
Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

EVENT GRAPHS: SYNTAX, SEMANTICS, AND IMPLEMENTATION

Murat M. Gunal Yahya Ismail Osais

Faculty of Engineering and Architecture

Fenerbahce University

Computer Engineering Department

Center for Intelligent Secure Systems

Atatürk Mah. Ataşehir Bulvarı King Fahd University of Petroleum and Minerals

34758, Ataşehir, Istanbul, TURKEY P.O. Box 2244

 Dhahran, 31261, SAUDI ARABIA

Gerd Wagner

Brandenburg University of Technology

Konrad-Wachsmann-Allee 5

Cottbus, 03046, GERMANY

ABSTRACT

This tutorial aims to introduce Event Graphs (EGs), invented 40 years ago by Lee Schruben to allow event-

based modeling of discrete dynamic systems. Their simplicity and naturalness in causality modelling and

simulation modelling made EGs popular in research and practice. In a simulation, an event causes state

changes in a system as well as other events to happen in the future. EGs provide a parsimonious diagram

representation for the Event Scheduling paradigm of Discrete Event Simulation. We first introduce their

visual syntax and informal semantics, and then present a recent extension by adding objects to EGs. Our

tutorial also includes an introduction to the formal semantics of EGs and a Python implementation for

executing EGs.

1 INTRODUCTION

An Event Graph (EG) is a directed graph whose nodes represent events (of various types) and whose

directed edges represent the causation, or scheduling, of follow-up events. In an EG diagram, event nodes

are rendered as circles, and causation/scheduling edges as solid arrows with a filled arrowhead.

When an EG is intended to describe a discrete system of the real-world (in the sense of a descriptive

conceptual model), an edge from event A to event B represents the causal regularity that events of type A

cause events of type B.

More frequently, however, EGs are used for defining simulation models of real-world systems in the

sense of prescriptive simulation design models. When an EG is intended to define a simulation design

model, an edge from event A to event B represents the computational pattern that when an event of type A

occurs, an event of type B is scheduled to happen in the future by adding it to the Future Events List. This

pattern defines the Event Scheduling, or Event-Based Simulation, paradigm of Discrete Event Simulation
(DES), which is the foundation of many other DES paradigms.

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 1448

Gunal, Osais, and Wagner

2 SYNTAX AND INFORMAL SEMANTICS

EGs have a visual syntax in the form of a diagram language where Event nodes are rendered as circles, and

Event Causation (or Event Scheduling) edges as solid arrows with a filled arrowhead. There are the

following basic language elements: Event nodes have names and may have a set of state changes (in the

form of variable value assignments), while Event Scheduling edges may have a delay expression and a

condition. The name of an Event node is, in fact, the name of the event type associated with that node. Any

event has a type, and an event type specifies a set of attributes and a set of functions, like a class in an

Object-Oriented (OO) programming language.

When we refer to an EG diagram, we also speak of Event circles instead of Event nodes and of Event
Scheduling arrows instead of Event Scheduling edges. All these basic elements are presented in the next

subsection. In addition, there are three advanced elements in EGs: 1) event attributes, 2) event priorities,

and 3) event cancelling, which are discussed in the following subsections.

2.1 Basic Language Elements

Figure 1 shows the basic pattern that composes EGs: an event of type A leads to state changes and to a

follow-up event of type B. According to the execution semantics of EGs, the follow-up event B is scheduled

by adding it to the Future Events List (FEL) maintained by the execution environment (or EG simulator).

Figure 1: The basic pattern, which composes EGs: a) classical notation, b) modern notation.

 The EG in Figure 1 is presented in two notations. In a), the original notation from Schruben (1983) is

used. Our modern notation in b), which is largely borrowed from the business process modeling notation

BPMN, improves the visual clarity of EG diagrams. The EG in Figure 1 is read as follows: “when an event

of type A occurs, an event of type B is scheduled to occur after t time units, if condition c holds”. The time

delay expression t and the condition c are optional. This means that when they are not present, follow-up

events of type B are scheduled to always happen without any delay. The execution semantics of EGs

requires that when an event of type A occurs, first the state changes defined for A are performed, and only

then the scheduling condition is evaluated, and if it holds, a follow-up event of type B is scheduled.

The conditional Event Scheduling arrow in the classical EG notation was expressed with a vertical tilde

shape in the middle of an edge and a condition in parenthesis. In the modern notation, it is expressed with

a “mini-diamond” at the source side of the arrow and a condition c in brackets. When this condition is

evaluated to true, a follow-up event of type B is scheduled. When the condition is evaluated to false, no

follow-up event is scheduled. Let’s also note that when an Event Scheduling arrow is unconditional, there

is no mini-diamond (or tilde) and no condition. In the rest of this tutorial, we will use the modern EG

notation.

The diagrams in Figures 2 and 3 represent the same EG, in both notations. The EG models a

fundamental queuing system example (often called single-server queuing system) with a first-in-first-out

queue of parts that will be processed at a workstation.

