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ABSTRACT 

Output-data analysis is arguably the most-researched topic in the field of simulation modeling, with 

more than 1000 technical papers having been written.  However, many of the published papers are highly 

mathematical in nature, making them difficult to understand for many simulation practitioners.  In this 

tutorial, we discuss the replication and replication/deletion approaches which can address most analysis 

problems using three simple formulas (or expressions) from a first undergraduate statistics course.  Alt-

hough the replication approaches discussed above are widely used for estimating the mean of a single sim-

ulated system, we show that the same three formulas can also be used to compare any number of simulated 

systems, to handle multiple system performance measures simultaneously, and also to estimate performance 

measures such as probabilities and percentiles rather than just means.  We also discuss a relatively simple 

graphical methodology for determining a warmup period if steady-state characteristics are of interest.  

Moreover, the replication approach allows one to make multiple simulation runs simultaneously using a 

multi-core processor or cloud computing, leading to highly-precise estimates. 
 

1     INTRODUCTION 

 

In many “simulation studies” a great amount of time and money is spent on model development and “pro-

gramming,” but little effort is made to analyze the simulation output data appropriately.  As a matter of fact, 

a very common mode of operation is to make a single simulation run of somewhat arbitrary length and then 

to treat the resulting simulation estimates as the “true” model characteristics.  Since random samples from 

probability distributions are typically used to drive a simulation model through time, these estimates are 

just particular realizations of random variables that may have large variances.  As a result, these estimates 

could, in a particular simulation run, differ greatly from the corresponding true characteristics for the model.  

The net effect is, of course, that there could be a significant probability of making erroneous inferences 

about the system under study. 

 We now describe more precisely the random nature of simulation output.   Let 1 2, ,Y Y  be an output 

stochastic process (see, for example, section 4.3 in Law 2015) from a single simulation run.  For example, 

iY  might be the delay in queue for the ith job to arrive at a single-server queueing system. Alternatively, iY  

might  be the total cost of operating an inventory system in the ith month.  The 'iY s  are random variables 

that will not, in general, be independent or identically distributed (IID).  Thus, many of the formulas from 

classical statistics (see Section 2) will not be directly applicable to the analysis of simulation output data. 

 

Example 1. For the queueing system mentioned above, the delays in queue will not be independent, 

since a large delay for one customer waiting in queue will tend to be followed by a large delay for the 

next customer waiting in queue.  Suppose that the simulation is started at time zero with no customers 
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in the system, as is usually the case.  Then the delays in queue at the beginning of the simulation will 

tend to be smaller than later delays and, thus, the delays are not identically distributed. 

 Let 11 12 1, ,..., my y y  be a realization of the random variables 1 2, , , mY Y Y  resulting from running the sim-

ulation with a particular set of random numbers 11 12, ,...u u .  If we run the simulation with a different set of 

random numbers 21 22, ,...u u  , then we will obtain a different realization 21 22 2, ,..., my y y  of the random vari-

ables 1 2, , , mY Y Y .  (The two realizations are not the same since the different random numbers used in the 

two runs produce different samples from the input probability distributions.)  In general,  suppose that we 

make n independent replications (runs) of the simulation (i.e., different random numbers are used for each 

replication, each replication uses the same initial conditions, and the statistical counters for the simulation 

are reset at the beginning of each replication) each of length m, resulting in the observations: 

 

11 1 1,..., ,...,i my y y  

21 2 2,..., ,...,i my y y  

                 

1,..., ,...,n ni nmy y y  

 

The observations from a particular replication (row) are clearly not IID.  However, note that 
1 2, ,...,i i niy y y  

(from the ith column) are IID observations of the random variable iY , for 1,2,..., .i m=   More generally, 

each entire replication is independent of any other replication, and each replication’s observations have the 

same (joint) distribution.  This independence across runs is the key to relatively simple output-data analysis 

that is discussed in later sections of this paper.  Then, roughly speaking, the goal of output-data analysis is 

to use the observations 
jiy  (i = 1, 2,…, m; j = 1, 2,…, n) to draw inferences about characteristics of the 

random variables 1 2, , , mY Y Y . 

