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ABSTRACT 

Metamodels are fast-to-compute mathematical models that are designed to mimic the input-output behavior 
of discrete-event or other complex simulation models. Linear regression metamodels have the longest 
history, but other model forms include Gaussian process regression and neural networks. This introductory 
tutorial highlights basic issues in choosing a metamodel type and specific form, and making simulation runs 
to fit the metamodel. The tutorial ends with a warning on potential pitfalls, and suggestions on further 
reading to expand your knowledge of metamodeling. 

1 INTRODUCTION 

Discrete-event simulation (DES) allows one to explore the dynamic behavior of complex stochastic 
systems. In many cases exercise of the real system is not possible, either due to practical constraints or 
because the system does not yet exist. Although there has been work on modeling dynamic aspects of 
system behavior (Fishman and Kiviat 1967; Schruben and Cogliano 1987; Sargent and Som 1992), this 
introductory tutorial focuses on DES for the case where a single numerical characteristic is of interest. This 
could be the mean of some overall performance measure, perhaps statistical uncertainty about the mean; or 
another characterization such as a quantile. When the DES model is complex, the computational effort in 
system simulation can be substantial. Metamodels are useful in this context: a computationally efficient 
approximation to the simulation model input-output function. The term metamodel was popularized and 
developed by Jack Kleijnen (for example, Kleijnen 1975), but the term and concept were both originated 
by Robert Blanning (1974, 1975). Metamodels are also called surrogate and response surface models. 

Metamodels, once fitted, can be used as a proxy, to evaluate instead of making (computationally 
expensive and stochastic) DES runs. Further, because of their explicit form, they can be used in many 
computationally intensive simulation operations, such as optimization (Barton and Meckesheimer 2006), 
input model uncertainty, quantiles and conditional value at risk, and robust design (Dellino et al. 2009).  

Simulation metamodeling remains an active area of research. While advances in metamodeling 
continue to appear, the introductory body of knowledge is not greatly changed over the past few years, and 
so this tutorial borrows heavily from its predecessors (Barton 2015; Barton 2020). The emphasis is on 
ordinary regression with or without transformed variables, and Gaussian process (GP) metamodels, both of 
which are straightforward to implement. Difficulties with neural networks for beginners are explained. 
Aspects relevant in an introductory setting are presented in Section 3.  

This tutorial aims to provide an accessible introduction to the beginner. This does not obviate a need 
for a familiarity with mathematical models and basic statistics. The intended learning outcome is for 
participants to understand the key tasks and tools needed to build, validate and use simple metamodels 
using tools like Excel, Minitab, SAS/JMP or R. Metamodeling process and metamodel types have greater 
emphasis than the experiment designs used to fit them. For more detail on the design of experiments (DOE) 
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for choosing DES runs to fit a metamodel. see Barton (2021), Kleijnen (2008), Law (2017), and Sanchez 
et al. (2021), each of which provide different, complementary views. The tutorial focuses on common uses 
for metamodels, not on sophisticated applications such as quantile estimation (Batur et al. 2018) or input 
uncertainty (Barton et al. 2014). 

The next section places the metamodeling activity in the overall process of building and using discrete-
event simulation models. That is followed by a section reviewing and illustrating the basic metamodeling 
process for predicting average waiting time in a queue as a function of mean service time. The next section 
describes selecting and scaling the predictor variables (x) for the model and the selection and possible 
transformations of output variables (Y ) to be predicted, again illustrated for the queueing example. An 
introduction to metamodel types and associated experiment designs follows. The next sections describe 
metamodeling software and the basics of metamodel validation. 

2 METAMODELING PRINCIPLES 

2.1 The Role of Metamodels in DES 

There is general agreement about the major activities that are part of a simulation study; for examples see 
Banks et al. (2009) and Law (2014). Below is a summary in ten key steps: 

 
1. Formulate the problem and objectives of the study. 
2. Collect data, formalize assumptions and conceptual model. 
3. Test validity of the conceptual model against objectives. 
4. Identify design parameters and outputs; program the model. 
5. Verify that the program output matches the conceptual model expectations. 
6. Validate program: comparing against real system data or expected behavior. 
7. Create a DOE for decision support. 
8. Run simulation program using the decision support DOE. 
9. Analyze results of the experiment. 
10. Use simulation results to inform decisions: through prediction, sensitivity analysis, optimization. 
 

