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ABSTRACT 

In discrete-event simulation models, the way we establish the relationship between a real-world object 
and the model entity (a single indivisible object flowing through the model) is crucial to some classes of 
problems due to possible computational unfeasibility. In addition, the entity size also relates to results 
accuracy and simulation running time - a subject barely explored in the literature. In this paper, these 
questions were investigated through case studies which supported our initial hypothesis about the general 
relationships involved. Then, a simple algorithm was developed for correctly choosing the best entity size 
to provide the desired accuracy, measured as a discretization error, with promising results. The limitations 
of the algorithm are addressed and some directions for future research are pointed. 

1 INTRODUCTION 

Entity size in simulation models, as will be soon defined, is a property linked to the model complexity. 
There is a consensus amongst the simulation community that a simple model is preferable to a complex 
one (Salt 1993; Chwif et al. 2000; Robinson 2011). According to Robinson (2011), the reasons are: 

 
• Simple models can be developed faster; 
• Simple models are more flexible; 
• Simple models require less data; 
• Simple models run faster; 
• The results are easier to interpret since the structure of the model is better understood. 
 
Two components of complexity are the scope and level of model details (Robinson 2011). For 

example, when simulating manufacturing systems, the level of detail can range from the entire facility to 
a single work-center. The scope is smaller in the latter case when compared to the former. On the other 
hand, the work-center could be modeled with associated processing times, breakdown times, shift 
patterns, and material handling equipment, among others. In this case, the level of detail is much higher, 
although the scope remains the same - the work-center (Chwif et al. 2000). However, the scope and level 
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of detail could be considered as “structural complexity” because it is the property of the conceptual 
model. This and other concepts on model simplification are presented in a survey by van der Zee (2019). 

When a conceptual model is converted into a computer model, there is another dynamic complexity 
element: the number of entities within the model. The more entities a computational model has to deal 
with, the more memory and processing time will be required since the number of current and future 
events depends on the number of entities. In this sense, fewer entities within a model should be better. 
Franciscan William of Occam (c. 1287-1347) postulated the Occam’s Razor Principle (or Law of 
Parsimony): “Non sunt multiplicanda entia sine necessitate” or “Entities must not be multiplied beyond 
necessity”. 

This paper addresses the entity-sizing problem by showing the advantages and disadvantages of 
lowering the number of entities in a simulation model. It is organized into the following: Section 2 
provides some preliminary concepts since there are no past literature foundations for this issue. Section 3 
presents two case studies when the issue of entity size is analyzed in practice. Discussions are provided in 
Section 4, and finally, in Section 4, conclusions and further work are presented. 

2  PRELIMINARY CONCEPTS AND LITERATURE REVIEW 

Simulation is a widely used technique in various fields to analyze and understand complex phenomena. 
There are different types of simulation, which vary according to the nature of the problem to be analyzed 
and the tools available to model it. The main types of simulation are discrete event simulation, systems 
dynamics or continuous simulation, and agent-based simulation (Amaral et al. 2022). 

Discrete event simulation is used to model systems in which changes occur at specific times and not 
continuously over time. On the other hand, continuous simulation is used for systems that change 
continuously over time and are described by differential equations. Agent-based simulation involves 
creating models that simulate the behavior of entities, known as agents. These agents can represent 
individuals, groups, processes, or machines, and interact with each other as well as the environment in 
which they operate (Santos et al. 2021). Hybrid simulation, in turn, combines elements of, at least, two of 
the aforementioned techniques, allowing the modeling of complex systems that present discrete events 
and continuous dynamics (Brailsford et al. 2019). 

Hybrid simulation has become an increasingly important tool for analyzing complex systems in 
various fields, such as engineering, economics, and biology. Mosavi et al. (2019) present a hybrid 
simulation approach for fluid modeling, while Zhang et al. (2019) use a hybrid simulation approach to 
model complex biological systems. One advantage of hybrid simulation is its ability to handle complex 
and nonlinear systems, where continuous and discrete-event simulation alone may not be sufficient. In 
addition, hybrid simulation allows the inclusion of models from different time scales. For instance, 
Kumar and Kumar (2018) presented a hybrid model (system dynamics and discrete-event simulation) to 
simulate the manufacturing of gold and silver products. The refining banks were modeled using system 
dynamics principles to determine the relationship between the deposition rate and the quantity of residual 
gold in the bank. For the melting & anode casting process and, for the melting & bullion casting process, 
discrete-event simulation was used. 