  

Example 2.  Consider a department of motor vehicles (DMV) with five clerks and one queue, which 

opens its doors at 9 A.M., closes its doors at 5 P.M., but stays open until all customers in the DMV at 

5 P.M. have been served.  Assume that customers arrive with IID exponential interarrival times with 

mean 1 minute, that service times are IID exponential random variables with mean 4.5 minutes, that 

customers are served in a first-in, first-out (FIFO) manner, and the queue is infinite in size.  We made 

n = 25 independent replications of the DMV model assuming that no customers are present initially 

and Table 1 shows two typical output statistics from the first 5 replications.  Note that results from 

different replications can be quite different.  For example, the average delay in queue was 10.37 minutes 

on the first replication but only 2.17 minutes on the second.  Thus, one run clearly does not produce the 

“answers.”  See Example 10 for further analysis of this DMV model. 

 

      Table 1: Results for 5 Independent Replications of the DMV Model. 

 

Replication Number of customers 

served 

Average delay in 

queue (in minutes) 

1 494 10.37 

2 464 2.17 

3 464 8.03 

4 436 7.93 

5 491 1.83 
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 Our goal in this paper is to discuss methods for statistical analysis of simulation output data and to 

present the material with a practical focus.  Section 2 of this paper reviews formulas from classical statistics 

based on IID data, which we will find useful later in this paper.  In Section 3, we discuss the two main types 

of simulations with regard to output-data analysis, namely, terminating and non-terminating.  Statistical 

methods for analyzing each type are given in Sections 4 and 5, respectively.  Section 6 discusses statistical 

techniques for comparing the means of two system configurations.  Finally, we give a summary of this 

tutorial and seven fundamental pitfalls in output-data analysis in Section 7. 

 Portions of this paper are based on chapters 4 and 9 of Law (2015).  Other references on output-data 

analysis are Alexopoulos and Kelton (2017), Banks et al. (2010), and Nakayama (2008). 

 

2    REVIEW OF CLASSICAL STATISTICS 

 

Suppose that 1 2, , , nX X X  are IID random variables with population mean and variance 2 and   , re-

spectively.  Then unbiased point estimators for 2 and    are given by 

  

1( )

n

i

i

X

X n
n

==


 

 

and 

 

2

2 1

[ ( )]

( )
1

n

i

i

X X n

S n
n

=

−

=
−


 

 

(An estimator is unbiased if its expected value is equal to the target population characteristic.)  Furthermore, 

an approximate 100(1 ) percent− (0 1)   confidence interval for   
is given by 

  

2

1,1 /2( ) ( ) /nX n t S n n− −     

                              

where 1,1 /2nt − −  is the upper 1 / 2−  critical point for a t distribution with 1n −  degrees of freedom.  If the 

sample size n is “sufficiently large,” then the confidence interval given by Expression (3) will have a cov-

erage probability arbitrarily close to 1 − .  Alternatively, if the 'iX s  are normally distributed, then the 

coverage probability will be exactly 1 − .  In practice, if the distribution of the 'iX s  is reasonably sym-

metric, then the coverage probability will be close to 1 −  (see pages 233-237 in Law 2015).  If we increase 

the sample size from n to 4n, then the half-length of the confidence interval, 
2

1,1 /2 ( ) /nt S n n− − , will de-

crease by a factor of approximately 2, since there is an n in the denominator under the square-root sign.  

 As stated above, the 'iY s from one simulation run are not IID and, thus, Expressions (1), (2), and (3) 

are not directly applicable to their analysis.  However, if we take comparable output statistics from different 

independent replications of a simulation model, then these observations are IID and the three expressions 

are applicable. 

 

Example 3. For the DMV simulation of Example 2, the five average delays in queue from column 3 of 

Table 1 are IID and, thus, Expressions (1), (2), and (3) could legitimately be used for their analysis. 

 

(3) 

(2) 

(1) 
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3    TYPES OF SIMULATIONS WITH REGARD TO OUTPUT ANALYSIS 

  

The options available for designing and analyzing simulation experiments depend on whether the simula-

tion of interest is terminating or non-terminating, which depends on whether there is an obvious way for 

determining the simulation run length. 

 A terminating simulation is one for which there is a “natural” event E that specifies the length of each 

run (replication).  Since different runs use independent random numbers and the same initialization rule, 

this implies that comparable random variables are IID.  The event E might occur at a time point that has 

one of the following properties: 

• The system is “cleaned out” 

• Beyond which no useful information is obtained 

• Specified by management. 

 

The event E is specified before any runs are made, and the time of occurrence of E for a particular run may 

be a random variable.  Since the initial conditions for a terminating simulation generally affect the desired 

measures of performance, these conditions should be representative of those for the actual system. 