The role of metamodels fits in the last four steps of this process. The key assumption is that there is interest 
in predicting system performance under a large number of conditions; too many to explore directly using 
the DES model, or because the response for a particular condition must be determined quickly, more quickly 
than by conducting the simulation. Two characteristics make metamodeling distinct from generic ‘machine 
learning’: the stochastic output typically has heterogeneous variance, and data is from a designed 
experiment, rather than observational data. While machine learning is often used to predict a class, 
metamodels predict some numerical performance, not a class. In the next section we expand the description 
of the metamodel process in the above context. 

2.2 Basics of Metamodeling 

A metamodel is a function, say f, that takes some simulation model design parameters as inputs, represented 
here by a vector x, to an output, f(x). Examples of model design parameters include input probability 
distribution parameters, such as arrival rate and mean service time; and system configuration parameters, 
such as the number of servers, service priority, operational protocols, and buffer capacity. For now, assume 
that any design parameter can be coded numerically, even if only as a 0-1 variable. There will be more 
about how to do this later in the tutorial. The metamodel f(x) produces an approximation to some 
characteristic of a simulation output Y, e.g., mean of Y, standard deviation of Y, 0.9-quantile of Y.  Because 
our focus is on dynamic simulation, these quantities change over the duration of the simulated time period, 
which is called a run. Examples of simulation outputs are time in the system for a set of jobs or customers, 
utilization of a particular resource (e.g., operator, machine), or perhaps net revenue over a specific time 
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period. Generally, these outputs are averaged over the length of the simulation run and vary randomly from 
run to run. If the value of the characteristic is Y(x) for an actual simulation run with design parameters set 
to the values in x, then we represent the fitted metamodel approximation f(x), as: 

 
 h(Y(x)) ≈ f(x), (1) 

 
where h represents some function of the random variable Y such as its mean, standard deviation, or a 
quantile. Note that the distribution of Y depends on the values of the design parameters. The simplest and 
most common metamodel type is linear regression. The term “linear” refers to the way the unknown 
coefficients come into the model. Linear regression can capture curvilinear relationships. 

To illustrate the basics of metamodeling, we will fit two linear regression metamodels to data from a 
simple queueing simulation. Although simulation is not needed for an M/M/1 queue, such a system is easy 
to understand and has behavior that is frequently seen in simulations. In this case we want to explore how 
the average waiting time (not including service; the output) varies with mean time to service a customer 
(the input, or design parameter), assuming an arrival rate of 1 customer per unit time (in some scaled units 
of time). Figure 1, made using the basic R linear model function lm(), shows the results of simulations of 
5000 customers in systems with mean service times of 0.7, 0.75. 0.8, 0.85, 0.9 and 0.95. There are three 
replications for each of the run conditions. 

 

Figure 1: Output of M/M/1 experiments, three replications each at six mean service time settings. 

If we fit a linear regression model to this data, the metamodel produces the fit seen in Figure 2. If we 
fit a quadratic metamodel to these data, it produces the fit shown in Figure 3. Clearly, there are problems 
with the fidelity of both of these fitted metamodels. We will return to this example throughout the tutorial 
to discuss each aspect of the metamodeling process. 

For Figure 2, the metamodel corresponding to (1) has Y ≡ average waiting time for the 5000 customers 
in a simulation run, h(Y) ≡ the expected value of this run average, i.e., E(Y); x ≡ mean service time (the x 
vector has only one component), and f(x) = -78.10 + 61.42x. For Figure 3, the fitted metamodel is f(x) = 
269.9 -708.3x + 466.5x2. 

Now that we have a basic understanding of a metamodel, we can discuss the process of selecting a 
metamodel form and choosing simulation experiment designs to fit a chosen metamodel form. 

2.3 The Metamodeling Process 

The rest of this introductory tutorial is organized around the steps of the metamodeling process. An early 
formal description was given by Burdick and Naylor (1966). Table 1 shows a similar process. 
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Figure 2: A regression metamodel fitted to the data, with intercept and linear term only. 

 

Figure 3: The fitted quadratic regression metamodel is an improvement. 

Table 1: The metamodeling process. 