Notice that the Arrival events of this model are distinct from the events of the other two Event circles,

as they are not caused (or scheduled) by other events. Thus, the Arrival Event circle represents a Start Event
node, which means that its events are either recurrent (periodically occurring) or initially pre-scheduled by

a simulation scenario. In the classical EG of Figure 2, the recurrence of Arrival events is expressed with

the help of a recursive edge (from Arrival to Arrival) and the variable tA attached to it represents the

1449

Gunal, Osais, and Wagner

recurrence time. In the modern form of this EG shown in Figure 3, the recursive Event Scheduling arrow

from Arrival to Arrival has been dropped since the recurrence of Arrival events is implied by the recurrence

(or nextOccurrence) function specified for the Arrival event node (or event type).

Figure 2: Modeling a simple queuing system as an EG using the classical EG notation.

We assume that the type definition of exogenous start events includes a recurrence (or nextOccurrence)

function that is invoked by a simulator for automatically scheduling recurrent events such as for creating

the next Arrival event whenever an Arrival event occurs.

Figure 3: Modeling the simple queuing system of Figure 2 as an EG using the modern notation.

In any case, an Arrival event increments the state variable “Len” by one. The variable “Len” represents

the length of the workstation’s input buffer (which, for simplicity, also includes the part that is currently

being processed). If the Boolean state variable “Busy” has the value false (that is, if the condition not Busy

holds), a ProcessingStart event is scheduled. When this event occurs, the variable “Busy” is set to true and

a ProcessingEnd event is scheduled with a delay obtained by invoking the duration() function. Note that

there is no condition for this Event Scheduling arrow since every ProcessingStart event causes a

corresponding ProcessingEnd event.

When the end event occurs, the “Len” variable is decremented and if the value of “Len” has fallen to

zero, the workstation is no longer “Busy”. In addition, if the value of “Len” is greater than zero (that is, if

there are still waiting parts in the workstation’s input buffer), a new ProcessingStart event is scheduled to

occur immediately (without any delay).

EG diagrams, such as the one shown in Figure 3, can be created with BPMN tools such as

https://www.drawio.com/ or the Signavio Process Editor, which is free for academic use.

2.2 Event Attributes

Event types may define attributes for events. For instance, the event type Delivery may define the Integer-

valued attribute “deliveryQuantity” for allowing event expressions like Delivery(deliveryQuantity: 65)

stating that this is a delivery event with a quantity of 65.

Let’s assume we are simulating an inventory system’s demand and replenishment sections with two
events: DailyDemand and Delivery. We have some daily demand for a product that we manage. When a

daily demand event occurs, two variables are updated: the daily sales quantity S, and the stock quantity Q,

as shown underneath the DailyDemand Event circle inside curly braces in Figure 4. We use the function

1450

https://www.drawio.com/
https://www.signavio.com/bpm-academic-initiative/

Gunal, Osais, and Wagner

“min” for finding the minimum of two numbers and “quantity” for sampling the daily demand random

variable. The variable RP in the condition represents the reorder point for this inventory system. The

condition Q <= RP & Q+S > RP captures the situation where the stock quantity Q has just fallen below

the reorder point.

Figure 4: An EG modeling an inventory management system with a continuous review policy.

The “leadTime” function is used for sampling the delivery lead time as the delay of Delivery follow-

up events (expressed in the form of an annotation “+leadTime()” of the Event Scheduling arrow). The

Delivery Event Circle’s event type name field reads “Delivery(delQ)”, which means that Delivery events

have a “delQ” attribute representing the delivery quantity. Such event attributes have to be assigned when

a new event of that type (here: Delivery) is scheduled. In the EG diagram of Figure 4, the assignment of the

event attribute delQ = TI - Q is shown with the help of a left bracket connected to the Delivery Event

Scheduling arrow with a dashed line (adopting to the visual syntax of BPMN).

2.3 Event Priorities

In Event-Based Simulation (with Event Scheduling), it is important to use event priorities for handling

events that happen at the same time and are non-confluent (having different effects if processed in a different

order). Using event priorities allows to enforce a specific processing order of simultaneous events for

avoiding deadlocks or other inconsistencies.

In the model of Figure 3, for example, we need to define a higher priority for ProcessingStart events

than for Arrival events. Otherwise, when we have a situation with a pair of simultaneous Arrival and

ProcessingStart events, and the workstation is idle, and the Arrival event is processed before the

ProcessingStart event, we will get a second ProcessingStart event, which is incorrect and creates

inconsistency. We could prevent this happening by not using the scheduling condition "not Busy", but

rather "Len == 1".

Likewise, for the inventory system in Figure 4, Delivery events should have a higher priority than

DailyDemand events. Without this priority setting, DailyDemand events may schedule a new Delivery

event before the state changes of the previously scheduled Delivery event have been performed.

2.4 Event Cancelling

In EGs, an event can be cancelled by using event cancelling edges which are visually expressed as dashed

lines. For example, consider a server that fails periodically (Osais 2020). When the server fails, the

processing activity of the server is interrupted (or preempted). This situation can be easily modeled by using

an Event Canceling arrow as shown in the model of Figure 5, which is an enhanced version of the model

shown in Figure 3, now including failure and repair events. When a Failure event occurs, it immediately

cancels the most recent pending ProcessingEnd event and schedules a Repair event to occur with a delay

of repairTime() time units. After the workstation is repaired, processing is restarted and the next Failure
event is scheduled.

