the modeled COVID
case count with actual case count for the example states of GA and MA respectively, demonstrating the
accuracy of the modelling approach proposed.
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Figure 1: Comparisons of the active cases between
the SIR model and actual in Georgia (GA).

Figure 2: Comparisons of the active cases between
the SIR model and actual in Massachusetts (MA).

3 SUPPLY CHAIN DISCRETE EVENT SIMULATION

The OC supply chain model comprises of suppliers, main-assembly and sub-assembly facilities, OC
products, assembly personnel, equipment, distributors, and customers. The multiscale simulation framework
introduced by (Wang et al. 2019) based on the combination of discrete-event and agent-based simulation
techniques is utilized to model each entity’s micro-scale activities within each manufacturing facility and
macro-scale interactions at the supply chain network level. This framework enables the modeling of the
individual components and the entire system, providing a comprehensive view of the OC supply chain and
facilitating the identification of opportunities for optimization and improvement.

3.1 Macroscale Model

Figure 3 shows the relationships between entities within the OC supply chain. The macroscale model
simulates the OC supply chain network and associated activities, which include the allocation of distributors,
assembly facilities, suppliers, and transportation activities. In addition, the macro-scale simulation model
has an integrated geographic information system (GIS) map that allows users to watch the animation of
agent activities and interact with the simulation by clicking on any entities to access its parameters or
microscale model presentation. The OC supply chain considered in this study contains 52 OC distributors,
one assembly facility, and 278 suppliers across the globe. To gather this data, RADAR utilized a Deloitte-led
supplier illumination to provide a comprehensive understanding of the location, industry, and relationships
of these 278 suppliers within the supply chain network.

3.2 Microscale Model

The microscale model simulates activities within distributors, main-assembly facilities, and sub-assembly
facilities. Within each entity of the considered OC supply chain, there is a set of static or stochastic
attributes that reflect the entity’s present condition, described below.

The OC distributor order process consists of these steps: First, the distributor receives an order for a
specified number of OCs from a healthcare facility or a customer. The distributor checks inventory to verify
that the requested OC models are available in the desired quantity. Additionally, for individual customers,
the distributor verifies prescription details with the relevant healthcare providers. Once the details have
been confirmed, billing and payment processes are initiated, and the OCs are packaged and prepared for
shipping to the designated location. If the distributor’s inventory is insufficient, a new order is added to the
customer queue to wait for inventory replenishment. To maintain inventory level, a standard continuous
review (Q,R) inventory policy (Eksioglu et al. 2008) is implemented to monitor and make replenishment
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Figure 3: Macroscale view of the OC supply chain in this study.

orders of quantity Q to the assembly facility when the inventory level is below the reorder point R, assuming
the expected cycle period is T , and the weekly demand has a normal distribution with mean µD and standard
deviation σD. The lead time for inventory replenishment follows a normal distribution with mean µ(LT )

and standard deviation σ(LT ). The equations for calculating Q and R are expressed in Equation (1).

Q = µDT

R = µDµLT +Zα

(1)

When an order from the distributor is received at an assembly facility, the assembly OC inventory is
checked, and if there is sufficient inventory, the OCs are prepared for shipping to the distributor. However,
if the stock is insufficient, the order enters a queue to wait for newly assembled OCs. Similar to the
distributor, a continuous review (Q,R) inventory policy is implemented to monitor the OC inventory at the
assembly facility. Assembly jobs are created within the facility to produce OCs when inventory levels fall
below the reorder point. The main assembly process flow consists of four primary steps, each assembling
sub-assembly parts into the main OC body. The microscale model also includes sub-assembly facilities for
producing and supplying sub-assembly parts. An inventory policy is also implemented at the sub-assembly
facilities to control material inventory levels.

4 COMPUTATIONAL EXPERIMENTS

The computational experiments were conducted using the Java API (Camur et al. 2021) and AnyLogic
library.

4.1 SIR Model Experiments

In this section, certain parameters presented in Section 2 are tuned to perform what-if analyses. These
results will then be used to further analyze the supply chain model proposed in the following section. In
both sections, ten states are focused on: AK, AZ, CA, GA, IL, MA, SD, VT, WI, and WY to scale the
analysis. These states were chosen because they display either a large case count due to population, or
a high sensitivity to model parameter changes. The time-variant contact rate information is increased by
0.1 % aiming to observe the impact of a more aggressive pandemic behavior on the population and total OC
demand. SIR models can be quite sensitive to small changes in contact rates for high infectivity viruses,
resulting in exponential increases in infectious rates depending on the current state of the susceptible,
infectious and recovered populations.