Step Activity 

1 Determine Purpose(s) for Metamodeling 

2 Identify Design Parameter(s) and Output(s) 

3 Choose Metamodel Type 

4 Based on Metamodel Type and on Purpose, Choose Experiment Design to Fit Metamodel 

5 Conduct Simulation Runs Specified by the Experiment Design; Fit Metamodel 

6 Validate Metamodel Adequacy: If Unsatisfactory Return (usually) to Step 3 

7 Use Metamodel for Intended Purposes 
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3 IDENTIFYING DESIGN PARAMETERS AND OUTPUTS 

3.1 Design Parameter and Output Selection 

Typically, simulation models have many design parameters that might be included in a metamodel. Each 
parametric probability distribution used in the model has parameters. These are called input distribution 
parameters. They characterize randomly varying interarrival times, service times, times until machine 
breakdown, message lengths, routing choices, transport times, number of workers out sick, uncontrollable 
environmental factors, and other characteristics of the simulated system that have a stochastic nature. 

In addition, there are design parameters that are not associated with probability models: the number of 
workers scheduled to work at a particular time, the number of available machines, processing protocols and 
other characteristics of the system being modeled that can be changed, either for a currently operating 
system or some system to be built in the future. 

The particular parameters to include in the metamodel depend on three things: i) a desire to include 
parameters that the decision maker would like to explore changing; ii) the need to model the impact of any 
uncontrollable environmental factors that affect system performance; and iii) the recognition that more 
metamodel parameters generally means a larger fitting experiment, and more computational effort to fit the 
metamodel. Further, for regression metamodels, the inclusion of higher order terms to capture interaction 
effects and nonlinearity (x2 for the M/M/1 example) also adds to the size of the experiment design. Cause-
effect diagrams and a-priori plots can help identify the design parameters and any expected interactions or 
nonlinearity (Barton 2021). For the M/M/1 example above, the experiment design was presented as given. 
In actuality, it would be selected after considering whether to include x2 and perhaps x3 in the metamodel. 

Usually, a separate metamodel is fitted for each function of the simulation outputs needed for the 
purpose(s) identified in Step 1. Multiple response surface models were considered in the early paper by 
Burdick and Naylor (1966) and many subsequent authors. True multivariate metamodels are a recent 
development (Liu et al. 2018). For the M/M/1 example above, only one function of one simulation output 
was considered: h corresponds to the expected value, and Y is the average waiting time of 5000 simulated 
customers. Occasionally, h will be chosen to reduce the nonlinearity of the output with respect to the design 
parameters, or to achieve equal (homogeneous) output variance across the design space. Methods for 
choosing such transformations are summarized in Barton and Meckesheimer (2006). 

3.2 Continuous and Discrete Design Parameters and Outputs 

Generally metamodeling assumes that all design parameters and outputs can take on continuously varying 
values. But many design parameters are discrete. Examples include numbers of servers, machines or other 
resources, buffer sizes, number of products, type of processing protocol, system configuration alternatives, 
and so forth. When the parameter has a numerical value that is restricted to a discrete set of values, then 
assuming that the parameter can take on a continuous set of values is often practical. The discrete nature 
places a restriction on the experiment design that is used for fitting, but the fitted metamodel can be 
evaluated on the discrete set of allowed values. When there are only two values for the parameter (e.g., 
Protocol A and Protocol B), a discrete numerical characterization can be assigned, for example, x = 0 for 
Protocol A and x =1 for Protocol B. If the parameter does not have numerical value and there are more than 
two levels, numerical conversion is still possible, but requires additional x components. For example, for 
three protocols, let x1 = 1 if Protocol A is used, and = 0 otherwise. Let x2 = 1 if Protocol B is used, and = 0 
otherwise. If Protocol C is used, then both x1 and x2 = 0. Then metamodel terms for x1 (or x2) will indicate 
the differences of Protocol A (or Protocol B) from Protocol C. 

When the simulation output is discrete (e.g., success or failure), there is a restriction on the type of 
metamodel. These are generally called classification or discriminant metamodels. It is also possible to 
construct metamodels when the response is piecewise continuous (Meckesheimer et al. 2001).  
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3.3 Scaling/Coding Parameters and Outputs 

In addition to the output transformations and qualitative variable coding mentioned previously, the ability 
of the metamodel to provide insight depends on careful scaling and coding of all design parameters. 
Generally, scale all numerical design parameters so that -1 is the smallest value taken, and +1 is the largest 
value. This scaling is accomplished by the following: 
 
 xnew = 2[x- ((xmax + xmin)/2)/(xmax - xmin)]. (2) 
 
Compare the insight from the coefficients for the fitted metamodel with unscaled mean service time: 

 
                  Estimate Std. Error t value Pr(>|t|)   
(Intercept)         269.92      76.85   3.512 0.003144 **  
Mean_Service       -708.30     187.75  -3.773 0.001844 **  
I(Mean_Service^2)   466.50     113.68   4.104 0.000939 *** 
 

with the results below, with mean service time scaled to +/-1. 