However, hybrid simulation also presents disadvantages, such as the need for care in choosing models 
for each component of the system, the complexity of implementation, and the difficulty in analyzing and 
interpreting the results obtained (Scheidegger et al. 2018). 

In some cases, such as in the modeling of fluids, grains, and other materials, hybrid simulation can be 
used in conjunction with discrete event simulation. The discretization of entities can be used to model the 
materials in a discrete manner, while continuous simulation is used to model the macroscopic behavior of 
the materials. However, the choice of the most appropriate simulation technique depends on the specific 
characteristics of the problem to be analyzed and the tools available for its modeling. 

Harrel et al. (2011) define each component of a system as Entities, Activities, Resources, and 
Controls. Banks et al. (2009) define the entity as an object of interest within a system, such as parts or 
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clients. Since this work focuses on entity sizing, we will define an entity as any item processed 
throughout the system, such as products, customers, and documents. 

Regarding entity sizing, the focus of this work is on situations where an entity represents multiple 
real-world objects. Thus, we will define entity size as the number of real-world objects represented by a 
single entity in a simulation model. For instance, in a coaching work with which one of the authors was 
involved, he had to build a model for a tomato can process unit to check whether the facility, given the 
mix of products, could handle the demand. In this case, it was defined that one entity would be equivalent 
to 120 tomato cans, i.e., entity size = 1/120 (entities per can). We can also define entity multiplicity as 
the inverse of entity size, whose numeric value may be more “palatable” (e.g.: 120 cans per entity). 

Kogler and Rauch (2018) surveyed several simulation models for the wood supply chain. In this case, 
this issue arises since the entity size could be one log, one full log truck, one ton, etc. depending on the 
simulation model and objectives. Another example can be found in Chen et al. (2002). They studied 
logistics activities in a chemical plant; since most chemical production involves continuous flow; entity 
discretization was an important issue. The plant produces three different types of dry chemicals in one 
production line, one at a time. The chemical product is then transferred to intermediate silos, which is 
again transferred to one of two specific silos: for packing the product in 2 tons package or 5 tons package. 
Since it is a discrete event model (although, according to the authors, the model could be built with the 
continuous simulation paradigm), they needed to choose a convenient entity size. They initially 
established that one entity was equivalent to 2 tons (because of the small package capacity). However, 
since there were 2 tons and 5 tons packages, and the latter is not multiple to the former, they finally 
decided to assume that one entity equals 1 ton. Literature shows that this kind of rationale is common, and 
the same ratio will be used in one of the case studies described in Section 3. Nevertheless, a question 
arises: is it the best value? 

Although there are recognized frameworks and formalisms for both hybrid discrete and continuous 
systems (Giambiasi et al. 2001; Lau et al. 2014), as well as several works on discrete event simulation for 
continuous systems (Fioroni et al. 2007; Kabadurmus et al. 2010; Béchard and Côté 2013), there are 
practically no references in the literature referring to the specific issue of the optimal entity size into a 
discrete event simulation model (for the multiple entity cases). Most discussions on the discretization of 
continuous systems tackle the discretization of the time (Sterman 2000; Giambiasi and Carmona 2006; 
Nutaro 2007; Murata et al. 2010). In the next section, we will expand the understanding of this issue by 
analyzing one prototype and two practical cases. 

It is possible to infer that if the entity multiplicity (1/entity size) is low, the simulation model should 
have more entities and take more time to run. Nevertheless, if the multiplicity is too high, the 
computational time should be optimized, but the precision of results can be the primary concern (due to 
discretization errors). Therefore, we suggest that there should be an optimum size that balances precision 
with running time. Figure 1 addresses this point. 