 

Example 4. A retail/commercial establishment (e.g., a  DMV ) closes each evening.  If the establish-

ment is open from 9 to 5, the objective of a simulation might be to estimate some measure of the quality 

of customer service over the period beginning at 9 A.M. and ending when the last customer who entered 

before the doors  closed  at 5 P.M. has been served.  In this case, E = {8 hours of simulated time have 

elapsed and the system is empty}, and the initial conditions for the simulation should be representative 

of those for the DMV at 9 A.M. 

 

Example 5. Consider a military ground confrontation between a blue force and a red force.  Relative 

to some initial force strengths, the goal of a simulation might be to determine the (final) force strengths 

when the battle ends.  In this case, E = {either the blue force or the red force has “won” the battle}.  An 

example of a condition that would end the battle is one side losing 30 percent of its force, since this 

side would no longer be considered viable.  The choice of initial conditions for the simulation, e.g., the  

number of troops and tanks for each force, is generally not a problem here, since they are specified by 

the military scenario under consideration. 

 

Example 6. A company that sells a single product would like to decide how many items to have in 

inventory during a planning horizon of 12 months.  Given some initial inventory level, the objective 

might be to determine how much to order each month so as to minimize the expected average cost per 

month of operating the inventory system.  In this case E = {12 months have been simulated}, and the 

simulation is initialized with the current inventory level. 

 

  A non-terminating simulation is one for which there is no natural event E to specify the length of a run.  

This often occurs when we are designing a new system or modifying an existing system, and we are inter-

ested in the behavior of the system in the long run when it is operating ”normally.”  Unfortunately, “in the 

long run” doesn’t  naturally translate into a terminating event E.   

 Consider the output stochastic process 1 2, ,...Y Y  for a simulation model. Let ( ) ( )i iF y I P Y y I =    for 

1, 2,...i = , where y is a real number and I represents the initial conditions used to start the simulation at time 

0.  [The conditional probability ( )iP Y y I   is the probability that the event { }iY y occurs given the initial 

conditions I.]  For a manufacturing system, I might specify the number of jobs present, and whether each 

machine is busy or idle, at time 0.  We call ( )iF y I  the transient distribution of the output process at 

(discrete) time i for initial conditions I.  Note that ( )iF y I  will, in general, be different for each value of i 
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and each set of initial conditions I.  For fixed y and I, the probabilities 1( )F y I , 2 ( )F y I ,… are just a 

sequence of numbers.  If ( ) ( )iF y I F y →  as i →  for all y and any initial conditions I, then ( )F y is called 

the steady-state distribution of the output process 1 2, ,...Y Y .  Note that the steady-state distribution ( )F y  

does not depend on the initial conditions I. 

 A measure of performance for a non-terminating simulation is said to be a steady-state parameter if it 

is a characteristic of the steady-state distribution of some output stochastic process 1 2, ,... .Y Y   If the random 

variable Y has the steady-state distribution, then we are typically interested in estimating the steady-state 

mean ( )E Y = . 

  

 Example 7. Consider a company that is going to build a new manufacturing system and would like to 

 determine the long-run (steady-state) mean hourly throughput of their system after it has been running 

 long enough for workers to know their jobs and for mechanical difficulties to have been worked out.  

 The system will operate continuously 24 hours a day for 7 days a week.  Let iN be the number of parts 

 manufactured in the ith hour.  If the stochastic process 1 2, ,...N N  has a steady-state distribution with 

 corresponding random variable N, then we are interested in estimating the steady-state mean ( ). = E N  

 

Example 8. Suppose that a military organization is going to employ a new inventory system during (a 

long) peacetime and would like to determine the long-run mean monthly cost of operating their system.  

Let iC  be the cost of operating the inventory system in the ith month.  If the output process 1 2C ,C ,  

has a steady-state distribution with corresponding random variable C, then they might be interested in 

estimating the mean ( ). = E C     

 

4   STATISTICAL ANALYSIS FOR TERMINATING SIMULATIONS 

 

Suppose that we make n independent replications of a terminating simulation each terminated by the event 

E.  Let 
jX  be an output random variable defined over the jth replication, for 1, 2,...,j n= ; it is assumed 

that the 'jX s  are comparable for different replications.  Then the 'jX s  are IID random variables.  For the 

DMV model of Example 4, 
jX  might be the average delay 

1

/
N

i

i

D N
=

 over a day from the jth replication, 

where N (a random variable) is the number of customers served in a day and iD  is the delay in queue of 

the ith arriving customer.  (See columns 2 and 3 in Table 1.)  For the combat model of Example 5, 
jX  

might be the number of red tanks destroyed on the jth replication.  For the inventory system of Example 6, 

jX could be the average cost per month over the 12-month planning horizon. 