(Intercept)           3.076      1.091   2.820 0.012927 *   
sMean_Service         7.677      1.038   7.398 2.23e-06 *** 
I(sMean_Service^2)    7.289      1.776   4.104 0.000939 *** 
 
First, the coefficients for the unscaled regression are hard to interpret. What does a linear effect of -708 

mean? Remember, the units are in minutes. For the scaled coefficient model, the value 7.677 means the 
linear increase in average wait time when moving from the mid-level mean service time value (.7+.95/2 = 
.825) to the high value (.95) is about 7.7 minutes; added to that is the quadratic portion of increase: another 
7.3 minutes. Clearly, basic insights from the regression model coefficients fail to materialize without careful 
coding of the design parameter value(s). Second, the linear coefficient changed drastically from the model 
with only a linear term described at the end of Section 2.2: 61.4 vs. -708.30. The regression model with 
only a linear term but using scaled x would produce the same linear coefficient as the scaled quadratic 
model: 7.677. Why are they so different for the unscaled model? This difference is caused by the same issue 
as this third problem: the p-values are larger for the unscaled model - because the linear and quadratic 
effects are confounded. These effects are not confounded in the scaled model. The quadratic effect is 
confounded with the intercept in the scaled model. Fixing that requires an orthogonal polynomial model 
structure. The topic of orthogonal polynomials is beyond this tutorial. See for example Montgomery (2012). 

4 CHOOSE A METAMODEL TYPE 

For this introductory tutorial we focus on two types of metamodels: linear regression and stochastic Kriging 
(spatial correlation) models, and briefly touch on a third: neural network regression. There are descriptions 
of other metamodel types in Barton (2009). We identify the metamodel type before selecting an experiment 
design for practical reasons: factorial and fractional-factorial designs, appropriate for linear regression, can 
cause significant numerical difficulties when used to fit Kriging models. Further, the complexity of the 
linear regression model places (minimum) requirements on the type of factorial or fractional-factorial 
design that can be employed for fitting. 

4.1 Linear Regression Metamodels 

The form of the linear regression probability model that characterizes the simulation output is: 
 
  𝑌ሺ𝑥ሻ ൌ 𝛽଴ ൅ 𝛽ଵ𝑔ଵሺ𝑥ଵ, 𝑥ଶ,⋯ , 𝑥ௗሻ ൅ ⋯൅ 𝛽௣𝑔௣ሺ𝑥ଵ, 𝑥ଶ,⋯ , 𝑥ௗሻ ൅ 𝜀 (3) 
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where  are independent, normal random quantities with mean zero and unknown variance and there are d 
design parameters. Again, the model is linear because the unknown coefficients (’s) appear linearly (as 
multipliers) in the model. The g functions can be nonlinear in the x’s, for example, g5(x1, x2, ..., xd) = x1

2, or 
g7(x1, x2, ..., xd) = x1x5. There are p terms in the model (not counting the intercept). The assumption is that 
the variance of Y(x) does not change depending on the values of (x1, x2, ..., xd). This model (3) implies that 
E(Y) has the same form as (3) but without the  term. Further, the regression metamodel f(x) will match (3) 
but with estimated values b0, b1, …, bp for the unknown  coefficients. Since the estimated values b0, b1, 
…, bp will vary randomly from one experiment to the next, conceptually the fitted metamodel depends 
randomly on the data. Given a set of data {xi, yi} where xi = (xi1, xi2, …, xid) is the vector of design parameter 
values for the ith simulation run, and yi is the corresponding output, let X be the matrix whose ith row is xi 
and let y be the column vector consisting of the elements {yi}. Then the estimated coefficient vector b = 
(b0, b1, …bp) is computed by: 

 
 b = (X'X)-1X'y, (4) 
 
where the prime symbol denotes matrix transpose. The solution (4) minimizes the average squared deviation 
of the metamodel prediction from the observed simulation outputs. The intercept term b0 has a ‘dummy’ g 
function g0(x1, x2, ..., xd) ≡ 1. The fitted quadratic regression metamodel using scaled x values at the end of 
Section 3 has estimated coefficients b0 = 3.076, b1 = 7.677, and b2 = 7.289. 