1451

Gunal, Osais, and Wagner

 If we view a start-end pair of events as an activity, an ongoing activity can be interrupted by canceling

its end event, which is pending on the FEL. Hence, an Event Canceling arrow removes a pending event

from the FEL.

The first Failure event, like the first Arrival event, is scheduled during the simulation initialization.

When the first Failure event occurs, the status of the workstation is set to “failed” and then (1) the pending

ProcessingEnd event is canceled (removed from the FEL), and (2) a follow-up Repair event is scheduled

with a random delay obtained by calling the repairTime() function.

Figure 5: EG for a periodically failing workstation, with an Event Cancelling edge.

When the Repair event is due, the workstation’s status is set to “idle”, meaning that the workstation is

again ready to process new parts, and the next Failure event is scheduled to happen with a delay obtained

by calling the failTime() function. A Repair event also schedules a ProcessStart event if there are still parts

in the input buffer.

3 ADDING OBJECTS TO EVENT GRAPHS AND TO EVENT-BASED SIMULATION

Since the basic entities in the real world are objects and events, and a discrete dynamic system consists of

objects that are affected by events, supporting these two ontological categories in a simulation paradigm

seems natural and desirable. It also follows the fundamental insights of the simulation language Simula

about the value of “objects” as a modeling and programming concept, and it harmonizes EGs with Object-

Oriented (OO) modeling and programming languages. However, Event-Based Simulation (ES) and EGs,

following the classical mathematical modeling approach, abstract away from real-world objects and rather

represent their attributes in the form of mathematical variables called state variables.

 Notice that the term “entities” has been widely used in DES for denoting objects that are being

processed (such as parts in manufacturing networks or patients in healthcare service networks). However,

in addition to such processing objects, discrete dynamic systems also consist of resource objects and

possibly other types of objects.

Wagner (2017, 2018) has shown that it is straightforward to extend ES and EGs by adding the concept

of objects, resulting in Object Event Simulation (OES) and Object Event Graphs (OEGs). A similar

extension of EGs, called Object-Oriented Event Graph modeling, is proposed in Tiacci (2019).

 OES is obtained from ES by extending the definition of a system’s state structure S consisting of a set

of variables by adding to them a set of objects, each with a state defined to be the set of its attribute-value

pairs. OEGs are obtained from EGs by allowing to attach Object nodes to Event nodes such that each Object

node represents an object variable that can hold objects participating in the events of the Event node. In an
OEG diagram, Object nodes are rendered as rectangles attached to Event circles with a dashed line, as

shown in Figure 5.

1452

Gunal, Osais, and Wagner

 While DES is an umbrella term subsuming many different approaches, ES/EGs form its variable-based

foundation, and OES/OEGs provide an OO foundation of DES.

For binding the Object node’s object variable (such as the Workstation Object rectangle’s object

variable ws in Figure 5) to the corresponding object participating in the event referenced by the Event

node’s event variable (such as the Arrival Event circle’s event variable a), the first compartment of an

Object rectangle contains an assignment (such as ws = a.workstation where workstation is the Arrival
event’s attribute for referencing the affected workstation object).

Object rectangles contain object-specific state change statements in their second compartment. For

instance, the Workstation Object rectangle attached to the Arrival Event circle contains the state change

statement “INCREMENT inputBufferLength” referring to the Workstation attribute inputBufferLength.

A further extension of EGs and OEGs is obtained by introducing the concept of activities where an

activity corresponds to the pattern provided by a pair of start/end Event nodes such that the start Event

circle has an outgoing Scheduling arrow to the end Event circle with a delay expression corresponding to

the duration of the implicitly represented activity. This extension of EGs and OEGs has been proposed in

Wagner (2020).

Figure 6: An OEG corresponding to the EG of Figure 2.

4 FORMAL SEMANTICS

In Yücesan and Schruben (1992), EGs have been defined in a mathematically explicit way under the name

of Simulation Graph Models (SGMs). It is shown that an SGM can be “expanded” into an elementary SGM

where nodes have only atomic state changes and conditional edges have only atomic conditions. Two SGMs

are defined to be structurally equivalent if they have any elementary SGMs that are isomorphic. The notion

of structural equivalence allows to establish the validity of certain EG reduction rules proposed in Schruben

(1983).

While Yücesan and Schruben (1992) define EGs and the structural equivalence of two EGs, as well as

a notion of behavioral equivalence of two EGs, in a formally precise way, they do not define a formal

execution semantics for EGs. Such a semantics has been proposed by Wagner (2017) for Event-Based

Simulation (ES) and for Object Event Simulation (OES) using the concept of an Abstract State Machine
(ASM), which is a very expressive kind of state transition system where states are highly structured and

correspond to interpretations of a predicate logical language (with relation symbols) similar to the states of

a relational database system. Wagner’s ASM semantics for ES and OES also applies to EGs and OEGs by

decomposing them into sets of event rules providing the ASM’s transition functions.