 Suppose that we would like to obtain a point estimate and confidence interval for the mean ( ), = E X   

where X is a random variable defined on a replication as described above.  Make n independent replications 

of the simulation and let 1 2, , , nX X X  be the resulting IID random variables.  Then, by substituting the

'jX s  into Expressions (1), (2), and (3), we get that ( )X n  is an unbiased point estimator for  , and an 

approximate 100(1 ) percent−  confidence interval for   is given by  

 

2

1,1 /2( ) ( ) /nX n t S n n− −  
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Figure 1: Small Factory. 

 

Example 9. A small factory consists of a machine and an inspector, as shown in Figure 1.  Unfinished 

parts arrive to the factory with exponential interarrival times having a mean of 1 minute.  Processing  

times at the machine are uniformly distributed on the interval [0.65, 0.70] minute, and subsequent in-

spection times at the inspector are uniformly distributed on the interval [0.75, 0.80].  (The assumption 

of uniformity is for ease of exposition, and is not likely to be valid in a real-world application.)  Ninety 

percent of inspected  parts are  “good” and  leave the  system  immediately; 10 percent of the parts are 

“bad” and are sent back to the machine for rework.  (Both queues are assumed to be of infinity capacity.)  

The machine is subject to randomly occurring breakdowns.  In particular, a new (or freshly repaired)  

machine will break down after an exponential amount of calendar time with a mean of 6 hours.  Repair 

times are uniform on the interval [8, 12] minutes.  If a part is being processed when the machine breaks  

down, then the machine continues where it left off upon the completion of repair.  Assume that the 

factory is initially empty and idle. 

 The factory gets an order to produce 2000 parts and, thus, a simulation of this system can be con-

sidered to be terminating with E = {2000 parts have been completed}.  Let T be the time required to 

complete the required 2000 parts.  Then the company would like a point estimate and a 95 percent 

confidence interval for the mean ( ).E T =  

 We made 10 independent replications of the simulation and obtained the following observed values 

for T (in hours): 

 

1 32.62T = , 
2 32.57T = , 

3 33.51T = , 
4 33.29T = , 

5 32.10T = , 
6 34.24T = , 

7 32.70T = , 
8 33.49T = , 

9 33.36T = , 
10 34.61T =  

  

 Substituting the 'jT s  into Expressions (1), (2), and (3), gives the following results: 

 
2(10) 33.25,  (10) 0.606T S= =  

  

 and an (approximate) 95 percent confidence interval  for ( )E T =  is given by 

 
33.25 0.56   or   [32.69,33.81]  

   

      Thus, we are approximately 95 percent confident that   is between 32.69 and 33.81 hours.  (If 100 

people performed this experiment independently, then we would expect that about 95 out of the 100 

confidence intervals to contain the true  .)  Note also that the interval is quite precise, with the half-

length of the confidence interval being less than 2 percent of the point estimate.   

  

Example 10. For the DMV of Example 2, we made n = 25 independent replications of length “one 

day.”  Let X be the average delay over a day, which is defined as follows (see the notation in the first 

paragraph of Section 4): 

 

Machine Inspector 

0.9 Good 

0.1 Bad 
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N

i
i

D

X
N

=


= 1  

 

Then we would like a point estimate and 95 percent confidence interval for the mean ( ). = E X   From 

the 25 'jX s  produced in Example 2, we get 

 
2(25) 5 68, (25) 7 15X . S .= =  

  

 and an (approximate) 95 percent confidence interval  for ( ) = E X  is given by 

 

5.68 1.10   or   [4.58,6.79]  

 

 Thus, subject to the correct interpretation, we are approximately 95 percent confident that   is between 

4.58 and 6.79 minutes.  However, the interval is not very precise, with the half-length of the confidence 

interval being approximately 19 percent of the point estimate.  If we want to reduce the half-length 

from 1.10 to, say, 0.37, then a total of approximately 225 (= 9 25)  replications will be required.  