Linear regression models have simple form and so provide direct insight on the behavior of the 
simulation. When design parameters are coded over [-1, +1], then the magnitude of the linear coefficients 
indicate the relative sensitivities of the simulation output to all design parameters (over the defined ranges 
of parameter values). Similarly, quadratic coefficients can indicate nonlinearity, and convexity/concavity. 
Coefficients for cross-product terms indicate interaction effects – the sensitivity of the output to changes in 
one design parameter may vary, depending on the setting of another design parameter. Also, linear 
regression models are readily available in commercial and free statistical software, and direct calculation 
via (4) is straightforward. 

Linear regression models using polynomial functions of the design parameters have limited flexibility, 
however. Figure 4 shows an attempt to find a better-fitting metamodel for the M/M/1 example by adding a 
cubic term. While the curve comes closer to the observed waiting times overall, it is no longer 
monotonically increasing, something we expect in a metamodel of mean waiting time versus mean service 
time. Adding more terms improves the fit near the six experiment design points but increases the excursions 
of the metamodel away from the design points. For the classic illustration of this “excursions” shortcoming 
of polynomial models see Figure 1 in Barton (1992). 

Looking at Figures 1-4 it is apparent that the variance of the response is larger at higher average waiting 
times. This is common for models where the output is some function of a queueing system, as is often the 
case in discrete-event simulation.  One approach to reducing this heteroscedasticity is to take different 
numbers of replications at different design points. By taking more replications at high-variance points, the 
variance of the average response at such points is reduced. This is an expensive proposition though: the 
spread you see is related to the standard deviation, which is only reduced as the square root, so to reduce 
the spread by a factor of two requires 4 times the number of replications. For our M/M/1 data we would 
need approximately 120 additional replications for the x  = .95 setting! 

Often problems with heteroscedasticity and fitting can be reduced by transforming the dependent 
variable(s). A typical transformation for queueing output data is the logarithmic transformation. The left 
graph in Figure 5 shows the same model as Figure 2 but using ln(Y) as the dependent variable. Note that 
the large difference in spread across the design points is reduced. In addition, the fit, as measured by R2, is 
better. And it is monotonically increasing, as required. When viewed in the untransformed scale, the 
metamodel still fails to capture the extreme nonlinearity at the right. Using a quadratic regression improves 
the fit, but still fails to capture the extreme nonlinearity. For more on transformations, see Montgomery 
(2012). 
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Figure 4: The fitted cubic regression metamodel is not monotonic. 

 

Figure 5: Transforming Y to ln(Avg Wait) reduces heteroscedasticity and improves fit. 

4.2 Gaussian Process (Kriging) Metamodels 

The simplest Gaussian Process (sometimes identified as Kriging) model is: 
 

 Y(x) = 0 + M(x), (5) 
 
where M is the realization of a mean zero random field. That means it is a function drawn at random from 
the set of all functions whose nearby values are correlated according to a prespecified spatial correlation 
function. For that reason, these models are also called spatial correlation models. As in (3), the realization 
can be interpreted as g1(x) = M(x) and 1 = 1. Other regression-type g terms might be added, but typically 
the intercept 0 and M(x) are all that is needed for a good fit. For stochastic GP models, a term  (x) is added 
to (5). When the randomness is assumed to be Gaussian, the models are called Gaussian Process (GP) 
regression models. GP models approximate deterministic response functions, since once the realization 
occurs, the model (5) has no intrinsic randomness. Ankenman et al. (2010) modeled  (x) added to (5), by 
a second spatial correlation model. The fitted stochastic GP metamodel for the mean response is: 
 
 𝑌෠ሺ𝑥ሻ ൌ 𝑏଴ ൅ ሾ𝑡ଶ𝑅ெሺ𝜃෠ሻ ൅ Σ෠ఌሿିଵሺ𝑌ሜ െ 𝑏଴1௞ሻ (6) 
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where t2 and ̂  are spatial correlation parameters estimated from the experimental data, ̂  is the sample 
intrinsic error covariance matrix (in their experiments no covariances were included), )ˆ(MR is an 
approximate spatial correlation matrix computed using ̂ , and k1  is a k-dimensional vector of ones. 
Popular stochastic GP modeling software also implements a version of (6), with diagonal ̂ , characterized 
as the nugget. 