 
Figure 1: Balance between discretization error versus running time. 
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3 CASE STUDIES 

3.1  Prototype Case 

To evaluate the influence of entity size and its precision, we first build a simple M/M/1 queuing model 
with λ equal to 6 entities per hour (mean interarrival time of 10 minutes) and µ equal to 7.5 entities per 
hour (mean service time). In this baseline scenario, we assumed that one entity is equal to 1 ton. Then, we 
created alternative scenarios varying entity size. Scenario 1 establishes that one entity = 10 tons; scenario 
2: one entity = 100 tons; scenario 3: one entity = 1,000 tons. To create 3 equivalent models, the mean 
interarrival times and the mean service times were multiplied by the entity size in each scenario. The KPIs 
evaluated were total production, in tons, at the end of the simulation period and server utilization. Other 
KPIs such as queuing size or time were not evaluated since they are dependent on entity size and will not 
allow us to compare results. Table 1 summarizes the experiment: all errors were calculated regarding the 
baseline scenario. Total simulation time and warm-up period for all scenarios were dictated by scenario 3: 
10,000,000 minutes of warm-up and 100,000,000 minutes of results collection period. Replications were 
dimensioned to provide less than 1% precision around the mean of KPIs (in all scenarios, 5 replications 
were conducted). The simulation model was developed in SIMUL8 simulation software in an Intel Core 
i7 9700F @ 3.00GHz computer. Simulation running time was relatively fast, varying from around 30 
seconds (best case - scenario 3) to 1 minute (worst case - baseline scenario). 

Table 1: Results from the prototype model. 

 Baseline  Scenario 1 Scenario 2 Scenario 3 
Production (tons) 9,999,065.8 9,999,074.0 10,012,540.0 10,066,800.0 
Server utilization 80.0% 80.0% 80.0% 80.5% 

     
Abs. relative error (production) N/A 0.0001% 0.1348% 0.6774% 
Abs. relative error (utilization) N/A 0.0247% 0.0505% 0.6019% 

 
As can be seen from Table 1, the maximum error occurs in scenario 3 (entity size is 1,000 

tons/entity), but its value is below 1%. Therefore, no huge lack of precision will occur if we increase 
entity size, at least in this simple model. 

3.2  PP-Production Facility 

The objective of this study (a consultancy project) was to evaluate bottlenecks and the productive 
capacity with the addition of a 3rd extrusion line in a polypropylene (PP) production facility. The model 
included the receiving process, extrusion, and expedition of granulated plastic material (PP). There were 7 
kinds of raw materials which were received either from trucks carrying big bags or bulk trucks. The 
arrival policy of trucks was triggered when each silo reached reorder point level. Raw material was 
directed to one of the seven storage silos, depending on the raw material type. It was considered a 
production plan with 6 families of products, each family composed of a mixture of raw materials. When 
the production of one given line started, the material was transferred to intermediate silos that would feed 
the extrusion line. After the extrusion process, the product would go to the final silos that would feed the 
homogenization process and packaging, which could be either big bags or 25 kg packs. Production lines 
set-up and breakdowns were also considered in this model. The schematic layout is depicted in Figure 2. 

The focus here is to define the entity size for the product (Polypropylene granules - see Figure 3). 
Their characteristic is between 3 to 5 mm plastic granules with an approximate density of 0.9 g/cm3. 
Therefore, the weight of each granule is around 0.06 g. It is clear that it is not worth assigning one entity 
equal to 1 granule. By doing this and given that the extrusion average velocity is around 1,650 kg/h for 
each line, then in one hour, not less than 80 million entities will be “flowing” through the model, which 
will not be computationally feasible. 
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Figure 2: Schematic layout of polypropylene facility. 

 
Figure 3: Polypropylene granules. 

So, in the project, it was decided that 1 entity = 1 ton, based on personal experience because, besides 
the easy interpretation (1 entity = 1 ton), 1 ton is one good resolution for external silo content (that has the 
maximum capacity of 240 tons). Nevertheless, at this point in the project, we did not conduct a detailed 
study regarding the entity size. The original model was developed in SIMUL8 simulation software and it 
ran relatively fast for a 1-month production plan simulation. Since the model was initialized with PP 
stocks from the production plan, no warm-up period was required. Replications were dimensioned to 
provide less than 1% precision around the mean of KPIs. 