4.1 An Abstract State Machine Semantics for Event-Based Simulation

The base concepts of ES are:

1453

Gunal, Osais, and Wagner

1. state variables for describing the state of a system,

2. event types,

3. event expressions,

4. event routines,

5. future events lists (FEL).

A state variable is declared with a name and a range, which is a datatype defining its possible values.

An event type is defined in the form of a class: with a name, a set of property declarations and a set of

method definitions, which together define the signature of the event type.

An event expression is a term E(x)@t where

1. E is the name of an event type,

2. t is a parameter for the occurrence time of events,

3. x is a (possibly empty) list of event parameters x1, x2, …, xn according to the signature of the event

type E.

For instance, Arrival@t is an event expression for describing Arrival events where the signature of the

event type Arrival is empty, so there are no event parameters, and the parameter t denotes the arrival time

(more precisely, the occurrence time of the Arrival event). An individual event of type E is a ground event

expression, e = E(v)@i, where the event parameter list x and the occurrence time parameter t have been

instantiated with a corresponding value list v and a specific time instant i. For instance, Arrival@1 is a

ground event expression representing an individual Arrival event.

An event routine is a procedure that essentially computes state changes and follow-up events, possibly

based on conditions on the current state. In practice, state changes are often directly performed by

immediately updating the state variables concerned, and follow-up events are immediately scheduled by

adding them to the FEL. However, for defining the formal semantics of ES, we assume that an event routine

is a pure function that computes state changes and follow-up events, but does not apply them, as in the rules

described in Table 1.

Table 1: Expressing an event routine as a pure function that computes state changes and follow-up events.

Event rule name ON (event expression) DO (event routine)

rArr Arrival @ t E’ = { Arrival @ (t + recurrence()) }

Δ = { Len = Len + 1 }

IF not Busy

THEN E’ = E’ ⋃ { ProcessingStart @ (t + duration()) }

RETURN ⟨ Δ, E' ⟩

rPS ProcessingStart @ t Δ = { Busy = true }

E’ = { ProcessingEnd @ (t + duration()) }

RETURN ⟨ Δ, E' ⟩

rPE ProcessingEnd @ t E’ = {}

Δ = { Len = Len – 1, IF Len==0 THEN Busy = false }

IF Len > 0 THEN E’ = { ProcessingStart @ t’ }

RETURN ⟨ Δ, E' ⟩

1454

Gunal, Osais, and Wagner

An event rule associates an event expression with an event routine F:

ON E(x)@t DO F(t, x),

where the event expression E(x)@t specifies the type E of events that trigger the rule, and F(t, x) is a

function call expression for computing a set of state changes and a set of follow-up events, based on the

event parameter values x, the event's occurrence time t and the current system state, which is accessed in

the event routine F for testing conditions expressed in terms of state variables.

A Future Events List (FEL) is a set of ground event expressions partially ordered by their occurrence

times, which represent future time instants either from a discrete or a continuous model of time. The partial

order implies the possibility of simultaneous events.

4.1.1 ES Models

An ES model is a triple ⟨ SV, ET, R ⟩ where

1. SV is a set of state variable declarations defining the structure of possible system states,

2. ET is a set of event type definitions,

3. R is a set of event rules expressed in terms of SV and ET.

We show how to express the example model of Figure 3 as an ES model. The set of state variables has

two elements:

SV = { Len: NonNegativeInteger, Busy: Boolean }

There are three event types, all of them having an empty signature:

ET = { Arrival(), ProcessingStart(), ProcessingEnd() }

And there are three event rules, one for each type of event:

R = { rArr, rPS, rPE}

which are defined as in Table 1 above. Such a model, together with an initial state (specifying initial

values for state variables and initial events), defines an ES system, which is a transition system where

1. system states are defined by value assignments for the state variables,

2. transitions are provided by event occurrences triggering event rules that change the simulation state

through changing the system state (by changing the values of affected state variables) and the FEL

(by removing the current events and adding follow-up events).

Whenever the transitions of an ES system involve computations based on random numbers (if the

simulation model contains random variables), the transition system defined is non-deterministic.

We need to distinguish between the system state, like S0 = {Len: 0, Busy: false}, which is the state of

the simulated system, and the simulation state, which adds the FEL to the system state, like

S0 = ⟨ {Len: 0, Busy: false}, {Arrival@1} ⟩

S1 = ⟨ {Len: 1, Busy: false}, {ProcessingStart@1.1, Arrival@2} ⟩

1455

Gunal, Osais, and Wagner

Doing one more step, the next transition is given by the next event ProcessingStart@1.1 triggering rPS,

which leads to

S2 = ⟨ {Len: 1, Busy: true}, {Arrival@2, ProcessingEnd@2.7} ⟩

In this way, we get a succession of states S0 → S1 → S2 → … as a history of the transition system

defined by the ES model.