 

We have shown above how to get a point estimate and confidence interval for a mean ( ) = E X .  We 

now show how to perform similar analyses for probabilities and quantiles in the context of terminating 

simulations.  This discussion might be skipped by beginning readers. 

 Let X be a random variable defined on a replication as described in Section 4.  Suppose that we would 

like to estimate the probability ( )p P X B=  , where B is a set of real numbers and the symbol “∈” means 

“contained in.”  Make n independent replications and let 1 2, , , nX X X  be the resulting IID random varia-

bles.  Let S be the number of jX ’s that fall in the set B.  Then S has a binomial distribution (see Section 

6.2.3 in Law 2015) with parameters  n and p, and an unbiased point estimator for p is given by 

 

 

ˆ
S

p
n

=  

 

 Let  

 

1   if 

0   otherwise

j

j

X B
Y


= 


 

 

The jY ’s are IID random variables with ( )jE Y p= , and ˆ( ) /Y n S n p= = .  Let 2 ( )YS n  be the sample variance 

of the jY ’s.  Furthermore, after some algebra it can be shown that 

 
2 ˆ ˆ( ) (1 )

1

YS n p p

n n

−
=

−
 

 

Then an approximate 100(1 )−  percent confidence interval for p is given by 
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2
1,1 /2( ) ( ) /n YY n t S n n− −  

 

Example 11. Assume for the DMV model of Example 10 that the lobby has room for 16 people waiting 

in the queue (not counting customers being served).  Suppose that we would like to get a point estimate 

and approximate 90 percent confidence interval for 

 

0
( 16)     where max ( )

t T
p P X X Q t

 
=  =  

 

where ( )Q t  is the number in queue at time t and T is the length of a day.  Thus, X is the maximum 

queue length during a day.  In this case, B = [0, 16].  We made 100 independent replications of the 

DMV simulation and obtained ˆ 0.70.p =  Thus, for approximately 70 out of every 100 days, we expect 

the maximum queue length during a day to be less than or equal to 16 customers.  We also obtained the 

following approximate 90 percent confidence interval for p: 

   

0.70 0.09      or, alternatively,     [0.61, 0.79] 

 

 If we want to reduce the half-length of the confidence interval from 0.09 to 0.05, say, then the total  

       number  of required replications will be approximately 324 [ ( )
2

0.09 / 0.05 100=  ]. 

 

 Suppose now that we would like to estimate the q-quantile (100qth percentile) qx  of the distribution of 

the random variable X.  That is, ( )qP X x q = .  For example, the 0.5-quantile is the median.  Let 

(1) (2) ( ), , , nX X X  be the order statistics corresponding to the jX ’s resulting from making n independent 

replications, that is, ( )iX  is the ith smallest of the jX ’s for 1,2, , .i n=  Then a point estimator for qx  is 

the sample q-quantile ˆ
qx , which is given by 

  

( )

( 1 )

        if  is an integer
ˆ

   otherwise

nq

q

nq

X nq
x

X
+  


= 


 

 

where x    denotes the largest integer that is less than x.  Let r and s be positive integers that satisfy 

1 r s n   .  If n is “sufficiently large,” then a 100(1 )−  percent confidence interval for qx  is given by 

(see pages 143-148 in Conover 1999) 

 

( ) ( )( ) 1r q sP X x X    −  

where 

 

/2 (1 )r nq z nq q
 = + −
 

 

 

and 

 

1 /2 (1 )s nq z nq q−
 = + −
 
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The symbol x    denotes the smallest integer that is greater than or equal to x and 1 /2z −  is the upper 

1 / 2−  critical point for a standard normal random variable.  The greater than or equal sign in the confi-

dence-interval expression becomes an equal sign if X is a continuous random variable.  (Note that the three 

statistical expressions from Section 2 are not used here.) 

 

Example 12. For the DMV model of Example 11, suppose that we would like to decide how large a 

lobby is needed to accommodate customers waiting in the queue.  If we let X be the maximum queue 

length as defined in Example 11, then we might want to build a lobby large enough to hold 0.95x  cus-

tomers, the 0.95-quantile of X.  From the 100 replications in the previous example, we obtained 

0.95 (95)
ˆ 25.x X= =  Thus, if the lobby has room for 25 customers waiting in queue, this will be sufficient 

for approximately 95 out of every 100 days. Furthermore, an approximate 90 percent confidence inter-

val for 0.95x  is (91) (99)[ , ] [22,27]X X = .  (For this problem, X is a discrete random variable, so that the 

confidence level is approximate.) 