GP and stochastic GP models have great flexibility. They can model more complex response function 
shapes than is possible with polynomial regression metamodels. If one requires a global approximation to 
a nonlinear response, GP metamodels are an attractive alternative to linear regression models that use 
polynomial g functions. This comes at a cost. First, the model is more complex to fit, and GP or stochastic 
GP modeling capability is not available in some statistical packages. Second, fitted model coefficients give 
some indication of how rapidly the response changes as components of x change, but the detailed insight 
available from a fitted linear regression model cannot be obtained. Further, if experimental run conditions 
are scarce, predictions in design parameter space between experimental runs can be significantly in error 
due to mean reversion (see Figure 1 in Erickson et al. (2018)). These models can be sensitive to parameter 
choices (Gramacy and Lee 2012) – the example below illustrates this. Because this is an introductory 
tutorial, the best advice here is to educate yourself thoroughly in these models, and their potential shortfalls. 

For Gaussian process regression, the R package mlegp is used (Dancik 2018). For this software the 
stochastic modeling is similar to that in Ankenman et al. (2010). The stochastic variance terms can be 
estimated directly at each design point using the replication sample variance, provided to mlegp; otherwise 
mlegp uses a pooled estimate, identical at every design point.  

Figure 6 shows the fitted GP model for the M/M/1 experimental data using the stochastic variance terms 
estimated locally from the replication variance at each point. Notice that the prediction is poor at high mean 
service time. This is because the variance is allowed to differ across mean service values, and the high 
variance at high mean service means the prediction relies heavily on the spatial correlation, thus a predicted 
wait that is close to the waits at neighboring mean service times. If one uses a constant variance nugget, 
one might expect a closer fit at the high end, since the variance will be less, and the response values observed 
for mean service time = .95 would be given more weight in the prediction.  

Figure 7 shows the resulting fit. While the prediction at high mean service time is improved, the 
metamodel now exhibits undulation in its fit, for a function known to be monotonic. Monotonicity for 
Gaussian process regression cannot be enforced in any straightforward way, but see Kleijnen and van Beers 
(2013). This serves as a warning on the use of Gaussian process models. Note that in high dimensions, 
nonmonotonic structure is difficult to detect.  

 

Figure 6. Gaussian process model fit to the M/M/1 simulation data, locally estimated variance. 
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Figure 7: Gaussian process metamodel fit using common variance across all points.  

4.3 Artificial Neural Network Metamodels 

Artificial neural network (ANN) metamodels develop the approximation function f(x) as a composition of 
networked simple nonlinear functions with adjustable coefficients. A feedforward ANN is an acyclic 
network of simple nonlinear (neuron) functions, each using a linear combination of outputs from the direct 
predecessor nodes. The ANN model can be thought of as a nested form of equation (3), where the Y output 
is defined node-by-node with a g function, e.g., g(s) = = 1/(1+e-s) applied to each weighted sum s of the 
immediate predecessor nodes. There is one input node for each component of x. Layers between the input 
and output nodes are called hidden layers. For example, an ANN with five input components and two hidden 
3-node layers (with nodes indexed by i and h) would have mathematical form: 

 
 𝑓ሺ𝑥ሻ ൌ 𝑔ሺ𝑤ଷ଴ ൅ ∑ 𝑤ଷ௛𝑔ሺ𝑤ଶ௛଴ ൅ ∑ 𝑤ଶ௛௜𝑔ሺ𝑤ଵ௜଴ ൅ ∑ 𝑤ଵ௜௝𝑥௝ሻሻሻ

ହ
௝ୀଵ

ଷ
௜ୀଵ

ଷ
௛ୀଵ  (7) 

 
where the w values in (7), analogous to b values in (4), would be fitted via least squares. ANN fidelity and 
flexibility make them attractive for complex metamodeling and metamodel-based optimization (Dunke and 
Nickel 2020). They are often referred to as neural networks, although ANN is more formally correct. 

 

Figure 8: ANN metamodel fit using nnet in R.  
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ANNs can provide very good fit to nonlinear simulation response functions. Figure 8 shows the result 
using the package nnet (nnet 2022) and specifying one hidden layer with two nodes for the network. 
Although ANN software is readily accessible in R and other programming languages, implementation of 
ANN metamodels must be undertaken with caution. Coding the independent variables and choosing an 
ANN structure require care and sophistication. In an exploratory study (Fonseca et al. 2003) the authors 
note “the ANNs capabilities of effectively learning were highly restricted by the selected codification 
scheme.” This assessment is further supported by Al-Hindi (2004) and Can and Heavey (2012), who 
explored the predictive ability of artificial neural networks for simple (s, S) simulation models. 