4.1.2 Event Rules as Functions

An event rule r = ON E(x)@t DO F(t, x) can be considered as a 2-step function that, in the first step, maps

an event e = E(v)@i to a parameter-free state change function re = F(i, v), which maps a system state to a

pair ⟨ Δ, E' ⟩ of system state changes Δ and follow-up events E'. When the parameters t and x of F(t, x) are

replaced by the values i and v provided by a ground event expression E(v)@i, we also simply write Fi,v

instead of F(i, v) for the resulting parameter-free state change function.

We say that an event rule r is triggered by an event e when the event’s type is the same as the rule’s

triggering event type. When r is triggered by e, we can form the state change function re = Fi,v and apply it

to a system state S by mapping it to a set of system state changes Δ and a set of follow-up events E':

re(S) = Fi,v(S) = ⟨ Δ, E' ⟩

In general, there may be situations, where we have several simultaneous events, that is, there may be

two or more events occurring at the same time. Therefore, we need to explain how to apply a set of rules

RE triggered by a set of events E, even if both sets are singletons in many cases.

The rule set R of an ES model can also be considered as a 2-step function that, in the first step, maps a

set of events E to a state change function RE, which maps a system state to a pair ⟨ Δ, E' ⟩ of state changes

Δ and follow-up events E'.

For a given set of events E and a rule set R, we can form the set of state change functions obtained from

rules triggered by events from E:

RE = { re : r ∈ R & e ∈ E & e triggers r}

Notice that the elements C of RE are parameter-free state change functions, which can be applied as a

block, in parallel, to a system state S:

RE(S) = ⟨ Δ, E' ⟩, with

Δ = ⋃ { ΔC : C ∈ RE & C(S) = ⟨ ΔC, E'C ⟩ }

E' = ⋃ { E'C : C ∈ RE & C(S) = ⟨ ΔC, E'C ⟩ }

Notice that when forming the union of all state changes brought about by applying rules from RE, and

likewise when forming the union of all follow-up events created by applying rules from RE, the order of

rule applications does not matter because they do not affect the applicability of each other, so any selection

function for choosing rules from RE and applying them sequentially will do, and they could also be applied

simultaneously if such a parallel computation is supported.

However, computing a set of state changes Δ raises the question if this set is, in some sense, consistent.

A simple, but too restrictive, notion of consistent state changes would require that if Δ contains two or more
updates of the same state variable, all of them must be equivalent (effectively assigning the same value). A

more liberal notion just requires that if Δ contains two or more updates of the same state variable, their

collective application must result in the same value for it, no matter in which order they are applied.

1456

Gunal, Osais, and Wagner

4.1.3 An Event Rule Set as a Simulation State Transition Function

We show that the event rule set R of an ES model ⟨ SV, ET, R ⟩ defines a transition function that maps a

simulation state ⟨ S, FEL ⟩ to a successor state ⟨ S', FEL' ⟩ in 3 steps:

1. R maps the set of next events N extracted from the FEL to a set RN of state change functions of

rules triggered by one of the next events from N.

2. RN maps the current system state S to a set of state changes Δ and a set of follow-up events E'.

3. The pair ⟨ Δ, E' ⟩ amounts to a transition of the current simulation state ⟨ S, FEL ⟩ by applying the

updates from Δ to S yielding S’ and by removing N from FEL and adding E'.

We have already explained how to obtain RN from R and how to apply RN to S for getting ⟨ Δ, E' ⟩ in

the previous subsection, so we only need to provide more explanation for the last step: processing ⟨ Δ, E' ⟩
for obtaining the next simulation state ⟨ S', FEL' ⟩.

Let Upd denote an update operation that takes a system state S and a set of state changes Δ, and returns

an updated system state Upd(S, Δ). When the system state consists of state variables, the update operation

simply performs variable value assignments. Using this operation, we can define the third step of the

simulation state transition function with two sub-steps in the following way:

1. S' = Upd(S, Δ)

2. FEL' = FEL − N ⋃ E'

This completes our definition of how the event rule set R of an ES model works as a transition function

that computes the successor state of a simulation state:

R(⟨ S, FEL ⟩) = ⟨ S', FEL' ⟩,

such that for a given initial simulation state S0 = ⟨ S0, FEL0 ⟩, we obtain a succession of states

S0 → S1 → S2 → …

by iteratively applying the transition function R:

Si+1 = R(Si)

4.2 Decomposing an Event Graph into a Set of Event Rules

Any EG can be decomposed into a set event rules, such that one rule is obtained for each Event circle of

the EG. This decomposition, together with the ASM semantics for ES models presented above, provides a

compositional semantics of EGs.

For instance, the EG shown in Figure 3 above can be decomposed into a set of three event rules, one

for each of its Event circles:

1. When an Arrival event occurs, the variable Len is incremented by 1 and, if not Busy, a

ProcessingStart event is scheduled to happen immediately. In addition (since Arrival events are

recurrent), a new Arrival event is scheduled with a delay obtained by calling the recurrence function

specified for the Arrival event type.

2. When a ProcessingStart event occurs, the variable Busy is set to true, and a ProcessingEnd event

is scheduled with a delay provided by invoking the function duration().