The comparison of the total number of people infected in each state between the baseline and increased
contact rate scenarios is presented in Figure 4. Several states (e.g., AK, IL and WI) indicate a high
sensitivity to increases in contact rate, particularly after infection peak. This sensitivity is a function of
the previous infections in that state and the status of the recovered population. More sensitive states have
a lower proportion of their population in the recovered category of the SIR model. Therefore, states will
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Figure 4: Comparison of infectious values per state between the baseline and increased contact rate scenarios.

have varying sensitivities to increases in reproduction numbers based on the current infected population,
recovered population, etc. In essence, for those states, an endemic situation can turn into a pandemic
wave with the increased contact rates. Figure 4 illustrates that each state shows a unique behavior during
the pandemic based on varying contact rates, mitigation policies, underlying weather, neighboring state
behavior, and population health, thus, analyzing the results as a whole may not provide useful insights.

To gain a deeper understanding of impact in a certain state (i.e., AZ), OC orders/demands are analyzed.
In the baseline scenario, it is found that the number of hospitalized patients exceeded total hospital capacity
(i.e., 14k) twice in AZ, which triggered two early OC home orders on days 85 and 92 (see Figure 5). The
analysis reveals that the contact rate plays a significant role in driving the infection and hospitalization
rates specifically during the peak of the pandemic, resulting in double the number of early OC home orders
once the contact rate is modified, even by a small scalar. It is observed that the total number of available
OCs goes below the minimum inventory limit five times, leading the model to place an average of 117 OC
orders five times between the second and third months, as shown in Figure 6.

Figure 5: OC orders in AZ in the baseline experiment over time in days (x-axis).

In another set of experiments, a more impactful pandemic situation where COVID-related OC usage
rates are doubled is tested (see Table 1). Also, the OC Inventory Rate is increased to 0.15 to model a more
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Figure 6: OC orders in AZ in the increased contact rate experiment over time in days (x-axis).

cautious OC blanket inventory policy at hospitals. For this experiment, the attention is turned to the state of
California (CA). Since OC usage is higher for COVID patients, OC demand shows an exponential increase
trend (Figure 8), whereas, a decrease in the baseline experiment is observed as illustrated in Figure 7
indicating that CA is able to handle the increased demand during the early stages. However, increased OC
usage causes a cascading effect with OC hospital orders experiencing an exponential increase (an increase
of 100 %). In the baseline scenario, there are only two large OC hospital orders with an average of 550
OCs, while this scenario requires seven inventory replenishments at the hospital level with 1,000 OCs on
average.

Figure 7: OC availability in CA in the baseline
experiment over time in days (x-axis).

Figure 8: OC availability in CA in the increased OC
usage rate experiment over time in days (x-axis).

4.2 Supply Chain Model Experiments

In this section, the impact of the OC demand surge on supply chain performance during the COVID-19
pandemic is investigated by evaluating the effectiveness of mitigation strategies, particularly dynamic
inventory policies and the incorporation of air freight as a mode change from surface freight transportation.
A pre-COVID-19 demand scenario as well as three COVID-19 demand scenarios created in the previous
section: (i) baseline, (ii) increased contact rate, and (iii) increased usage rate are considered. In the previous
section, it is indicated that each COVID-19 scenario leads to a surge in demand across numerous states.
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Consequently, the heightened demand for regional distributors translates to an elevated daily demand for
the OC manufacturer, as depicted in Figure 9. When compared to the pre-COVID-19 period, the average
daily demand increase for scenarios (i), (ii), and (iii) amount to 33 %, 47 %, and 78 %, respectively.
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Figure 9: Impact of COVID-19 pandemic on the daily demand at OC manufacturer.

The initial analysis focuses on the impact of the pandemic on lead times for customer orders and inventory
replenishment orders by distributors. It is assumed that manufacturers and distributors are following their
pre-pandemic inventory management policies, which aim to achieve a service level of 95 %. Additionally,
it is assumed the manufacturer has sufficient material supply and transportation capabilities and uses ground
transportation to deliver OC to the distributors. Finally, it is assumed that the manufacturer has limited
labor and workspace available, which were utilized at a 50 % rate before the pandemic.