Now, this model was retaken and configured by a parameter called entity size (=1/multiplicity), so 
variations can be made. This was done from the external silos to the final process (packaging). For the 
receiving process, we maintained 1 entity = 1 load of the truck which was converted to entity numbers 
depending on the parameter entity size for external silos feeding. 

The key performance indicators (KPIs) were: 
 
• Queue sizes and queuing times for big-bags and bulk trucks; 
• Minimum, average, and maximum levels of material for each external silo; 
• Production line and post-extrusion equipment utilization; 
• Overall production level, with breakdown by line and type of package. 
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Average results of 100 runs for each KPI were stored, ranging the entity size from 0.03125 entities 
per ton (multiplicity = 32, since 32 tons equals 1 entity) to 32 entities per ton (multiplicity = 0.03125), 
along with the running time for each trial, equivalent to 100 simulation runs. Against our expectation, 
results were quite insensitive to entity size, especially the most important one: the overall production (see 
Table 2 - other KPIs will be omitted due to space constraints). 

Table 2: Simulation results for the PP-production facility. 

Entity size Overall production (ton) Trial running time (sec) 
0.03125 - - 
0.0625 3,133.4 17 
0.125 3087.3 18 
0.25 2988.7 19 
0.5 2986.5 22 
1 2957.2 30 
2 2943.8 42 
4 2944.3 64 
8 2944.6 109 

16 2944.6 202 
32 2944.7 384 

 
With entity size equal to 0.03125 entities per ton, the model provided an error because it was 

configured to do so when there is stock out of the external silo. It occurred because the precision is very 
low with this entity size (32 tons = 1 entity). 

Since the overall production did not seem to change above 32 entities per ton, this value became our 
reference. Then, we calculated the relative error of this KPI for every other value of entities per ton. 
Figure 4 shows the relative error of overall production by varying entity size. 

 
Figure 4: Relative error by varying entity size. 

It is clear to see that, for entity size higher than 2 tons per entity, the error was near 0. For an entity 
size of 0.0625, the error was above 6%, which is still relatively low when evaluating the variation of 
entity size (from 32 to 0.00625). 

On the other hand, simulation running time was very sensitive to entity size. Figure 5 shows 
simulation running time versus entity size. 
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Figure 5: Running time versus entity size (entities per ton). 

As hypothesized, running time follows practically an exponential pattern as entity size rises, which 
can lead to unfeasible running times. The case study model is of medium size complexity but if we deal 
with complex models, it is clear that entity size choice could be critical. 

3.3 Ice Cream Bar Production Facility 

In this project, a simulation model was used to analyze a new ice cream production line. Although all the 
production stations for the ice cream process were modeled, the focus of this work was to identify 
improvements in the raw materials supply for this line. 

The production process included the following steps: after pumping the mix from the flavor vat, the 
mixture passed through freezers (2) at a constant rate and was fed to the extruder. There were two 
extruders where some stock-keeping units (SKUs) were also variegated, being fed at a constant rate. 
Sticks were automatically added at this point. After the extrusion process, each bar was put on a plate 
conveyor that passed through the hardener. Chocolate (and inclusions) would be automatically pumped 
into the chocolate dip tank as well as the dazzle at dazzle tank (for SKUs that require dazzle). Bars would 
be automatically transferred from the hardening end conveyor by the slat conveyor to be dipped in the 
tanks. The dipping process batched in 12 bar lanes across. Then, the bars would be automatically 
transferred into the wrapper station by a pick-and-place robot (6 lanes per movement) and after wrapping, 
the 6 bars would be split into 3 + 3 that would feed the two-carton equipment. Each carton would pack 3 
bars and after cartooning, it would pass through a metal detector and weight check (all equipment 
alongside out conveyor) and then goes to the case packer machine that would pack 12 cartons per case.  