1457

Gunal, Osais, and Wagner

3. When a ProcessingEnd event occurs, the variable Len is decremented by 1 and, if Len is equal to

0, the variable Busy is set to false. In addition, if Len is greater than 0, a new ProcessingStart event

is scheduled to happen immediately.

These three event rules are expressed more formally in Table 1 above.

5 A PYTHON IMPLEMENTATION FOR EXECUTING EVENT GRAPHS

Implementing an Object Event Graph (like the one shown in Figure 6 above) results in an Object Event

Simulation (OES) program where the attributes of objects play the role of state variables and follow-up

events are scheduled by adding them to the FEL. We provide both a JavaScript and a Python implementation

of OES in the Github repository folders https://github.com/gwagner57/oes/tree/master/JavaScript/Core0

and https://github.com/gwagner57/oes/tree/master/Python/Core0.

Python is a multi-paradigm general-purpose programming language (Python 2023). It is very effective
in rapid prototyping of concepts. Also, the simple syntax of the language helps making Python programs

self-explanatory to some degree. This is one of the reasons why Python is popular in education.

In this section, we show a complete Python simulation program for the Object Event Graph of Figure

6 above. The whole program can be written in one file with around 100 lines of code, which can be

downloaded from the Github repo folder provided above.

The simulation program has three sections:

1. The first section includes the foundational classes Object, Event and EventList.

2. The second section consists of the code of the specific simulation model example in the form of a

set of object and event classes.

3. The third section consists of three parts: simulation parameter settings, an initial state definition,

and the simulation loop.

 The following program code listing shows the code for importing the code of a priority queue data

structure, an exponential distribution function and the mean function from suitable Python libraries, as well

as the code of the utility function has_method, which tests if an object has a certain method (and will be

used in the simulation loop).

from queue import PriorityQueue

from random import expovariate

from statistics import mean

def has_method(object, methodName):

 return callable(getattr(object, methodName, None))

In OO programming, we use base classes for defining the basic functionality (or logic) that other

(derived) classes are supposed to inherit and use. For object event simulations, as obtained from Object

Event Graphs, we need to define the base classes Object and Event:

class Object:

 def __init__(self, name=None):

 self.name = name

class Event:

 def __init__(self, occTime, priority):

 self.occTime = occTime

 self.priority = priority

 def onEvent(self):

 pass

 def str(self):

 return self.__class__.__name__ + "@" + str(self.occTime)

1458

https://github.com/gwagner57/oes/tree/master/JavaScript/Core0
https://github.com/gwagner57/oes/tree/master/Python/Core0

Gunal, Osais, and Wagner

 In a simulation program, object types are implemented as classes that extend the base Object class.

Similarly, event types are implemented as classes that extend the base Event class, which defines the general

attributes occurrence time and priority, as well as an abstract method onEvent, for which each concrete

event class extending the base Event class must provide a concrete onEvent method that is called whenever

an event of that type occurs during a simulation run (this method has also been called event routine in the

literature). The Event class has a special method __str__ that is used for creating a string representation of

an event including its type and occurrence time. This method is useful for debugging and can be used for

creating a simulation log.

 The next program listing shows the definition of the EventList class, which encapsulates a

PriorityQueue data structure for representing the Future Events List (FEL). In the addEvent method, an

event is inserted into a tuple (a form of an array in Python). This event tuple is used for inserting the event

into the FEL. The first element in the event tuple is the event’s occurrence time (occTime), which is the

first key that is used for sorting events in the FEL. If two events have the same occurrence time, the next

key used for storing an entry in the FEL is the event’s priority, which is defined for every event in its event

class. Finally, in the getNextEvent method, the next event tuple is first fetched from the FEL and then the

event itself at index 2 in the event tuple is returned.

class EventList:

 def __init__(self):

 self.events = PriorityQueue()

 def addEvent(self, ev):

 self.events.put((ev.occTime, ev.priority, ev))

 def getNextEvent(self):

 ev = self.events.get()

 return ev[2]

 def isEmpty(self):

 return self.events.empty()

There is only one object in our workstation queuing system simulation model. This object represents

the workstation, which includes the queue and the “server” resource. The next program listing shows the

definition of the WorkStation class with two attributes: inputBufferLength and status (representing the

model’s state variables). The status attribute represents the state of the server (AVAILABLE or BUSY).

Since the WorkStation class is derived from the base class Object, the attribute name defined in the parent

class Object is assigned using the super method.

class WorkStation(Object):

 def __init__(self, name, inputBufferLength=0, status="AVAILABLE"):

 super().__init__(name)

 self.inputBufferLength = inputBufferLength

 self.status = status

There are three types of events that occur in this single-server queueing system: Arrival,

ProcessingStart, and ProcessingEnd. The next program listing shows the definition of the Arrival event

class. An arrival event is initialized with the event time (occTime) and the object participating in the event

(workstation). The priority for the arrival event is one. Every event class must implement the method

onEvent. This method is the event handler, which is called when the event is fired in the simulation loop.

