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ABSTRACT 

This tutorial defines what a digital twin is and outlines its four required characteristics. Digital twins are 
developed to derive insights to control entities and processes in the digital world with simulation as one of 
the key technologies lying at the heart of this development. The resulting insights are used to prescribe 
actions in the physical world to fix future problems before they happen. This tutorial describes the key 
digital twin development functions together with the digital twin enabling technologies with focus on the 
use of simulation for process twin development. The corresponding functions and technologies are 

displayed on several different digital twin development frameworks with the potential to serve as guides 
for practitioners interested in developing digital twin solutions. We conclude with an example of a supply 
chain digital twin use case and the role of simulation and AI in the twin development. 

1 INTRODUCTION 

Global Market Insights (2020) reports that the digital twin market size exceeded $5 billion in 2020 and is 
expected to grow at over 35% compound annual growth rate between 2021 and 2027. McKinsey (2021) 

expects digital twin adoption to unlock $5.5 trillion – $12.6 trillion globally by 2030. These estimates are 
vastly different from each other; however, it is apparent that digital twin will play a paramount role in 
companies’ digital transformation efforts in the years to come. According to Gartner Prediction, 25% of 
healthcare delivery organizations will include formalized digital twin initiatives within their transformation 
strategy (Lazer 2023). Digital twins are further expected to be the building blocks of the industrial 
metaverse (Fast Company 2023). Thus, it is more critical than ever to understand what a digital twin is. 

 The Digital Twin Consortium defines digital twins as virtual representations of real-world entities and 
processes synchronized at a specified frequency and fidelity (Digital Twin Consortium 2020). An example 
of a real-world entity may be an individual asset such as an industrial machine. Its virtual representation 
would be called “asset twin” as it approximates the behavior of a physical asset. Digital twins can also 
represent systems of physical assets such as a factory or a supply chain network of suppliers, factories, 
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warehouses, and customers. Because these types of digital twins are built to represent business process 
flows and capture the interactions of physical assets in the corresponding systems, each of them is called 
“process twin.” Furthermore, a process twin representing a manufacturing process flow in a factory is often 

called “factory twin” while a process twin capturing a supply chain flow is called “supply chain twin.” 
 A natural question to ask is “ what are the major benefits of the digital twin technology?” Very briefly, 
digital twins aid in deriving insights to control entities and processes in the digital world and use those 
insights to drive actions in the physical world. Digital twins are used to understand what did happen, predict 
what may happen, and determine solutions to fix future problems before they happen. More specifically, 
asset and process twins can be used (i) to predict key performance indicators (KPIs) and gain visibility into 

the future health of assets and processes, (ii) to assess the impact of operational policy, design, and 
investment decisions in a virtual environment, and (iii) to stress test assets and processes under 
consideration and identify best courses of action to take when faced with disruptions. The ability to provide 
real-world feedback to digital twin models of assets and processes about the effects of their solutions 
implemented in the physical world is key to achieving these objectives. The adoption of emerging 
technologies such as Internet of Things (IoT), edge, and cloud has accelerated the creation of closed 

feedback loop that is necessary for digital twin development. We expect the rate of this adoption to increase 
and digital twins to remain a critical component of digital transformation in various industries ranging from 
healthcare, manufacturing, and aerospace and defense to retail, consumer goods, and energy and utilities.  

Consider an asset twin developed for an industrial machine to predict its health. After the IoT data are 
collected from the sensors presenting a snapshot of the state the machine is in, the simulation of this asset 
becomes the centerpiece of the digital twin. The health prediction capability would be of tremendous value 

in a system with limited resources where it is critical to find zero downtime maintenance plans. Another 
example is a supply chain digital twin that is built on supply, production, transportation, and inventory 
optimization models together with a stochastic supply chain network simulation to predict intervals of 
product shortages, understand what may cause these shortages, and identify the best courses of action to 
take to optimize cost and service under uncertainty. It is important to emphasize that neither of these digital 
twins is a one-off solution. Each matures over time and drives learning and adaptation because of which 

virtual models are improved and control in the physical world is enhanced. Since it is the only practical 
technology to model, understand, and optimize complex systems, simulation is the pivotal component of 
these digital twins. Empowered by simulation, digital twins drive decisions that unlock value in businesses. 