For simulation purposes, each part of the process (Flavor vats, Freezer, Extruder, Hardener, 
Chocolate tank, Wrapper, Cartoner, Metal detector, weight check, and case packer) was treated as a 
“black box” running at freezer velocity (300 bars/min). Figure 6 shows the overall process sequence. 

 
Figure 6: Steps for ice cream bars production. 
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For feeding the line with raw materials there were some operators: freezer/flavor vat operator, that fed 
the initial ice cream mix; sauce pump operator, that fed sauce pump; chocolate operator that fed chocolate 
bars into the chocolate tank; wrapper operator that fed wrap rolls; packer operator that fed the cartoner 
equipment; hoypack operator that fed the case packer machine with corrugate boxes. There was also one 
QA person to check if process parameters were within desirable limits. All replenishment logic was 
guided by two parameters for each raw material: replenishment quantity and replenishment point. 

We simulated the line considering several production plans, breakdowns, and cleaning between the 
production of different SKUs. Since it was a very fast line, running at 300 bars/minute, we considered that 
one simulation entity was equivalent to 360 bars, which was equivalent to 10 cases (each case contains 36 
bars). This would result in 1.2 minutes/entity. In the original study, we performed several scenarios 
varying replenishment parameters, the number of operators, machines, and production plan, but for 
studying the effect of entity size we fixed the initial scenario with a fixed production plan and configured 
the simulation model to allow to parametrize entity size. The running length was set to 1-month of 
production with no warm-up since the objective of the simulation is to evaluate the system under a 1-
month program plan. Replications were set to provide less than 1% precision around the mean of KPIs.  

We ran the model considering that one entity equals 36, 144, 180, 216, 360, 540, 648, 900, 1,800, and 
10,800 ice cream bars. We also considered 18 bars per entity and 1 bar per entity, despite that the case 
packer used 36 bars in a single case. For confidentiality, all KPIs were renamed to KPI 1-KPI 62. These 
KPIs covers machine and operator utilization, stock-outs (binary KPI), average time to replenishment, and 
other indicators. 

Table 3 shows simulation results for each entity size (10 replications per trial), omitting most KPIs 
due to space constraints. Two KPIs are very important: KPI 1 (total production of bars in one month) and 
KPI 2 (the asset intensity). KPI 3 is the total number of entities produced, which presents huge differences 
across scenarios since in each scenario we varied entity size. 

Table 3: Simulation results for ice cream bar production facility. 

Entity size KPI 1 KPI2 KPI3 Trial running time (sec) 
1 -   - 
18 10,818,971.30 80.40 601.054.0 1,082 
36 10,774,684.80 80.46 299,296.8 493 

144 10,741,392.00 80.21 74,593.0 128 
180 10,692,000.00 79.84 59,400.0 103 
216 10,739,001.60 80.19 49,717.6 87 
360 10,773,576.00 80.45 29,926.6 52 
540 10,448,190.00 78.02 19,348.5 42 
648 10,736,776.80 80.18 16,569.1 38 
900 10,771,110.00 80.43 11,967.9 30 

1,800 9,984,060.00 74.55 5,546.7 21 
10,800 10,841,448.35 80.95 1,003.8 12 

 
Once again, the most important results were quite insensitive to entity size, showing higher 

differences for entity size over 1,800 bars per entity. If we consider the results for 18 bars per entity as 
reference (we did not run the scenario of 1 bar per entity due to simulation time constraints) and compare 
the result for 900 bars per entity (removing KPI 2 because it clearly differs) we can plot the relative 
difference errors across all 62 KPIs (Figure 7). For the majority of KPIs, relative errors were less than 1% 
with an average of -0.5%. For KPI 5, it provided -8,7%. KPI 5 is the percentage of planned maintenance 
which is very low (around 2%), so this error has little impact. 
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Figure 7: Relative error across the KPIs for 900 bars per entity x 18 bars per entity. 

For simulation running time analysis, Figure 8 shows a plot of the running time in seconds versus 
entity size. It is important to note that, because of entity size is equal to 1 bar per entity, the running time 
was estimated initially by SIMUL8 simulation software as 6 hours, so the run was not performed due to 
time constraints. 