ANNs are viewed as black boxes. While insight is possible from either linear regression coefficients 
and to a lesser extent from spatial correlation parameters, ANN coefficients generally do not provide insight 
on the impact of independent variables on simulation output. Graphical presentations of the neural network 
edge weights are available, but these provide little understanding of the nature of the response. 

5 CHOOSE AN EXPERIMENT DESIGN 

Metamodels are fitted using a designed simulation experiment. Experiment design types include random 
designs, optimal designs, combinatorial designs, Latin hypercube designs, orthogonal arrays, uniform 
designs, mixture designs, sequential designs, and factorial and fractional-factorial designs. The number and 
kinds of terms to be fitted place constraints on the minimum number of runs and minimum number of  
design parameter levels tested. Barton (2021) and Sanchez et al. (2021) are references for this activity. 

5.1 Experiment Designs for Linear Regression 

Experiment designs for regression are well-developed. There is a clear link between the form of the model 
being fitted and the kind of experiment design that is preferred. Typically, regression designs are either 
factorial designs or fractional factorial designs. Factorial designs are based on a grid, with each factor tested 
in combination with every level of every other factor.  Factorial designs are attractive for three reasons:  i) 
the number of levels that are required for each factor is one greater than the highest-order power of that 
variable in the model, and the resulting design permits the estimation of coefficients for all cross-product 
terms ii) they are probably the most commonly used class of designs, and iii) the resulting set of run 
conditions are easy to visualize graphically for as many as nine factors.   

The disadvantage of factorial designs is that they require a large number of distinct runs when the 
number of factors and/or the number of levels of the factors are large.  In this case, fractional-factorials are 
often employed. Table 2 gives some guidance on experiment designs appropriate for regression modeling, 
depending on the purpose and nature of the mode, but is not comprehensive. For example, it does not 
include sequential designs, e.g., Wan et al. (2009). 

Table 2: Experiment designs for linear regression metamodels. 

Objective Minimum Size Factorial Designs References 
Find Influential 
Design Params 

Saturated and supersaturated fractional factorial 
Lin (1993), Li and Lin 
(2003) 

Sensitivity 
Saturated and resolution III Plackett-Burman 

fractional factorial 
Sanchez and Sanchez 
(2005), Kleijnen (2008b) 

Insight 
3-level full or fractional factorial or central composite 

(more than 3 levels needed to check lack of fit) 

Montgomery (2012), 
Kleijnen (2017), Sanchez et 
al. (2021) 

Optimization 3- or more level fractional factorial 
Montgomery (2012), Law 
(2014) 
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5.2 Experiment Designs for Gaussian Process Regression 

Optimal experiment designs for GP metamodels remains an active field. Factorial designs have been 
found to work poorly with deterministic Kriging models. Latin hypercube designs are often used for GP 
models, but it is important to sample many Latin hypercube designs and choose one with good properties; 
for example, the design that maximizes the minimum distance between any two points (maximin). 
Alternatives are Hammersley sampling sequences, orthogonal arrays, and uniform designs. There are many 
references for such designs, but see Morris and Mitchell (1995) Sanchez and Sanchez (2019) for examples. 

5.3 Experiment Designs for Artificial Neural Network Regression 

ANN regression is less sensitive to the experiment design than GP regression. Experiment designs described 
above for linear regression and for GP regression have been used. The critical aspect of experiment design 
for neural network models is to scale the independent variables to [0,1] or +/- 1. While neural network 
fitting software typically allows the option of keeping the dependent variable in the original units, I have 
found the fitting to be more reliable when the dependent variable is scaled to [0,1] as well. For the M/M/1 
example, the x variable was already scaled between 0 and 1 (.7 to .95), and the Y variable was divided by 
30 to ensure values between 0 and 1.  

6 CONDUCT RUNS AND FIT MODEL 

Unlike physical experiments, external environmental factors generally do not affect simulation results. 
Once the model type and design selection steps are complete, running the experimental conditions is 
straightforward, provided the experimenter keeps the simulation output results attached to the correct values 
of the design parameter settings for each run.  

Reusing random number streams for runs with different design parameter settings can induce 
correlation. Correlation can be hard to achieve, but it can result in better fits for regression metamodels 
(Schruben and Margolin 1978; Tew and Wilson 1992). Work by Chen et al. (2012) found that correlation 
induction using common random numbers was not effective for GP modeling, but more recent work seems 
to indicate an advantage for GP metamodel-assisted optimization (Pearce et al. 2019). 