In addition to simulation, building asset and process twins requires a variety of analytics tools ranging 
from IoT, statistical modeling, and visual analytics to AI/ML, natural language processing, computer vision, 
and optimization. However, at the heart of an asset twin often lies a physics-based simulation driven by 

domain expertise and data. At the foundation of a process digital twin, there is a flexible, data-driven, and 
scalable process simulation operating under uncertainty, mimicking the operations of the physical system 
through which thousands of objects may flow, and predicting the future KPIs. Complexity together with 
uncertainty often invalidates the use of deterministic techniques for developing decision-support solutions 
and turns stochastic simulation into a critical component of process twins. This tutorial brings clarity to 
what a digital twin is and discusses the role of stochastic simulations in the development of process twins.   

 The potential of digital twins has been discovered by the simulation community for some time now: 
the term “digital twin” has been mentioned in over 50 Winter Simulation Conference (WSC) papers in the 
last several years. Panels have been held to discuss what a digital twin is for manufacturing research and 
development (Shao et al. 2019) and how it relates to modeling and simulation (Taylor et al. 2021). Most 
applications discussed within the scope of digital twin development fall under the umbrella of Industry 4.0; 
see Shao et al. (2019), Sharotry et al. (2020), Flores et al. (2021), Lichtenstern and Florian Kerber (2022), 

and Biller (2023) for example studies. However, Ye et al. (2021) consider a healthcare system, Pu et al. 
(2021) focus on indoor modeling and mapping, and Pan et al. (2022) discuss smart city digital twins for 
public safety. Kulkarni et al. (2019), on the other hand, present an advanced tutorial on the use of digital 
twins for enterprise adaptation. More recently, Grieves (2022) discusses development and management of 
complex systems using intelligent digital twins and Biller and Biller (2023) focus on factory twin 
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development. The authors further discuss how key digital twin functions and enabling technologies make 
it possible to describe, predict, and optimize factory KPIs including throughput, quality, cost, on-time 
delivery, sustainability, and resiliency. Focusing on the role of simulation augmented by AI/ML, Biller et 

al. (2022) and Biller and Biller (2023) outline several challenges that arise in digital twin use cases and 
describe how the simulation methodology research has enabled practitioners to overcome those challenges. 

The goal of this tutorial is to share our understanding of what a digital twin is and our experience of 
digital twin development and deployment with the WSC community. We organize our presentation around 
answering the following questions: 

 

 What are the digital twin required characteristics? 
 What are the foundational elements of digital twin development? 
 What are the key digital twin functions and which technologies does each function utilize? 
 Are there digital twin development frameworks that could serve as guides for practitioners? 

 
Sections 2 – 5 answer these questions. Section 6 discusses a supply chain digital twin use case and the role 

of simulation in its development. We conclude in Section 7 with an overview and a discussion of two 
aspects of twin development that are beyond scope but still important in the practice of twin development.   

2 DIGITAL TWIN REQUIRED CHARACTERISTICS 

Despite its enablement of digital transformation in a wide range of industry domains, the digital twin 
technology comes with challenges of adoption due to limited interoperability, market confusion, and heavy 
investment required in people and technology. The Digital Twin Consortium was founded in 2020 with the 

mission to bring multinational corporations, small and large technology innovators, academia, and 
governments together to collaboratively overcome these challenges and accelerate the development, 
adoption, and widespread use of the digital twin technology.  
 According to the Digital Twin Consortium, a digital twin is a virtual representation of real-world 
entities and processes, synchronized at a specified frequency and fidelity (Digital Twin Consortium 2020). 
Thus, a digital twin must have four main characteristics: (1) a physical representation; (2) a virtual 

representation; (3) synchronization between physical and digital representations at a pre-specified 
frequency and fidelity; and (4) ability to learn and adapt that leads to improved virtual models and 
enhancements in physical representations. We refer to these four characteristics as Digital Twin Required 
Characteristics (DTRCs) in this tutorial. It is critical that DTRCs are used for a meaningful business 
outcome that can be clearly stated and objectively measured. Because of DTRCs 1 and 2, it is often asked 
whether any simulation model would qualify as a digital twin. A simulation model of a physical asset or 

process (DTRC 2) would by itself not be sufficient to meet the requirements of a digital twin. DTRCs 3 and 
4 are what distinguish a traditionally one-off simulation model from a digital twin solution. Synchronization 
(DTRC 3) and learning (DTRC 4) are essential since digital twins evolve over the life cycles of products 
and processes. Ideally, they transform businesses by accelerating holistic understanding, optimal decision 
making, and effective controls. They build on a combination of real-time and historical data to represent 
past and present and predict future. Furthermore, digital twins are motivated by outcomes, tailored to use 

cases, powered by integration, and guided by domain knowledge. 