 
Figure 8: Running time versus multiplicity (bars per entity). 

4 DISCUSSIONS 

Based on these cases studies, we can reach the following conclusions: 
 
• More entities in a model provide better results accuracy: true, however, the accuracy in general is 

quite insensitive to entity size only providing significant errors when entity size is very low. 
• More entities in the model provide longer running times: true. Usually, it resembles an 

exponential curve. 
 

The central question is which is the “optimum” entity size? Of course, if one applies Occam’s Law, 
there is a tendency to lower the number of entities inside the model, leading to an accuracy loss or even 
errors, as the second case study showed. If we adopt the hypothesis that currently, computer and 
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simulation software technology provides relatively short runs, then we are looking to a parallel question: 
“What is the minimum entity size that can provide the desired accuracy?”. 

From the results obtained, precision decreases exponentially when increasing entity size and 
simulation time decreases exponentially when increasing entity size. We perform some adjustment tests 
and discovered the best-fit mathematical function using Least Squares Method for several examples. 
Figure 9 shows how one KPI varied according to entity size and the best-fit mathematical function. 

 
Figure 9: KPI value versus entity size - empirical and theoretical. 

Therefore, we can address an algorithm to derive the optimum entity size to reach desired KPIs precision: 
 

1. Parametrize the simulation model to account for different entity sizes. Although this can generate 
some work, it is normally feasible to do this. 

2. Choose two different entity sizes X1 and X2. Choose one KPI and simulate entity sizes 1 and 2. 
The number of replications to provide the desired confidence interval must be already 
determined. Record KPI for X1 (Y1) and KPI for X2 (Y2). 

3. Using the equation provided below, create a two-variable system of equations, and determine 
parameters a and b, by substituting the points (X1, Y1) and (X2, Y2): 

 

𝑓𝑓(𝑥𝑥) =
1
𝑎𝑎𝑥𝑥

+ 𝑏𝑏 

 
4. Recall that if x tends to infinite, the KPI tends to b, therefore, it is the KPI with the best precision; 
5. Choose an entity size X3, compute f(X3), and compare it to ideal precision b. If the difference is 

acceptable, record X3. If not, increase X3 until the difference is admissible. 
6. Go back to Step 1 if there are more KPIs to compute (new iteration); 
7. The “optimum” entity size will be the maximum entity size found in all iterations (all KPIs). 
 
This algorithm is based on the premise that there is an asymptotic convergence of a given KPI when 

increasing entity size, as observed in the case studies. Furthermore, to keep the algorithm simple and 
straightforward, only 2 points (minimum number necessary) are used to infer parameters a and b. 
Therefore, deviation errors may occur. If one would like to minimize these errors, we advise using more 
points and use the least square method as shown in Figure 9.  

Notice that the algorithm above only is concerned with precision. If the running time for any entity 
size is computationally prohibitive, then we must “relax” the desired precision to allow less 
computational effort or change the model to consider a simpler one that runs faster. 
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5 CONCLUSIONS AND FUTURE WORK 

This paper addresses the issue of verifying the relationships between entity size and both results accuracy 
and computational performance for discrete event models in which entities can be multiple of a given 
unit. Looking at the literature, we found that research is scarce in this area; therefore, this work can be 
considered one of the first to explore this issue. 

Given the case studies, it was possible to show that the risen hypotheses were true (more entities in 
the model provide better results accuracy and provides longer running times). This work “proved” 
Occam’s razor principle, indicating that we can use an entity size that does not take too much time to run, 
and still have the results lying in a good precision range. We found that is also possible to derive an 
algorithm to determine the “best entity size” to obtain the desired precision (minimize discretization 
error), which is the major advance of it, since when a minimum desired precision is reached, the 
computational running effort may be saved. If several scenarios would have to be run, since it was shown 
that computational running effort varies exponentially with entity size, the total time of a simulation study 
can be shortened. Future research can be done to evaluate the time savings of this study.  

As another future research, we intend to deep study the errors involved in the proposed algorithm to 
enhance its robustness. Since this algorithm was developed from a generalization of case studies, it is also 
advised to further test it in other cases. 
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