Figure 10 presents the lead time statistics for ten selected regional distributors. Note that the demand
scenario (iii) is not displayed in Figure 10 due to its exceedingly long lead times for all states, e.g., the
median and 90th percentile customer fulfillment time are 8 and 38 days. Figure 10 (a) and (b) demonstrate
a significant increase in customer fulfillment times for AK, SD, VT, and WY. This finding is noteworthy
as it indicates a potential issue with the efficiency of inventory replenishment in these specific regional
distributors, to be mitigated by other means.
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Figure 10: Fulfillment time statistics of customer orders.
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To better understand the lead time increases in the selected states, the time series of daily demand at
AK, CA, and SD distributors, along with the backlog level at the manufacturer are analyzed, as illustrated in
Figure 11. The analysis reveals that the demand spikes at SD and AK distributors coincide with periods of
high backlog levels at the manufacturer, which is likely the primary reason for increased customer fulfillment
times. Figure 11 also indicates that the CA distributor experienced three demand spikes before AK and
SD demand spikes, and before the manufacturer backlog occurred. Because of this timing difference, the
CA distributor did not experience a large rise in customer fulfillment time (see Figure 10), but these large
orders depleted stocks at the manufacturer, leading to larger backlogs. Because small states such as VT
and WY have fewer orders, their lead time statistics and inventory policies are more susceptible to extreme
values. For example, the order-up-to-inventory levels are 2 for AK, VT, and WY and 3 for SD. Introducing
an additional stock in small regions for emergencies could mitigate risks at low total cost.
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Figure 11: Daily demand at distributors vs. manufacturer backlog (increased contact rate scenario).

Further, two mitigation strategies and their potential advantages are examined. The first strategy involves
adjusting inventory policies dynamically based on the previous week’s demand, while the second strategy
incorporates dynamic inventory policies and permits manufacturers to transport OCs to distributors via air
freight when the distance between them exceeds 500 miles. To summarize the results of the evaluation,
Table 2 presents the fulfillment time of these mitigation strategies under different demand scenarios. The
findings indicate that adjusting inventory policies based on demand data can significantly reduce lead time.
Furthermore, air freight can reduce fulfillment time for distributor replenishment orders in the baseline and
increased contact rate scenarios. An increase is observed in the 90th percentile manufacturer’s fulfillment
time under increased usage rate for distributor replenishment orders. The preliminary findings suggest this
is due to the enlarged size of distributors’ replenishment orders under dynamic inventory policies. While
the implementation of dynamic inventory policies or the utilization of air freight has the potential to reduce
lead time, it is crucial to consider additional costs or bottlenecks arising from implementing these strategies.
Further studies are necessary to gain deeper insights into these potential effects.

5 CONCLUSION

In this study, a novel hybrid simulation framework combining a SIR model and a discrete event simulation
is proposed to understand the demand pattern of oxygen concentrators (OCs) and identify how to meet
nonstationary demand during a disruptive event, like a pandemic. A pre-COVID-19 demand scenario and
three COVID-19 demand scenarios using the SIR model: (i) baseline, (ii) increased contact rate, and (iii)
increased OC usage rate are investigated. The supply chain model proposed then examines the impact
of these different demand signals, determining the sensitivity to changes in inventory and transportation
policy to reduce lead times during the supply and demand shock.
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Table 2: Fulfillment time summary of customer and distributor replenishment orders.

90th percentile fulfillment time for national customer order (Days)
Demand scenario pre COVID-19 Baseline Increased contact rate Increased usage rate
Static + Ground 0.02 0.04 0.4 38.6
Dynamic + Ground 0.02 0.04 0.04 37.4
Dynamic + Air 0.02 0.04 0.04 37.3

90th percentile fulfillment time for national distributor replenishment orders (Days)
Demand scenario pre COVID-19 Baseline Increased contact rate Increased usage rate
Static + Ground 1.8 2.1 3.3 41.2
Dynamic + Ground 1.9 2 3.1 44.7
Dynamic + Air 0.9 1.2 1.7 43.7

The integrated simulation framework is shown to be robust and valid using the real-world data provided
by government and research organizations (i.e., CDC, Maia Research). The model incorporates regional
and demographic effects of COVID to enable a supply chain manager to pinpoint specific regions or states
which will suffer comparatively more from a supply chain shock, and enables the rapid testing of mitigation
policies (e.g., dynamic inventory, air freight) to determine how to minimize the effects of these shocks.
These policies can then be deployed at a granular, regional level, enabling a more robust shock response
while minimizing cost and resource usage. The team plans to incorporate additional scenarios into this
framework, including the targeted incorporation of robotics and automation technologies in the supply
chain to further reduce lead times and improve response to these shocks.
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