3 FOUNDATIONAL ELEMENTS OF DIGITAL TWIN DEVELOPMENT 

There are four foundational elements of digital twin development to meet the DTRCs: (1) data; (2) domain; 
(3) analytics; and (4) outcomes. If a simulation practitioner is asked about the differentiators of the digital 
twin under development, we recommend answering this question with respect to these four elements. We 
elaborate on each of these foundational elements in the remainder of this section. 
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3.1 The Data Element 

This foundational element includes data of all types: engineering and design (product life cycle 
management (PLM)) data; experts’ opinions; reliability reports; historical data from enterprise asset 

management (EAM), manufacturing execution system (MES) and enterprise resource planning (ERP); 
sensor IoT data; and historical and real-time data from texts, images, videos, and audio. It is important to 
know that these data sets would reflect the disruptions that occurred, and the real outcomes associated with 
the decisions implemented in previous time periods. Based on the use case on hand, different combinations 
of these data sets are used for describing the system’s configuration and state and for capturing the 
uncertainty in the input processes. The granularity of the input data and the unit of time assumed by the 

digital twin are chosen to match the speed of making decisions. Within the context of factory twins, Biller 
and Biller (2021) discuss aligning data collection with the simulation models supporting decisions from 
strategic to tactical and operational. They describe the types of data needed to validate simulations and 
predict the factory KPIs. They further emphasize the importance of the simulation hot-start capability to 
support the (near) real-time operations optimization.   

The collection of data is followed by a search for stochastic input-model characterizations that 

adequately capture the inputs’ distributional characteristics. The representation of uncertainty in input 
processes (i.e., stochastic input modeling) is a problem that has been well studied by the simulation 
community. There are several tutorials presented at the WSCs over the years for representing, fitting, and 
generating multivariate time-series input processes ranging from being independent and identically 
distributed to having arbitrary marginal distributions and complex dependence structures (e.g., Pasupathy 
and Nagaraj 2015 and Law 2016). At the foundation of developing input models with arbitrary marginal 

distributions and dependence structures lies a transformation-based method that reduces the input-modeling 
problem to finding a suitable multivariate normal distribution. This distribution is chosen to match the 
distributional characteristics of the input processes whose dependence structures are captured by pair-wise 
correlations. In the case of using alternative measures of dependence, the approach becomes finding a 
suitable multivariate uniform distribution, i.e., a copula function (Biller and Corlu 2012). More recently, 
several researchers have investigated the use of neural networks to mimic the characteristics embedded in 

large simulation input datasets; see Wang et al. (2020) for an example study utilizing generative neural 
networks. While building on AI to automate input modeling to drive simulations with complex dependence 
structures is a novel idea, it is critical to have the ability to conduct sensitivity analysis and to account for 
the input model uncertainty in the presence of limited data (see Section 6.4 for a brief description of digital 
twin development and implementation challenges).  

3.2 The Domain Element 

The domain element combines subject matter expertise with physics-based modeling to build asset twins. 
A physics-based model captures the effects of governing laws of nature on operating the asset. If the asset 
were a pump and the objective were to predict its health, then motor current, pressure, and flow rate 
discharge would be among the primary model parameters to consider. Furthermore, there is a physical 
relationship among these parameters. Building a physics-based model accounting for that relationship 
would be the first step towards creating an asset twin. Integrating this model with data-driven analytics (i.e., 

a hybrid model) would be the next step to improve accuracy, lower cost, and scale the operationalization of 
the asset twin. Subject matter expertise also plays a critical role in process twin development. Often, 
production operations optimization projects require interdisciplinary teams whose expertise is critical to 
develop simulation models and understand constraints of performance optimization. Examples of domain 
expertise would extend to plant maintenance, material analysis, design limits, and operational constraints. 