6.1 Software for Metamodeling 

Virtually all DES software allows input of a spreadsheet of simulation run parameters (created using your 
favorite DOE software, such as Matlab, Minitab, R, SAS/JMP or at the SEED Center for Data Farming) 
and spreadsheet output of results, for analysis using your favorite metamodeling software. Built-in 
metamodeling capabilities seem rare in DES software, based on the survey by Swain (2019). The survey 
had no specific entry for metamodeling, but software identifying DOE capability includes AnyLogic, 
Flexsim, Frontline Solver, INCONTROL, ProModel, Siemens PLM, SIPmath Modeler. SAS/JMP and 
Arena were not participants in the 2019 survey, but both SAS and JMP software identify the ability to link 
design of experiments capability with simulation and back to analysis/fitting metamodels.  

When DOE and metamodeling are not supported by your simulation environment, you should be 
prepared to provide spreadsheet input for the simulation experiment design and receive spreadsheet output 
from the runs to use in building your metamodel. The DOE and metamodel fitting can be managed by 
statistical software. Commercial software such as Excel-based packages, Minitab, or SAS/JMP provides an 
easy, menu-driven interface, while the freely available R software requires programming ability.  

R provides free, high-quality statistical tools and includes many metamodel options. What makes R so 
powerful are its packages; there are over 5200 on the CRAN download site https://cran.r-project.org/. The 
free package RStudio (RStudio 2022) provides an integrated software development environment (IDE) that 
minimizes the R programming effort. All of the examples in this tutorial were programmed in R using 
RStudio on a PC. Posts on my personal page https://sites.psu.edu/russellbarton/ have the R code and Excel 
data file available for download. 
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7 VALIDATING METAMODEL ADEQUACY 

The fitted model must be checked to see if the fidelity is adequate for the intended use. See Kleijnen and 
Sargent (2000) for more details on this process. For a regression metamodel for screening, simple statistical 
significance checks may be sufficient. For purposes where fidelity is important, additional goodness-of-fit 
tests are employed.  

There are well-developed goodness-of-fit tests for regression that appear in all commercial packages. 
To use them you will need to include more than the minimum number of design parameter levels.  Further, 
confidence intervals give uncertainty about the predicted mean simulation output, and prediction intervals 
characterize uncertainty for possible results of a single simulation run. For regression models, mean squared 
error (MSE) or its square root (RMSE) is provided automatically with the fit, as is R2. High R2 values can 
occur when there are just a few extreme values of x and correspondingly high or low values of the response. 
MSE or RMSE will give a better assessment of fit in this case.  

These concepts exist for GP models, but their theoretical justification is weaker. A general-purpose 
measure of fit that can be used outside the regression setting is to leave some design conditions and 
corresponding responses out of the simulation runs used to fit the model and then check the error of the 
fitted model against the output of simulation runs left out of the fitting process. This cross-validation 
process can be computationally expensive if it is repeated for each possible omission. Meckesheimer et al. 
(2002) provide some efficient and effective assessment methods of this sort. Repeated instances of a cross-
validation process is called k-fold cross-validation. Cross-validation is built into the train() function in 
the caret package in R (caret 2022), but beyond the scope of this tutorial. 

8 BEWARE OF PITFALLS 

While metamodels provide a powerful tool in the simulationist’s toolkit, care is required to gain the 
potential benefits. One needs to be alert to the following: 

 
1. Failing to scale predictors to +/-1. 
2. Using too-high order for polynomial regression. 
3. Using a variance stabilizing transformation when there is no heteroscedasticity. 
4. Using a GP model when simplifying response surface properties are known. 
5. Trusting the universal fit properties of neural networks when fitting stochastic responses with 

replications. 
 

For more  information on the nature of these pitfalls and how to avoid them, see Barton (2023). 
 

9 PUT THE METAMODEL TO USE – AND FURTHER STUDY 

Assuming the fitted model passed the validation checks, it is ready to be used. Congratulations on 
successfully developing a metamodel! Remember though, that uses beyond the original purpose (e.g., using 
a screening metamodel for prediction or, worse, optimization) are not appropriate. To expand your 
understanding, many books on simulation have a chapter on the design of experiments, which usually 
covers metamodeling. Three books with comprehensive coverage are Friedman (1996), Kleijnen (2008a - 
ebook available online through some university libraries), and Law (2014). 
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