 

5     STATISTICAL ANALYSIS FOR  NONTERMINATING SIMULATIONS 

 

Let 1 2, ,...Y Y  be an output stochastic process from a single run of a non-terminating simulation.  Suppose 

that we want to estimate the steady-state mean ( )E Y = , which is also defined by  

 

lim ( )i
i

E Y
→

=  

 

where ( )iE Y  is the transient mean at time i.  Thus, the transient means converge to the steady-state mean.  

However, ( )iE Y   for “small” i because we generally don’t know how to choose the initial conditions I 

to be representative of “steady-state behavior.”  This causes the sample mean ( )Y m  to be a biased estimator 

of   for all finite values of m.  The problem that we have just described is called the problem of the initial 

transient in the simulation literature. 

 The technique most often suggested for dealing with this problem is called warming up the model.  The 

idea is to delete some number of observations from the beginning of a run and to use only the remaining 

observations to estimate .  In particular, given the observations 1 2, , , mY Y Y , we would use  

 

1( , )

m

i

i l

Y

Y m l
m l

= +=
−


 

 

(1 1)l m  −  rather than ( )Y m  as an estimator of .   In general, one would expect ( , )Y m l  to be less 

biased than ( )Y m , since the observations near the “beginning” of the simulation may not be very repre-

sentative of steady-state behavior due to the choice of initial conditions. 

 The question naturally arises as to how to choose the warmup period (or deletion amount) l.  We would 

like to pick l (and m) such that [ ( , )]E Y m l  .  If l and m are chosen too small, then [ ( , )]E Y m l  may be 

significantly different than .   On the other hand, if l is chosen larger than necessary, then ( , )Y m l  will 

probably have an unnecessarily large variance. 

 The simplest and most general technique for determining l is a graphical technique due to Welch (1983) 

(see also pages 513-520 in Law 2015).  Its specific goal is to determine l such that ( )iE Y   for ,i l  

where l is the warmup period.  This is equivalent to determining when the transient-mean curve ( )iE Y
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“flattens out” at level  .  In general, it is difficult to determine l from a single replication due to the inherent 

variability of the process 1 2, ,...Y Y .  As a result, Welch’s procedure is based on making multiple replications 

of the simulation in a pilot study. 

 

5.1   The Replication/Deletion Approach 

 

In this section, we discuss how to construct a point estimate and confidence interval for .   Suppose that 

the warmup period, l, has been determined by Welch’s procedure or by using “engineering judgment.”  

Make n independent replications of the output process 1 2, ,...Y Y  each of length m, where m should be much 

larger than l.  (There is no definitive way of picking the run length m here, as there was for terminating 

simulations.)  Let 
jiY  be the ith observation from the jth replication, for 1, 2,...,j n=  and 1, 2,...,i m= .  Let 

 

1

/( - )   for 1, 2,...,
m

j ji

i l

X Y m l j n
= +

= =
 

 

Note that 1i l= +  is where we think that “steady state” begins.  Then the 'jX s  are IID random variables.  

Furthermore, ( )jE X   since 
, 1 , 2 ,, ,...,j l j l j mY Y Y+ +

 each have approximate mean  .  Then, by substituting 

the 'jX s  into Expressions (1), (2), and (3), we get that ( )X n  is an (approximately) unbiased point estimator 

for ,  and an approximate 100 1( )−  percent confidence interval for   is given by  

 

2

1,1 /2( ) ( ) /nX n t S n n− −  

 

We call the above method for constructing a point estimate and confidence interval for   the replica-

tion/deletion method.  One criticism that has been levied against this method historically is that l observa-

tions must be discarded from each of the n replications.  However, given the availability of fast PCs and 

cloud computing, this is no longer an issue for most steady-state analyses. 

  

 Example 13. Consider a manufacturing system with a receiving/shipping station and five work- 

 stations (see Figure 2), as described in (the internet) chapter 14 of Law (2015).  Assume that there are  

4, 2, 5, 3, and 2 machines in stations 1 through 5, respectively.  The machines in a particular station are  

identical, but machines in different stations are dissimilar.  Jobs arrive to the system with exponential 

interarrival times with a mean of (1/15)th of an hour.  Thus, 15 jobs arrive in a typical hour.  There are  

three types of jobs, and jobs are of types 1, 2, and 3 with respective probabilities 0.3, 0.5, and 0.2.  Job  

 

         

 

 

 

 

 

 

 

 

      

Figure 2: Factory with five workstations. 

Workstation 2 Workstation 3 Workstation 4 

Workstation 1  Workstation 5  Receiving/Shipping  

Forklift 

In Out 
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types 1, 2, and 3 require 4, 3, and 5 operations to be done, respectively, and each  operation must be 

done at a specified workstation in a prescribed order.  Each job begins at the receiving/shipping station, 

travels to the workstations on its routing, and then leaves the system at the receiving/shipping station.  

For example, the routing for a type 1 job is 3, 1, 2, 5.    

 A job must be moved from one station to another by a forklift truck, which moves at a speed of 5 

feet per second, and two forklifts are available.  When a forklift becomes available, it processes requests 

by jobs using a shortest-distance-first dispatching rule.  If more than one forklift is idle when a job 

requests transport, then the closest forklift is used.  When a forklift finishes moving a job to a work-

station, it remains at that station if there are no pending job requests.  Each station has a single FIFO 

queue of infinite size.  The time to perform an operation at a particular machine is a  gamma random 

variable with a shape parameter of 2, whose mean depends on the job type and the station to which the 

machine belongs.  For example, the mean service time for a type 1 job at station 3 (the first station on 

its routing) is 0.25 hour.  When a machine finishes processing a job, the job blocks that machine (i.e., 

the machine cannot process another job) until the job is removed by a forklift.   

  The factory is open 8 hours a day, and thus the arrival rate is 120 jobs per day.  The system config-

uration described here is called system design 3 in Law (2015). 

 Let 1 2, ,...N N  be the output stochastic process corresponding to daily throughputs.  Then we are 

interested in obtaining a point estimate and 90 percent confidence interval for the steady-state mean 

daily throughput ( ). = E N   Since the simulation starts out with no jobs present at time zero, the 

throughput will tend to be “small” during the early part of a run and a warmup period is needed.  Using 

Welch’s graphical procedure, we determined that a reasonable warmup period for this output process 

is 15l =  days (see chapter 14 in Law 2015).  We made 10n =  (production) replications of length 

115m =  days, and used a warmup period of 15l =  days.  Let 

 
115

16

100

ji

i
j

N

X ==


 

 

 where 
jiN  is the throughput in the ith day of the jth replication.   

  Substituting the 'jX s  into Expressions (1), (2),  and (3), we get the following point estimate and 

approximate 90 percent confidence interval for ( )E N = : 

 

ˆ (10) 120.29X = =  

  

 and 

 
120.29 0.63   or   [119.66,120.92]  

 

 Thus, subject to the correct interpretation, we are approximately 90 percent confident that the steady-

state mean daily throughput is between 119.66 and 120.92 jobs per day.  Note that this confidence 

interval contains 120, which should be the mean daily throughput if the system has enough machines 

and forklifts because the arrival rate is 120 jobs per day.  (In a real application,   would not, of course, 

be known.)  

             Note also that the confidence interval is quite precise, with the half-length being less than 1 percent 

of the point estimate.   Also, since 
jX  is the average of 100 

jiN ’s, it should be approximately normally 

distributed by a central-limit-theorem type effect.  This suggests that the coverage of the confidence 

interval should be close to the desired coverage probability of 0.9.    
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It is possible to compute point estimates and confidence intervals for steady-state probabilities and 

quantiles using the three statistical expressions from Section 2 (see chapter 9 in Law 2024 for details).  

However, in the case of quantiles, we will also need to use order statistics. 

 

5.2   An Ill-Advised Approach to Steady-State Analysis 

 

Some people have attempted to construct a confidence interval for a steady-state mean by applying Expres-

sions (1), (2), and (3) directly to the output data from a single simulation run, which will almost always be 

positively correlated.  To illustrate the general problem with this approach, consider an M/M/1 queue with 

an arrival rate of 1 =  per minute and a service rate of 10 9 = /  per minute, so that the utilization factor 

is 0 9  = =/ . .   Suppose that we want to construct a 95 percent confidence interval for the steady-state 

mean total time in system (in queue plus in service) w, which is given by ( )1 9 = − =w /  minutes (see 

Ross 2019).  We made one simulation run of length 15,000 minutes and used a warmup period of length 

5000 minutes, which resulted in 10,000 minutes of data actually being used to construct the confidence 

interval for w.  We then checked whether the resulting confidence interval based on Expressions (1), (2), 

and (3) contained w = 9, and we repeated this whole experiment 500 times each with different random 

numbers.  To our amazement, only 36 of the resulting 500 confidence intervals did, in fact, contain 9, so 

that the estimated coverage probability was a shockingly low 7.2 percent as compared to the desired 95 

percent!  Of course, we would not know the true value of the steady-state mean for a real-world simulation 

model, but the problem of overstating the confidence level still remains.  Unfortunately, this confidence-

interval approach is a choice in one or more commercial simulation products. 

 

6 COMPARING ALTERNATIVE SYSTEM CONFIGURATIONS 

 

In many simulation projects we are interested in comparing alternative system configurations.    For exam-

ple, in the case of a manufacturing system, we might want to compare, in a statistically sound way, the 

performance of the existing system configuration to the performance of a proposed system configuration 

that is thought to be better.  The two designs might differ in the numbers of available machines and forklifts. 

 For 1,2i = , let ijX  be an output random variable defined over the jth replication for 1,2, ,j n= ;   it 

is assumed that the ijX ’s are comparable for different replications.  Then 1 2, , ,i i inX X X  are IID random 

variables.  Let ( )i ijE X =  be the expected response of interest for system i.  We would like to get a point 

estimate and a 100(1 )−  percent confidence interval for the difference 1 2d  = − .  We can pair 1 jX  with 

2 jX  to define 1 2j j jZ X X= − , for 1,2, ,j n= .  Then the jZ ’s are IID random variables with ( )jE Z d= .  

Then by substituting the jZ ’s  into Expressions (1), (2), and (3), we get that ( )Z n  is an unbiased estimator 

for d, and an approximate 100(1 )−  percent confidence interval for d is given by 

 
2

1,1 /2( ) ( ) /n ZZ n t S n n− −
      

Example 14. Consider the DMV model of Examples 2 and 10 with an infinite queue size.  In Example 

10 we found that the average delay in queue was 5.68 minutes with five clerks.  Suppose now that the 

number of clerks is increased from five to six with an eye toward reducing the average delay.  We made 

25n =  replications of the six-clerk DMV model and obtained an average delay in queue of 1.30 

minutes.  Combining the results for five and six clerks, we get the following results for ( )d E Z= : 
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2(25) 4.39,  (25) 5.783ZZ S= =  

 

 and an (approximate) 95 percent confidence interval is given by 

 
4.39 0.99   or   [3.39, 5.38]  

 

Subject to the correct interpretation, we are 95 percent confident that d is between 3.39 and 5.38 

minutes.  Thus, adding a sixth clerk significantly reduces the average delay in queue. 

 

7  SUMMARY AND PITFALLS IN OUTPUT-DATA ANALYSIS 

 

We have seen that both terminating and non-terminating analyses for means, probabilities, and quantiles 

can generally be performed by making independent replications of the simulation model(s) and using Ex-

pressions (1), (2), and  (3), which come from a first undergraduate course in statistics.  In the case of steady-

state parameters, we also have to determine a warmup period, but this can generally be addressed using 

Welch’s graphical approach.  The method of replication can also be applied to estimating multiple measures 

of performance (see section 9.7 in Law 2015) and to comparing several different system configurations (see 

chapters 10 and 11 in Law 2015).  Moreover, multiple replications can be made simultaneously on com-

puters having multiple cores or by using a cloud-computing service. 

 The following are seven major pitfalls in output-data analysis: 

The following are seven major pitfalls in output-data analysis: 

• Belief that one run of a simulation model gives the “answers.” (see Example 2) 

• Analyzing simulation output data from one run using formulas that assume independence, which 

might result in a gross underestimation of variances and overly-optimistic confidence intervals.  

(see Section 5.2)  

• Failure to have a warmup period for steady-state analyses. 

• Failure to determine the statistical precision of simulation output statistics by the use of a confi-

dence interval, which can be accomplished easily using the replication approach.  

• Misunderstanding of the information that a confidence interval actually provides. (see Example 9) 

• Making one replication for each of two alternative system configurations that are being compared. 

• Evaluating the performance of a system based only on means.  In some cases, probabilities and 

quantiles may also be relevant. (see Examples 11 and 12) 
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