3.3 The Analytics Element 

Developing digital twins requires an integrated use of advanced analytics tools ranging from IoT, sensor 
and streaming analytics (i.e., in-motion event analysis of real-world data generated from connected 
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devices), and statistical modeling to computer vision, AI/ML, simulation, and optimization. A significant 
number of companies have been building on this integration in their digital twin development. Lockheed 
Martin maximizes uptime by using AI, IoT, and advanced analytics to predict when parts will fail, keeping 

more aircraft airborne for vital missions worldwide (Isbill 2022). US Gypsum – a world-wide industry 
leader in wallboard production – uses predictive analytics to estimate product quality for the line operators 
in real time (Reed 2022). Siemens combines plant simulation and IoT capabilities to improve production 
efficiency and quality by replaying history and conducting bottleneck and what-if analyses (Siemens 2020). 
The role of simulation is critical in the delivery of these outcomes. Furthermore, simulation complements 
composite AI – introduced by Gartner in 2021 –  by bringing in the three key benefits of simulation: 

explainability, uncertainty quantification, and risk management.  
 Because simulation can be viewed as a big data generation program, performance prediction and 
scenario analyses can be accelerated by integrating simulation with machine learning and optimization. A 
code-based description of such an integration is available in Biller et al. (2019) within the context of clinical 
trial enrollment planning. Furthermore, simulation has been increasingly used as an environment to enable 
on-policy training of reinforcement learning agents (U.S. Patent and Trademark Office 2021). We refer the 

reader interested in reinforcement learning with discrete-event simulation to the review in Belsare et al. 
(2022) accompanied by discussions of application areas, challenges, and future work motivated by use 
cases.  

3.4 The Outcome Element 

All digital twins are expected to (1) provide situational awareness, thereby enable decision making with 

more information, and (2) automate the identification of the response to operate an asset and/or a process 

at their optimal settings. Examples of target outcomes include performance monitoring, data accuracy 

enhancement, increased turnover, decreased storage, increased production, cash and service improvement, 

and improved resilience. Nevertheless, this is not a comprehensive list. Isbill (2022) and Reed (2022) also 

report downtime reduction and product yield improvement. It is critical that digital twins are motivated by 

outcomes and tailored to use cases; the target outcome is the key driver in the design of digital twin solution. 

4 KEY DIGITAL TWIN FUNCTIONS AND ENABLING TECHNOLOGIES  

There are three primary functions to perform during the development of digital twins: (1) offline model 
development; (2) real-time synchronization; (3) online learning. Figure 1 illustrates these key functions for 

a supply chain digital twin. The offline model development represents the first phase of the digital twin 
development. Its output is a digital representation of the physical system, built and validated by using a 
static dataset representing the history of the system. The validated model is used to predict future KPIs and 
provide insights about how to optimize the system performance. Next comes the second phase of the digital 
twin development where the model is calibrated by using the most recent data reflecting the state of the 
system at that point in time. The calibrated model is used in the third phase where the capabilities of 

monitoring the system and tracking the past are in place. The future KPIs are predicted; actions to optimize 
performance are identified and implemented in the physical system to enhance control in real time. Thus, 
learnings obtained from this phase of the development are not just insights; they establish a closed loop 
between physical and digital representations. Next, we describe each of these three primary functions.  

4.1 Offline Model Development 

The offline model development function develops digital representations of processes by building on 

domain expertise, assumptions, and historical data. It further utilizes analytics techniques such as statistical 
and stochastic process modeling, AI/ML, simulation, and optimization. After the validation of the twin, the 
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practitioner experiments with it via an integrated use of simulation and ML and derives insights about how 
to improve performance. However, the learning here is offline, i.e., no new datasets flow into the analysis. 