Inside the event handling method onEvent, the state variables expressed as attributes of objects are accessed

with the help of OO path expressions of the form self.objectReference.attribute by first accessing the object

and then its attribute. For abbreviating these path expressions, the workstation object is assigned to a local

variable named ws. This local variable can be used for accessing the two state variables inputBufferLength
and status as attributes of the workstation object. Also, inside the onEvent method, a follow-up event of

type ProcessingStart is created and returned to the main simulation loop for being scheduled.

1459

Gunal, Osais, and Wagner

class Arrival(Event):

 def __init__(self, occTime, workstation):

 super().__init__(occTime, 1) # assign highest priority

 self.ws = workstation

 def onEvent(self):

 followupEvents = []

 ws = self.workstation

 ws.inputBufferLength += 1

 if ws.status == "AVAILABLE":

 followupEvents.append(ProcessingStart(self.occTime, ws))

 return followupEvents

 def nextOccurrence(self):

 delay = expovariate(rate_nextOccurrence)

 return Arrival(self.occTime + delay, self.workstation)

ProcessingStart events are internal (or caused) events, which are follow-up events returned by the

onEvent method. By contrast, Arrival events are external (or exogenous) events because they are not caused

within the single-server queueing system. Typically, external events are recurrent, that is, they are created

by a special method called nextOccurrence. Only classes for external event types should implement this

method. Inside the onEvent method of the Arrival event class, a delay (or time-to-next-arrival) is first

generated using the imported random variate generator for the exponential distribution called expovariate.

After that, a new Arrival event is created and then returned to the simulation loop.

The definition of the ProcessingStart event class is shown in the next program listing. Also events of

this type have a workstation object as a participant. Since these events are not start events (or internal

events), the nextOccurrence method is not implemented in their class definition. Again, the attributes of the

workstation object are accessed via the path expression self.workstation. The follow-up event of type

ProcessingEnd is scheduled to occur after some delay, which represents the service time at the workstation

server.

class ProcessingStart(Event):

 def __init__(self, occTime, workstation):

 super().__init__(occTime, 2)

 self.workstation = workstation

 def onEvent(self):

 followupEvents = []

 ws = self.workstation

 ws.inputBufferLength -= 1

 ws.status= "BUSY"

 delay = expovariate(rate_serviceTime)

 followupEvents.append(ProcessingEnd(self.occTime + delay, ws))

 return followupEvents

The class definition of our last event type, ProcessingEnd, is shown in the next program listing. When the

processing of a part ends, the workstation (server) becomes available and thus the status state variable of

the WorkStation object is updated accordingly. Also, a follow-up event of type ProcessingStart for

processing the next part is only created if the workstation’s input buffer is not empty.

class ProcessingEnd(Event):

 def __init__(self, occTime, workstation):

 super().__init__(occTime, 3)

 self.workstation = workstation

1460

Gunal, Osais, and Wagner

 def onEvent(self):

 followupEvents = []

 ws = self.workstation

 ws.status = "AVAILABLE"

 if ws.inputBufferLength > 0:

 followupEvents.append(ProcessingStart(self.occTime, ws))

 return followupEvents

Simulation parameters are assigned and the initial simulation state is initialized in the code of the following

program listing. The arrival and departure rates are lambda and mu, respectively. Also, the only object in

the simulation program (ws) and one initial Arrival event are created. Two auxiliary variables (intEvent and

extEvent) are used to track internal and external events generated while the simulation runs. The

queueLength variable is defined to collect simulation data. Basically, upon every arrival event, the queue
length is sampled and the value is recorded.

--- initialize simulator -----

evList = EventList()

simTime = 100000 # Total simulation time

clock = 0

--- assign model parameters -----

rate_nextOccurrence = 0.5

rate_serviceTime = 0.6

--- set up the initial state -----

ws = WorkStation("ws")

evList.addEvent(Arrival(0.0, ws))

--- initialize simulation statistics -----

queueLength = []

The details of the simulation loop are given in the following program listing. The system is simulated for a

specific amount of simulated time. The helper function has_method is used to detect if the current event is

a recurrent event (i.e., it has the nextOccurrence method). At the end of the simulation loop, if the current

event is an Arrival event, the inputBufferLength state variable is sampled and the value is decremented by

one and then stored in the variable queueLength. Finally, the average queue length is computed and printed.

while clock <= simTime:

 ev = evList.getNextEvent()

 clock = ev.occTime

 #--- if the event is recurrent, schedule the next one -----

 if has_method(ev, "nextOccurrence"):

 evList.addEvent(ev.nextOccurrence)

 followUpEvents = ev.onEvent()

 for ev in followUpEvents: evList.addEvent(ev)

 #--- collect statistics data -----

 if isinstance(ev, Arrival):

 queueLength.append(ws.inputBufferLength - 1)

#--- print output statistics -----

print("Average Queue Length = ", round(mean(queueLength), 2))

The above simulation program can be easily extended to simulate systems with any number of objects and

event types. For example, customers flowing through the system can be modeled as an object type with

1461

Gunal, Osais, and Wagner

attributes like ArrivalTime and DepartureTime. A possible statistic that can be computed using this

simulation data would be the average system delay.