 Traditionally, a one-off project falls under the umbrella of offline model development. If the virtual 
representation of the physical system is developed by using a stochastic simulation, then offline model 
creation overlaps with the development of a stochastic dynamic system simulation for which WSC offers 
tutorials. We refer the reader to White and Ingalls (2020) for the basics of simulation with focus on discrete-
event simulation, Sargent (2020) for verification and validation, Sanchez et al. (2021) for the design of 
simulation experiments, and Eckman and Henderson (2018) for first ranking and then selecting the best 

among different courses of action that can be taken to improve performance. Biller et al. (2022) illustrates 
a cookbook recipe for a supply chain simulation project and describes how modular tasks come together 
for end-to-end offline learning. We further refer the reader to Sturrock (2020) for tips on simulation project 
excellence. However, it is important to recognize that the resulting solution would not yet qualify as a digital 
twin. What qualifies a solution as a digital twin is its online learning component enabled by the real-time 
synchronization function. 

4.2 Real-Time Synchronization 

A critical aspect of digital twin development is the synchronization of the real-world process and its twin 
via the use of streaming data in real time. Specifically, the IoT data collected from the sensors present a 
snapshot reflecting the system state at that point in time. The use of this data set to hot start the simulation 
is what primarily distinguishes a simulation developed as part of the digital twin effort from that created in 
a one-off simulation project. This distinguishing feature is evident in the hospital digital twin developed by 

Akbay et al. (2011), where the snapshots of the system are taken several times each day and fed into the 
model to hot start the supporting simulation with the current state of the hospital.  
 It is important to revise the previously developed stochastic models in Section 4.1 with the most recently 
collected historical data and combine them with experts’ opinions when available. This can be done by 
integrating Bayesian methodology with simulation input modeling (Corlu et al. 2020). Additionally, real-
time synchronization may require re-calibration of the simulation. This is especially important when the 

model includes parameters that are not fully known but still included in the model by relying on limited 

Figure 1: Digital twin development functions: Offline learning, synchronization, and online learning. 
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data and/or information. Morgan et al. (2022) describes the bias that may arise in the simulation outputs in 
such a case as input model bias and introduces a method that recalibrates the parameters of parametric input 
models to reduce the bias in the simulation outputs. It is critical to perform this re-calibration task on a 

periodic basis (Hua et al. 2022, Lugaresi et al. 2022, and Tan and Matta 2022). 

4.3 Online Learning 

The real-time synchronization is followed by online learning, which involves system monitoring and 
tracking the past, predicting the system performance and finding the best course of action to take via 
optimization. At this phase of the development, the digital twin is expected to provide enhanced visibility 
into the future and enable playing operational what-if games. Simulation plays the key role in equipping 

the digital twin with these capabilities. 

 Figure 2 illustrates an instance of learning from a supply chain digital twin. First, the supply chain 
network is simulated to predict intervals of product shortages (upper left plot). The distinction between the 
prediction capability in the offline model development and the prediction capability here is that the latter 
builds on hot starting the simulation with a calibrated model whose parameters and input risk profiles are 
updated with the most recent data at a specific frequency of synchronization. Then, the temporal study of 

the fill rate traces the source of the shortages to a manufacturing facility with high levels of inventory and 
utilization (upper right plots of Figure 2). This is followed by the investigation of the best course of action 
to take to address the capacity limitation in that facility. Ideally, the resulting solution not only maximizes 
the supply chain fill rate but also reduces the risk exposure. This action is next implemented in the physical 
supply chain, resulting in a closed feedback loop between physical and digital environments. The action 
itself – control – can be implemented either in an automated manner as a closed loop decision or in a manner 

augmented by human intervention and based on a decisioning logic. 

5 TWO EXAMPLES OF DIGITAL TWIN DEVELOPMENT FRAMEWORKS  

Market confusion arises as one of the challenges of implementing digital twins. There are limited use cases 
to learn from and little research on how to define requirements for minimally viable digital twins. Also, it 
is difficult to determine the technologies to use, ensure outcome delivery, and identify the knowledge and 
skills gaps to fill. A step towards addressing these difficulties is the use of a framework to facilitate 

collaboration in multidisciplinary teams tasked with digital twin creation. In this section, we present two 
examples of digital twin development frameworks that could be utilized for this purpose. 

Figure 2: Online learning: Simulate – Predict – Optimize – Control.  
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5.1 Digital Twin Cube 

Figure 3 illustrates the digital twin cube introduced in the Digital Twin Insights Report (2020). It contains 
three main dimensions describing the concept of digital twins: life cycle phases, hierarchical levels, and 

most common uses. More specifically, each axis of the cube represents one dimension of the digital twin: 
The x-axis represents the six life cycle phases from design to decommission. The y-axis represents the six 
hierarchical levels from informational to multi-system. The z-axis represents the seven most common uses, 
one of which includes “simulate.” Each combination of these three dimensions results in a different digital 
twin classification. Consequently, Figure 3 captures 252 different combinations in total. This is quite a 
simple framework; thus, it does not consider different input data types. Nevertheless, it is still an effective 

tool to particularly contribute to the initial digital twin development discussions. 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

5.2 Digital Twin Capabilities Periodic Table 

Building on its 250+ members, the Digital Twin Consortium published the Digital Twin Capabilities 
Periodic Table (DTCPT) illustrated in Figure 4. DTCPT is an architecture and technology agnostic 
requirements definition framework aimed for organizations wanting to design, develop, deploy, and operate 

digital twins. It demonstrates the different ways in which the term “digital twin” can be interpreted. This 
tabulation of the digital twin capabilities uses six categories highlighted in different colors (Schalkwyk 
2022): (1) “data services” connecting physical to virtual with the data collected from equipment sensors 
and control systems; (2) “integration” enabling digital twin communication; (3) “intelligence” representing 
the services associated with developing and deploying industrial digital twin solutions; (4) “user 
experience” interacting with digital twins and visualizing their data; (5) “management” representing 

ecosystem control; and (6) trustworthiness handling security, privacy, safety, reliability, and resilience. 
Each of these six categories is composed of capabilities with similar characteristics and applications. The 
main idea of DTCPT is to use these capabilities to meet the DTRCs introduced in Section 2 as a collection 
of a physical representation, a virtual representation, synchronization, and learning. However, every digital 
twin solution does not require the use of every capability in DTCPT. Although it is critical for a company 
on a journey of digital transformation to hit a high percentage of the boxes in Figure 4 by offering either 

core functionality or a solution together with third-party integration, this percentage would vary from one 
use case to another based on complexity and resource availability.  

DTRCs and DTCPT apply to both asset twins and process twins. However, our tutorial focuses on 
process twins and discusses the role of simulation in process twin development. In DTCPT, simulation 
appears as a core functionality in two categories: data services and intelligence. The “data services” 
category includes the “simulation model repository” and “synthetic data generation” capabilities, while the 

Figure 3: The Digital Twin Cube (Digital Twin Insights Report 2020). 
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“intelligence” category includes the “simulation” capability. This is because simulation can be viewed as a 
big system-data generation program, and it enables learning about physical assets and processes and making 
decisions with more information. Later in Section 6.3, we will present an alternative table of composable 

elements but customized to supply chains by building on the DTRCs (Section 2), the four foundational 
elements (Section 3), and our own experience of building supply chain digital twins with stochastic discrete-
event simulations at the centerpiece. 

6 A SUPPLY CHAIN DIGITAL TWIN USE CASE AND WHY SIMULATION IS CRITICAL  

The digital twin use case of this section is accompanied by a development framework we have utilized and 
found useful in our digital twin projects. Our digital twin development framework, first version of which 

was introduced in Biller et al. (2022), builds on the DTRCs described in Section 2, the foundational digital 
twin elements introduced in Section 3, and the key digital twin functions and the digital twin enabling 
technologies presented in Section 4.  

6.1 Description: A Supply Chain Digital Twin 

The focus of this section is on supply chain digital twin development. Motivated by a consumer-goods use 
case, we consider the generic supply chain network flow illustrated in Figure 5 (Biller and Yi 2020). The 

target outcomes of the digital twin developed for this supply chain are three-fold: (1) to replay history; (2) 
to gain visibility into the future of the supply chain operations by predicting supply chain cost and service 
level; (3) to develop a playbook of decisions to implement to ensure good supply chain performance even 
when faced with disruptions. However, the development of a supply chain digital twin to meet these 
objectives is no easy task. It requires the collection of the right input data sets at a frequency that is in synch 
with the speed of decision making and the optimization of supply, production, inventory, and delivery (i.e., 

transportation) plans to be used for driving an end-to-end supply chain network simulation. Therefore, it is 
critical to ensure the design of the supply chain digital twin to build on the integrated use of various analytics 
techniques: forecasting to obtain demand forecasts; optimization to determine supply, production, 
inventory, and delivery plans; simulation to generate supply chain KPIs and quantify the risk in the KPI 

Figure 4: DTCPT (https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table). 
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predictions; simulation & optimization to identify the corrective actions and manage the quantified risk; 
AI/ML to accelerate what-if games for real-time decisioning; and data and visual analytics to wrangle 
and analyze supply chain data and visualize the supply chain. In Section 6.2, we discuss the aspects of a 

supply chain solution to qualify it as a digital twin according to the consortium’s definition introduced in 
Section 2. In Section 6.3, we represent the above list of advanced analytics techniques in the Analytics 
element of the supply chain twin development framework (Figure 6). 

6.2 Revisiting the Digital Twin Definition 

We ask whether the supply chain digital solution of this section has all the DTRCs introduced in Section 2: 
(1) The supply chain network is the physical representation. (2) Supply chain network simulation is the 

virtual representation. (3) Hot starting the simulation calibrated by updating the model parameters and the 
input risk profiles with the most recent data at a set frequency synchronizes physical and digital 

Figure 5: Illustration of a supply chain network with a map view and a network flow. 
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representations of the supply chain network. The frequency needs to be established based in part on the 
timeline of making decisions to achieve the desired outcomes and in part on the requirements of learning 
and adaptation. (4) Learning in the virtual world informs the management of the supply chain in the real 

world. The effects of the supply chain management decisions captured by the real outcomes together with 
the disruptions occurred, collected IoT data, and evolving assumptions and expert opinions are fed into the 
digital world in the form of new input data and/or an adapting supply chain business flow. This leads to a 
closed feedback loop between the physical supply chain and its digital twin. Thus, we conclude that our 
supply chain digital twin possesses all the DTRCs. It is important for simulation practitioners to ask the 
same question as part of their digital twin development effort and characterize 1) the physical 

representation, 2) the virtual representation, 3) the synchronization between physical and digital 
representations, and 4) the details of learning and adaptation over time. Doing so would clarify whether the 
supply chain solution is a digital twin solution. 

6.3 A Supply Chain Digital Twin Framework 

Figure 6 presents the framework that we find beneficial in our supply chain digital twin development. Every 
time a simulation practitioner attempts to build a new digital twin, she should not be developing it from 

scratch. Instead, she should modularize the development effort so that learning from one use case is 
transferred to the other, because of which development time is reduced, and scalability is attained.  
 With this goal in mind, we structure the supply chain digital twin development around the four 
foundational elements – domain, data, advanced analytics, and outcomes – introduced in Section 3. We 
assign several categories to each foundational element (see the leftmost column of Figure 6) and seven sub-
categories to each category, placed horizontally to the right of the leftmost column. Additionally, we display 

the sub-categories required for developing the supply chain digital twin in black. Thus, Figure 6 can be 
viewed as the DTCPT for supply chains reflecting our first-hand experience in building supply chain twin 
solutions. 
 First, supply chain digital twin is identified as a type of process twin requiring a system modeling 
approach. Then, the development begins with the description of the supply chain flow logic, which is 
obtained by combining the supply chain network configuration with all necessary pieces of information and 

data that often include supply contracts and supplier data, initial inventory, production plan, customer 
demand, transportation details, inventory control policies, supply chain cost parameters, and 
characterization of disruptive events. Supply and production plans, details of transportation (i.e., delivery), 
and inventory control policies are generally obtained from solutions of deterministic optimization problems 
– possibly with different units of time – and brought together in the supply chain network simulation to 
predict how they will jointly perform in delivering high service levels with minimal costs. However, the 

details of data collection and definition are dependent on the types of decisions that the supply chain digital 
twin will support. For example, emergency maintenance decisions are typically made within minutes, while 
inventory adjustments might be considered every week or month (Biller and Biller 2023). They are further 
affected by the speed of making decisions. The “Frequency” category in Figure 6 refers to the data 
collection frequency to be aligned with the speed at which decisions are made. The “Description” category, 
on the other hand, indicates the potential sources from which the supply chain input data may be collected. 

 The next steps of development are (i) representing the uncertainty in the supply chain inputs, (ii) 
designing the experiments where the levers, which could be changed during a scenario analysis, are 
specified, and (iii) mimicking the flow of all entities through the supply chain network with a scalable, data-
driven, and flexible dynamic supply chain network simulation. The analytics tools utilized for performing 
these steps are indicated as statistical modeling, visual analytics, optimization, simulation, and machine 
learning in the “Advanced Analytics” category of Figure 6. The execution of the simulation generates vast 

amounts of data representative of how the supply chain may perform in the future. By taking advantage of 
statistical modeling and visual analytics, the risk profile for the supply chain’s service level is computed. 
The resulting supply chain digital twin can be used for several purposes. It can be used to predict KPIs and 
gain visibility into the future of supply chain operations. It can be used to assess the impact of decisions in 

1473



Biller, Venditti, Yi, Jiang, and Biller 

 

 

a virtual environment. The digital twin can be further used for stress-testing the supply chain. It is important 
to emphasize that the objective here would not be the prediction of the probabilities of disruptive events. 

The occurrence of these events is enforced within the simulation and the best courses of action to take – 
when confronted with these disruptions – are identified through an integrated use of simulation and 
optimization. We denote this capability of the supply chain digital twin as “Resilience Testing” in Figure 
6. Furthermore, we summarize the digital twin development details discussed in Section 4 for generic 
process twins under the “Function Details” and “Learning Details” categories of Figure 6. The “Customized 
Use Cases” category is, on the other hand, specific to the problems that often arise in supply chain 

management. The framework ends with the outcomes that are often realized by supply chain digital twin 
solutions. 

6.4 Challenges of Implementation 

Despite all the benefits of the digital twin technology and its promise to help overcome many supply chain 
management difficulties, there are still challenges − both in development and in deployment − waiting to 
be addressed. In this section, we focus on the development challenges that may be overcome with the help 

of the simulation methodological work. Due to the limited space available in this tutorial, we provide an 
overview of our past work where those challenges are discussed, solutions are described, and references 
are provided.  
 We refer the reader to Biller et al. (2022) for the discussions of synthetic data generation with focus 
on Generative Adversarial Networks, zone of confidence capturing input parameter and model 
uncertainties in simulated KPIs, fast sensitivity analysis going beyond the use of global sensitivity 

measures with simulation, and simulation and optimization solving high-dimensional optimization 
problems under uncertainty. We refer the reader to Biller and Biller (2023) for the discussions of building 
data-driven simulations from video, MES, and EAM data, identifying factory bottlenecks under input 

parameter uncertainty, addressing standardization and globalization in digital twin integration, 
accelerating what-if analysis by integrating simulation with machine learning, and providing an 

Figure 6: A supply chain digital twin development framework. 
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environment to train reinforcement learning agents for real-time optimization. We further refer the 
reader interested in additional use cases to Biller et al. (2023) where the authors also discuss a use case on 
real-time queue monitoring and resource control as well as a use case on semiconductor manufacturing.   

7 CONCLUSION 

This tutorial describes how we envision the digital twins developed in industry. Specifically, we describe 
the digital twin required characteristics to help the readers better gauge when and how their simulation 
projects may qualify as simulation digital twins. We introduce the four foundational elements of digital 
twins and the three key digital twin development functions. We further illustrate the digital twin cube and 
the digital twin capabilities periodic table as two examples of digital twin frameworks. We conclude with 

a supply chain digital twin use case where simulation plays a key role.  
 We hope that this tutorial serves as a guide for readers wanting to learn what a digital twin is and 
beginning their digital twin development journey. While we have aimed for this tutorial to be a 
comprehensive introduction, there are two topics that we have treated as beyond scope. However, they are 
critical for successful twin development. The first topic is the use of computer-aided design (CAD) models 
and physics-based manufacturing simulations to optimize product design. This type of twin is alternatively 

known as “product twin” for which an example use case is provided by Anbalagan et al. (2021). The second 
topic that is beyond the scope of our tutorial is digital thread, which focuses on “how” the system is built 
(Szypulski and Garrett 2021). This tutorial focuses on digital twins representing real-world processes with 
benefits for end-users and customers. The digital thread, on the other hand, benefits developers by 
unlocking information silos and enabling traceability across domains. We recommend that the readers 
introduced to digital twins in this tutorial follow up on the digital thread topic.  
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