6 CONCLUSION

Forty years ago, just some decades after the rise of computer simulation, Event Graphs were introduced as

a diagram language for visually modelling causality and event-based simulation models. In this tutorial, we

have shown that Event Graphs provide an intuitive approach for making simulation models.

ACKNOWLEDGMENTS

Yahya Osais would like to acknowledge KFUPM for financial support.

REFERENCES

Osais, Y. 2020. Computer Simulation: A Foundational Approach Using Python. 1st Ed., Routledge.

Savage, E. L., and Schruben, L. W. 1995. “Eliminating Event Cancellation in Discrete Event Simulation”. In Proceedings of the

1995 Winter Simulation Conference, edited by C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman. 744 – 750.

Schruben, L. W. 1983. “Simulation Modeling with Event Graphs”. Communications of the ACM 26:957–963.

https://dl.acm.org/citation.cfm?id=358460.

Schruben, L and E. Yücesan.1993. Modeling Paradigms for Discrete Event Simulation, Operations Research Letters, 13, 265–275.

Tiacci, L. 2019. Object-Oriented Event-Graph Modeling Formalism to Simulate Manufacturing Systems in the Industry 4.0 Era.

Simulation Modelling Practice and Theory 99.

The Python Programming Language. https://www.python.org, accessed 5th May 2023.

Wagner, G. 2017. “An Abstract State Machine Semantics for Discrete Event Simulation”. In Proceedings of the 2017 Winter

Simulation Conference, edited by W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page.

762–773. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers. URL: https://www.informs-

sim.org/wsc17papers/includes/files/056.pdf

Wagner, G. 2018. Information and Process Modeling for Simulation – Part I: Objects and Events, Journal of Simulation

Engineering 1, 1–25, URL: https://articles.jsime.org/1/1/Modeling-for-Simulation-Part-I.

Wagner, G. 2020. “Business Process Modeling and Simulation with DPMN: Resource-Constrained Activities”. In Proceedings of

the 2020 Winter Simulation Conference, edited by K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and

R. Thiesing. 762–773. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

Yücesan, E. and L.W. Schruben. 1992. “Structural and Behavioral Equivalence of Simulation Models”. ACM Transactions on

Modeling and Computer Simulation 2:1, 82–103.

AUTHOR BIOGRAPHIES

MURAT M. GUNAL is an Associate Professor in the Department of Industrial Engineering at Fenerbahce University, Istanbul

Turkiye. He is also the founder of Simarter Ltd. an analytics company specialised in modelling, simulation and optimisation. His

main research area is simulation methodologies, healthcare and industrial applications. He developed many models for decision

making. His models are used in real and challanging decision making problems in many sectors. His email address

is murat.gunal@fbu.edu.tr.

YAHYA E. OSAIS is an Assistant Professor in the department of computer engineering at King Fahd University of Petroleum and

Minerals (KFUPM), Dhahran, Saudi Arabia. He is also a member of the interdisciplinary research center for intelligent secure

systems at KFUPM. His research interests include simulation modeling and reinforcement learning. His email address is

yosais@kfupm.edu.sa, and his homepage is https://faculty.kfupm.edu.sa/coe/yosais/.

GERD WAGNER is Professor of Internet Technology in the Dept. of Informatics, Brandenburg University of Technology,

Germany. After studying Mathematics, Philosophy and Informatics in Heidelberg, San Francisco and Berlin, he (1) investigated

the semantics of negation in knowledge representation formalisms, (2) developed concepts and techniques for agent-oriented

modeling and simulation, (3) participated in the development of a foundational ontology for conceptual modeling, the Unified

Foundational Ontology (UFO), and (4) created a new Discrete Event Simulation paradigm, Object Event Modeling and Simulation

(OEM&S), and a new process modeling language, the Discrete Event Process Modeling Notation (DPMN). Much of his recent

work on OEM&S and DPMN is available from sim4edu.com and dpmn.info. His email address is g.wagner@b-tu.de.

1462

https://dl.acm.org/citation.cfm?id=358460
https://www.python.org/
https://www.informs-sim.org/wsc17papers/includes/files/056.pdf
https://www.informs-sim.org/wsc17papers/includes/files/056.pdf
https://articles.jsime.org/1/1/Modeling-for-Simulation-Part-I
mailto:murat.gunal@fbu.edu.tr
mailto:yosais@kfupm.edu.sa
https://faculty.kfupm.edu.sa/coe/yosais/
https://sim4edu.com/
https://dpmn.info/
mailto:g.wagner@b-tu.de

	ABSTRACT
	1 INTRODUCTION
	2 Syntax and informal semantics
	2.1 Basic Language Elements
	2.2 Event Attributes
	2.3 Event Priorities
	2.4 Event Cancelling

	3 Adding Objects to Event Graphs and to Event-Based Simulation
	4 Formal Semantics
	4.1 An Abstract State Machine Semantics for Event-Based Simulation
	4.1.1 ES Models
	4.1.2 Event Rules as Functions
	4.1.3 An Event Rule Set as a Simulation State Transition Function

	4.2 Decomposing an Event Graph into a Set of Event Rules

	5 A Python Implementation for Executing Event Graphs
	6 Conclusion
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHIES

