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ABSTRACT 

Conventional simulation models used in Operations Research and Management Science (OR/MS) use 
historical data. With the increasing availability of real-time data, technologies commonly associated with 
applied computing, such as Data Acquisition Systems (DAS), may need to be integrated with conventional 
OR/MS models to develop Hybrid Models (HMs). We distinguish between HMs that use only real-time 

data – we refer to them as Digital Twins (DTs) – and those using a combination of historical and real-time 
data – called Real-time Simulation (RtS). Our previous contribution focused on the challenges of such 
integration, a concept referred to as information fusion, and presented a conceptualization of DT/RtS. This 
paper focuses on DT/RtS data synchronization and methods that could be employed from Parallel and 
Distributed Simulation (PADS). The conceptualizations and discussions reflect on the authors' experience 
implementing an RtS of a network of Emergency Departments and Urgent Care Centers in the UK. 

1 INTRODUCTION 

OR/MS models developed using simulation techniques such as agent-based and discrete-event simulation 
(DES) have conventionally used historical data and distributions to populate and drive the model. Indeed, 
most contemporary modeling and simulation (M&S) studies in OR/MS use this approach. Over the past 
decades, with the advent of integrative software (having a shared database) such as Enterprise Resource 
Planning (ERP) systems and technologies such as web services, Information Systems (IS) are being 

designed to make operational data readily available to external systems. Similarly, legacy systems are using 
defacto solutions to serve the same outcome. From our experience working with several publicly-funded 
National Health Service (NHS) Trusts operating in the South West of England, we note that most healthcare 
IS that capture patient flow data in urgent and emergency care settings are relatively older systems. We 
refer to them as legacy systems. Examples include TrakCare and Adastra. There are also examples of Trusts 
replacing legacy IS with systems such as EPIC.  

 Development of a computational OR/MS model requires data. For example, an emergency department 
(ED) model implemented in DES usually involves the modeler accessing data from a legacy patient flow 
system, then using a distribution fitting tool to identify probability distributions that best represents the data 
available, and, assigning the distributions to DES model elements such as model arrivals, service times etc. 
Observations, interviews, and the literature are additional sources of data.  
 New patient flow systems such as EPIC have an open architecture, making it possible to query data in 

real time (Warwick et al. 2023). Such systems enable real-time communication of events of interest, e.g., 
patient arrival, triage start and stop, allocation of major/minor cubicles to patients, as and when they occur 
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in ED. Modelers can use real-time data to implement Digital Twins (DTs) that "mirror" the current state of 
urgent and emergency facilities. Further, using RFID data on the location of patients and mobile hospital 
equipment (Magliulo et al. 2012) could enhance the passive "monitoring" of the system of interest. 
However, as the current system evolves through wallclock time (real-time), and in cases where short-term 
forecasts signal the possibility of breaches in Key Performance Indicators (KPIs), there may exist a 

relatively small window of opportunity to affect a course correction (Harper and Mustafee 2019). This 
requires an additional computational element in the DT, wherein the latter triggers a faster than real-time 
experimentation using the computer model. We use the term OR/MS DT to refer to a system that includes 
both real-time monitoring of the physical system (“mirroring”) and faster-than-real-time experimentation. 
The distinction between DT and OR/MS DT is important as this paper is for the M&S community, where 
the computational model is the focus of research and practice.  

A modeler faces challenges in retrieving real-time data from legacy systems. For example, in our 
NHSquicker project (Mustafee and Powell 2021), the wait time data we receive is "near” real-time (rather 
than real-time). As the legacy systems use database triggers (PL/SQL) or application code, executed at pre-
defined intervals (e.g., 5-15 minutes), to summarize a small sub-set of routinely collected operational data 
(e.g., maximum wait times, numbers of patients waiting) before sending it to our backend NHSquicker 
server. In this case, a computational model must include methods and approaches that fuse historical data 

with real-time data, the former used to plug information deficiency. This concept is called information 
fusion (Mustafee et al. 2023). In our work, we define a computational model that is data deficient as a Real-

time Simulation (RtS). Here, only a subset of the data required to initialize and drive the model is available 
real-time. Where a higher volume of real-time data is available, it is defined as a DT. 

We have described the terminologies (computational model, RtS, OR/MS DT) and their 
contextualization with systems we have encountered in our ED overcrowding research. A shift from 

conventional model development to an OR/MS DT requires a modeling approach between the two 
extremes, called Real-time Simulation or RtS. RtS is pragmatic in recognizing that the modeler may not 
have access to updated real-time information on every data structure and variable implemented in a model, 
for example where multiple data source types are required (e.g., queues, servers, resources, entities). In 
contrast, OR/MS DTs operate on the implicit assumption of data sufficiency/ abundance. In our view, the 
shift from conventional modeling to OR/MS DT is hastened by recognizing the challenges of real-time data 

access and the limitations of automated data acquisition systems. This would acknowledge the need for 
research in RtS with a focus on deficient but readily-available real-time data. RtS may pave the way for 
OR/MS DT implementations when data availability is not a concern, representing a shift from the 
conventional to the OR/MS DT paradigm, achieved through the intermediary RtS element. 

1.1 Contribution to the Hybrid Modeling Literature 

Hybrid modeling in M&S, which  Tolk et al. (2021) define as the combined application of simulation with 

knowledge artifacts from a broader array of disciplines, can leverage cross-disciplinary methods and 
techniques and apply them to various stages of an M&S study, such as conceptual modeling, input/output 
data analysis, verification and validation, and experimentation (Powell and Mustafee 2017). Mustafee et al. 
(2020) present examples of hybrid models that have combined simulation models with approaches from 
fields such as Soft and Hard OR, Computer Science, and Applied Computing. 
 OR/MS DT and RtS are hybrid models that use real-time data streams. Approaches from Applied 

Computing, such as integration with Data Acquisition Systems (DAS), distributed databases and real-time 
connectivity with front-end computational models, are enablers of the shift from conventional modeling to 
OR/MS DTs. Our previous contribution on hybrid models with real-time data focused on the Applied 
Computing dimension (Mustafee et al. 2023) and information fusion to initialize and execute RtS models 
(Figure 1).  

This paper focuses on another challenge of real-time M&S: data synchronization in OR/MS DT and 

RtS during experimentation. In Computer Science, the field of Parallel and Distributed Simulation, or 
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PADS (Fujimoto 2001) has investigated novel algorithms (e.g., conservation and optimistic time 
management protocols), PADS standards (e.g., IEEE 1516 HLA) and middleware implementations (e.g., 
DMSO RTI 1.4NG) to speed up the execution of simulation and foster model reuse through use of 
interoperability standards. Concerning speed-up, PADS focuses on the distribution of the execution of a 
single run of a simulation over multiple processors (parallel simulation) or a network of computers 

(distributed simulation). The first author of this paper has previous work on PADS approaches to supply 
chain simulations (Mustafee et al. 2009; Mustafee et al. 2021); this motivated the exploration of the use of 
these techniques in our current work. The paper thus contributes to the hybrid modeling literature by 
anchoring Applied Computing and Computer Science methods with traditional DES modeling (Figure 1).  

 
 

 
 
 
 
 
 

 
 
 

Figure 1: Hybrid OR/MS DT and RtS models use approaches from Applied Computing and Computer 
Science. DAS, DES and PADS are examples, and the mix of techniques and artifacts will be study specific.  

 The techniques and artifacts indicated in Figure 1 (DAS, DES, PADS) are specific to the authors’ 

current work on implementing an RtS of a UK network of Emergency Departments and Urgent Care 
Centers; the current work extends our NHSquicker project that provides near real-time data on wait times 
from a network of EDs and UCCs in the South West of England (Mustafee and Powell 2021). Similarly, 
for other studies, the mix of hybrid techniques will depend upon the study objectives. Thus, authors may 
implement real-time modeling using OR techniques such as agent-based simulation or machine learning 
(we used DES); they may acquire real-time data from a network of sensors (our DAS were Healthcare 

Information Systems); they may consider new computer architectures such as GPGPU for faster execution 
(in the Computer Science intersect, our focus was on data synchronization using PADS). 
 The remainder of the paper is organized as follows. Section 2 reviews the literature and categorizes 
real-time models into DT, OR/MS DT and RtS. Section 3 presents the conceptualization of OR/MS DT and 
RtS, distinguishing them from the conventional OR/MS models. Section 4 discusses data synchronization 
in ORMS DT/RtS using PADS terminology. Section 5 concludes the paper and discusses future work. 

2 LITERATURE REVIEW 

Several applications of RtS in healthcare, mostly focused on EDs, have been proposed or conceptualized, 

and the progression of research has been toward proposing multiple DAS; platforms for integrating multiple 

data sources and types; and real-time system monitoring with prescriptive capability. This progress reflects 

manufacturing applications where sensors and well-demarcated processes simplify the development of 

digital replicas. RtS has been in use in manufacturing systems for decades (Liu et al. 2021), with Annan 

and Banks (1992) describing one of the earliest unifying frameworks for connecting the real-world system 

and the control system. Terms such as 'online simulation', 'data-driven simulation', 'digital twin', and 

'symbiotic simulation' have all been used to describe a system of communication between a simulation 

model and a corresponding real-world system (e.g., Onggo et al. 2018; Onggo et al. 2021). 

 The concept of DT has seen a rapid increase in research interest in healthcare. A search on Scopus 

(TITLE-ABS-KEY (digital) AND TITLE-ABS-KEY (twin) AND TITLE-ABS-KEY (healthcare)) (all years, 
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27-02-2023) revealed an exponential rise from 4 publications in 2018 to 138 publications in 2022; of a total 

of 266 documents, 23 were review papers. Most studies proposed clinical and medical device applications, 

rather than operational support for service delivery (Sun et al. 2022; Armeni et al. 2022; Sun et al. 2023), 

and many focused on technical and methodological approaches, data collection, and integration challenges. 

In their review, VanDerHorn and Mahadevan (2021) noted that the literature has few examples of practical 

implementation of DTs that consider the implementation challenges and strategies. With increasing 

numbers of studies focusing on complex operational data collection, integration platforms, and measuring 

and monitoring algorithms, the gap between research and applied DTs in healthcare appears to be widening.  

 There is broad agreement that RtS and DTs involve both physical and virtual entities, and physical-to-

virtual and virtual-to-physical twining processes. These elements can be characterized as a closed-loop 

system where information is exchanged and updated between the virtual and physical environments. This 

means that the physical-to-virtual connection closes the loop between virtual environment generated 

hypotheses (via RtS/DT core model simulation experiments) and the consequences realized in the physical 

environment following actions taken in response to results reported by the core model.  

2.1 Three Forms of Real-time Models: DT, OR/MS DT, and RtS 

DT:  In its simplest form, a DT could be a link with a real system, with the physical-to-virtual link providing 
data to the virtual system via the updates in the physical system. This behavior is illustrated in Figure 2, 
where the real system evolves in wallclock time, and the digital entities representing the physical system 
are mirrored by the DT, which also executes in wall clock time. Several examples of city DTs primarily 
focus on city situational awareness by collecting, monitoring, and managing city data (Shahat et al. 2021). 

Figure 2: A DT with situational awareness and monitoring function will receive data from the physical 
system (black arrows) and update its virtual representation (green arrow represents feedback). 
 
 OR/MS DT: It includes a computational model to extend the traditional DT functionality, described 

above. It enables faster-than-real-time experimentation, providing feedback to the real system (‘closing-
the-loop’). An OR/MS DT is not information deficient. All data needed to initialize and execute the model 
is fulfilled through real-time feeds. In Figure 3, the DT model of Figure 2 is extended with the additional 
component of a computer model for experimentation (represented with the letter ‘E’; the red line which 
extends from ‘E’ illustrates experimentation runtime). Note that the experiments only start if an information 
update from the physical system indicates a breach in KPI thresholds (e.g., the second information update 

in Figure 3). In cases where the physical system runs on accepted parameters (e.g., in Figure 3, see the first 
information update point), only the virtual system is updated. 
 RtS: It is a core computational model that receives real-time feeds from the physical system. Unlike 
DTs, RtS does not include situational awareness and monitoring functions. It is also data-deficient in terms 
of the real-time data that it receives from the physical system. Thus, RtS model initialization and 
experimentation adopts an “information fusion” approach, which combines historical data (in Figure 4, this 

is shown as a green line between the real and the physical system) with real-time data (black arrow). 
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Information fusion is represented as an ellipse. Like OR/MS DT, the execution of the RtS experiments is 
triggered by changes in the real-world system considered important to warrant a response. The model is 
first initialized through the fusion technique and then executed, with the results communicated back to the 
real system.  

Figure 3: An OR/MS DT that updates the virtual representation of the real system as per wall clock time 
and executes experiments faster than wall clock time. The arrows represent real-time data; E signifies the 

start of experimentation. 
 

Figure 4: A RtS implements “information fusion” (illustrated as green ellipses) where real-time data is 

fused with historical data to compensate for the deficiency of the real-time feeds. The objective of RtS is 
to execute experiments and offer feasible solutions aimed at the physical system in the short term. In 
manufacturing, automation may implement the feedback (e.g., actuators); in healthcare, experimental 
results are communicated to the stakeholders for further action. 

3 FRAMEWORK 

Several efforts have been made to characterize DTs, and to distinguish them from other M&S approaches 

(e.g., Hassani et al. 2022; VanDerHorn and Mahadevan 2021; Jones et al. 2020; Barricelli et al. 2019). Our 

previous work presented the conceptualization of conventional OR/MS models, OR/MS DTs and RtS using 

the dimensions of modeling objective, data requirements, model implementation, and experimentation 

(Mustafee et al. 2023). In Figure 5, the black circle (bottom left) represents a conventional computational 

model reliant on historical data. The OR/MS DT (top right) is represented as a concentric circle with a red 

border; the grey area represents real-time data, the black circle is the core computational element. The RtS 

(middle) is illustratred as a concentric circle with a dashed border conveying that only a subset of the data 

required to initialize and drive the model is available real-time; again the black circle is the core 

computational element.  The larger width of the grey area in the OR/MS DT represents the higher volume 

of real-time data available to it.  
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Figure 5: Conceptualisation of RtS and DT using the dimensions of modelling objective, data requirements, 

model implementation and experimentation (Mustafee et al. 2023).  

According to this representation (Figure 5), the key difference between the three approaches can be 
summarized below: 

Modeling Objective: DTs are primarily used for monitoring and prediction, but they can additionally 
use a computational model (OR/MS DTs), and the objective is to support real-time decision-making (e.g., 

re-location of ambulances based on their current location and availability). Conventional simulation models 
are primarily used for medium- to long-term decision-making (e.g., increasing bed capacity). 

Data requirement: At its core, a RtS is a computational model with some of its historical distributions 
complemented with real-time data feeds. Therefore, it depends on historical data as only minimal real time 
variables are available, unlike an OR/MS DT, which may use multiple integrated data sources with high 
DAS integration and real-time data availability. A conventional simulation model uses only historical data 

for initialization and execution. RtS enables short-term decision-making, where a window of opportunity 
exists to tweak the physical system, potentially improving system performance, e.g., in response to an 
expected rise in ED wait times, increase staffing of ED by transferring clinicians from other departments. 

Implementation: OR/MS DTs are situationally aware computational models that fulfil the objectives 

of the virtual representation of the physical elements of a system as it evolves through real-time and the 

faster-than-real-time simulation experimentation at specific pre-defined trigger points (see Figure 3). 
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Compared to OR/MS DTs, we argue that the primary objective of RtS is faster-than-real-time 

experimentation (Figure 4), with a limited degree of situational awareness (SA) demonstrated through these 

models; the degree of SA is dependent on the volume of real-time data received, viz-a-viz, the data required 

to initialize and drive the RtS.  
Experimentation:  Figure 5 illustrates that an OR/MS DT will be initialized using predominantly real-

time data feeds, diminishing the need for warm-up time and model state adjustments. RtS, which is deficient 
in real-time data, will need to implement novel initialization strategies, which take into consideration the 
model state at the end of the warm-up time, and compares with real-time values received for a sub-set of 
variables (Mustafee et al. 2023).    

4 SYNCHRONISATION OF REAL-TIME COMPUTATIONAL MODELS 

The experimentation stage of the core OR/MS DT and RtS computational model is discussed further in this 

section. We focus on the issue of synchronization of the internal state of the model during its execution. 
We identify two cases: (A) The DT/RtS receives no new data during the execution of the computational 
model (i.e., the execution of the model is complete before the next tranche of data is received), and (B) The 
DT/RtS receives new data from the physical system before the end of the execution of the computational 
model. To further elaborate on the problem context, for (A), we use the example of an RtS with fixed-time 

updates, i.e., updates from the real system are sent at a pre-defined interval, e.g., 5 minutes; for (B), the 

example is that of an RtS with variable time updates, i.e., real-time data is sent to the RtS as and when 
the physical system changes. Although the examples and figures in this section only refer to RtS, as the 
synchronization aspect is related to the core computation model – a part of both OR/MS DT and RtS, most 
of the discussions are applicable to OR/MS DTs. 

Case (A): RtS with fixed-time updates: We make the following assumptions (Figure 6). 

(a) Data is received at constant intervals (one minute); thus, increments to wallclock time (WCt) are 

equally spaced with WCt, WCt+1 and WCt+2 representing the current time, one minute past the current 
time, and two minutes past the time, respectively. 

(b) The simulation starts upon receipt of data at wallclock time t (WCt). At this time, through information 
fusion, the computational model is initialized, and the simulation start time (Simt) will be the same as 
the current wall clock time, i.e., Simt = WCt. The same approach is adopted for future experiments. 
For example, in Figure 6, we see that when a new tranche of data is received at WCt+1, the simulation 

start time takes the value of the current wallclock time (Simt = WCt+1). 
(c) In this example, we assume that the computational model will execute for 100 units of simulated time 

Simt+100 and which represents the future system state at WCt+100. Simulation is faster than real-time; 
thus, although Simt+100 represents the future state of the system at WCt+100, in our example, its 
execution is complete even before the next real-time feed comes in at WCt+1; as per (a), we can thus 
conclude that the first experiments executed in less than a minute of wallclock time. 

(d) In Figure 6, the second experiment starts at WCt+1. Unlike the previous WCt experiment, it concludes 
after it receives the new tranche of data at WCt+2. Thus, as per (a), the second experiment took over 
one minute of wallclock time. Note: as this is the second experiment, the model was initialized with 
the time of the second update, i.e., Simt=WCt+1. Thus, there will be a difference of one unit of time 
between the simulation time (Sim) and the future state of the system that it represents (WC) – see (e). 

(e) Figure 6 highlights a possible error (the purple circle) when we compare the real-world data received 

at WCt+2 with the internal state of the model at time Simt+1 (which represents the simulated state of 
the real system at WCt+2; note that Simt+1 is not shown in the figure, but it could be visualized as 
incremental simulated time units on the red line representing the experimentation element). 
Comparing with the previous state may necessitate frequently saving the model's state (model 
dumps). The simulated variables may now differ from the values received from the real-time feed. 
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At the point the new data is received (WCt+2), the experiment would likely be further in simulated 
time; for example, it may be at Simt+80 which represents the simulated state of the system at WCt+81. 
 

 We refer to the abovementioned error as a causality error (CE) in real-time simulation, a term 
borrowed from the PADS literature. The error exists due to data synchronization issues between real-time 

data and the internal state of the computation time, and since they execute at different speeds, viz., wallclock 
time versus simulated time. The first experiment concluded before new data was received, so 
synchronization was not an issue. In the second case, a decision may need to be taken whether to complete 
the execution of the current experiment (results may be erroneous), interrupt the current run and execute a 
new experiment at WCt+1, or a third option could be to consider a conservative time management algorithm 
from the PADS literature. The definition of CE in PADS and an overview of the algorithms will be 

presented after the discussion on RtS with variable-time updates.  

Figure 6: RtS with fixed-time updates. In the first experiment, the model completes execution before the 

next update; the second experiment spans across data updates and may introduce causality errors in RtS. 

Case (B): RtS with variable-time updates: 

(a) Data is received at variable intervals. This is illustrated in Figure 7, where the physical system sends 
data at WCt, WCt+2, WCt+3 and WCt+6. Thus, increments to WCt are not equally spaced. 

(b) The simulation starts upon receipt of data at WCt. At this time, through information fusion, the 
computational model is initialized, and the Simt = WCt.  

(c) Like case (A), we assume that the computational model will execute for 100 units of simulated time 

Simt+100 which represents the future system state at WCt+100. In our example, the model executes 
until after WCt+6. From the start of the experiment to its completion, in addition to (b) – data for 
model initialization, it receives three further tranches of data at WCt+2, WCt+3 and WCt+6.  

(d) Figure 7 highlights possible errors (illustrated as purple circles). These errors arise if the real-world 
data received at the three points are different from the computational model's internal state at Simt+2,  

Simt+3 and Simt+6, which represent the simulated state of the real system at WCt+2, WCt+3 and WCt+6. 

Comparing the model’s previous internal state with the new values may necessitate frequently 
saving the model's state as timestamped instances of model execution. At the point the new data is 
received (say, WCt+2), the experiment would likely be further in simulated time; for example, it 
may be at Simt+20 which represents the simulated state of the system at WCt+20. 
 

Thus, like case (A), RtS with variable-time updates may be challenged by the synchronization issue of 

real-time data with the internal model state and may lead to causality error (CE) in real-time simulation. 

A decision may be taken during the RtS design phase that since the updates from the real system cannot be 
predicted (unlike the fixed-time updates), it may be necessary to allow the experiments to complete 
execution (rather than an interrupt and restart the experiment strategy). Thus, some tolerance may need to 
be inbuilt to accommodate the occurrence of CEs in RtS. Another PADS approach could be considered, 
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where the RtS may “rollback” computation to a previously valid state, rather than restarting the 
computations from the start. Rollback will necessitate frequently saving the model's state. For example, 
during execution, data received at WCt+2, when compared to the model’s prior internal state at Simt+2, may 
be considered valid and the simulation is allowed to progress; however, at WCt+3, as new data is received 
and compared with Simt+3, it may indicate the need for the reversal of the computation. Since the model's 

internal state at Simt+2 was considered valid, the simulation could be rolled back to Simt+2 and continued 
from this point. This could lead to faster runtimes, depending on the number of rollbacks necessary. 

  

Figure 7: An RtS with variable-time updates can receive real-time data at any point in time. A PADS 
rollback strategy will reverse computation to a previously valid state and resume simulation from this point. 

4.1 Parallel and Distributed Simulation (PADS): Causality Errors and Synchronization Protocols 

PADS mainly focuses on the distribution of the execution of a single run of a simulation over multiple 
processors (parallel simulation) or a network of computers (distributed simulation). In case of RtS, and the 
example presented in this paper (which anchors to our work on developing a RtS in the healthcare domain), 
the computational model only runs on one computer. However, the DAS, which sends fixed-time/ variable-
time updates as timestamped messages from the physical system to the RtS, runs on a different computer. 

In the PADS literature, distributed simulation can be defined as the distribution of the execution of a single 
run of a simulation program across multiple processors (Fujimoto 2000). Thus the execution of RtS should 
arguably consider concepts from distributed simulation since they both work as one unifying system 
(namely, integrated DAS-RtS execution and distributed simulation federation), with the sub-systems 
executed over different computers, and coordination between the subsystems achieved through the 
exchange of timestamped messages between the subsystems. To achieve this, PADS software (distributed 

simulation middleware) is often used. It implements well-known distributed simulation time management 
algorithms to achieve synchronization between individual running simulations (Fujimoto 1990). The focus 
of this paper is not on the software, rather the concept of data synchronization between real-time feeds and 
the RtS computational model during the experimentation stage. 
 In distributed simulation, time management algorithms are required for the prevention of causality 
errors. Causality errors happen because of a failure to process simulation events in increasing timestamp 

order. More specifically, a causality error occurs when a simulation has processed an event with timestamp 
T1 and subsequently receives another event with timestamp T2, wherein T1 > T2. Since the execution of 
the event with time stamp T1 will have normally changed the state variables that will be used by the event 
with timestamp T2, this would amount to simulating a system in which the future could affect the past 
(Fujimoto 1990). For a serial simulator that has only one event list and one logical clock it is fairly easy to 
avoid causality errors. In the case of distributed simulation, the avoidance of causality is a lot more difficult 

because it must deal with multiple event lists and multiple logical clocks that are assigned to various 
processors. The reason for this is explained next with reference to Mustafee et al. (2014). 
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Figure 8: Execution of events in a distributed simulation (adapted from Fujimoto, 1990). The new event 

(E3) and the time of the new scheduled event (15) are indicated in red. 

 In Figure 8 above, the simulation represents a physical system that has two physical processes, say, PP1 

and PP2. Logical simulation processes LP1 and LP2 model the two physical processes. Each of these logical 
processes have their own simulation engine, simulation clock and event list. During simulation initialization 
the event lists of both LP1 and LP2 are populated with the events E1 and E2 respectively. The timestamps 
for E1 and E2 are 10 and 20 respectively. It will be possible for LP1 to process event E1 without any 
causality error since the timestamp of E1 < timestamp of E2. But LP2 (running in parallel to LP1) will not 

be able to execute event E2 at time 20 since the execution of E1 schedules another event E3 for LP2  at time 
15. In such a case, if LP2 had been allowed to execute E2 at simulated time 20 then it would have resulted 
in a causality error because the time stamp of E3 < the time stamp of E2.  
 In our example, we can consider LP1 as DAS and LP2 as a RtS computational model with DAS sending 
timestamped data updates to RtS during the execution of experiment (Figure 6; Figure 7). Compared to the 
example presented in Figure 8, and where LP1 and LP2 were computer simulations, the key difference with 

DAS-RtS system is that, while DAS sends messages at wallclock time, the RtS computational model 
executes faster-than-real-time. Irrespective of this difference, it is a worthwhile exercise to consider the 
synchronization protocols for distributed simulation that prevent or correct such causality errors. In PADS, 
the conservative and optimistic algorithms that achieve synchronization between the individual running 
simulations are implemented using distributed simulation middleware software. Examples of such 
middleware include Distributed Interactive Simulation (Miller and Thorpe 1995), FAMAS (Boer 2005), 

and IEEE 1516 High Level Architecture – Run Time Infrastructure (HLA-RTI) (IEEE 2000). In the 
remainder of this section, we use HLA as an example to discuss the time synchronization protocols. In HLA 
terminology, a distributed simulation is called a federation, with each constituent simulation referred to as 
a federate.  

In conservative time synchronization, the federate only advances simulation time when HLA-RTI 
guarantees that it will not receive any external events in its past. Next Event Request (NER) and Time 

Advance Request (TAR) are the two most commonly used variants of this mechanism that can be invoked 
by a federate to request time advances from RTI. RtS with fixed-time updates (Figure 6) could benefit from 
research into using a conservative approach to synchronizing the core model with DAS data updates.  

In optimistic time synchronization, the federate advances time without any constraint but must be 
prepared to rollback to a previous state when it receives an event in its past. An optimistic synchronization 
protocol like Virtual Time, and its implementation, called the Time Warp mechanism, executes events 

without considering the event time ordering (Jefferson 1985). It has to save its state frequently so that a 
rollback to a previous state can occur when an event with a time stamp less than the current simulation time 
is received. Drawing parallels with the challenges to RtS experimentation, computation rollback applies to 
RtS with variable-time updates (Figure 7). Implementing this strategy would require comparing the RtS 
model’s present internal state with previous state values. This may necessitate frequently saving the core 
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computational model's state as timestamped dumps of RtS state. A direction of future work is to implement 
algorithms that implement optimistic behavior in RtS, whereby (1) the core computational model is 
permitted to execute without any constraint but saving the internal RtS state from time to time, (2) any new 
updates from DAS are communicated to the RtS core model, (3) an algorithm decides whether a rollback 
is necessary, and if so, the rollback point, and (4) based on the rollback point, initialize the internal state of 

the RtS core model with the instance of the saved system dump that is associated with the rollback point. 

5 CONCLUSION 

Our previous contribution to RtS in healthcare focused on increasing situational awareness (Harper et al. 
2022), participatory design research for RtS development (Harper and Mustafee 2023), and methodological 
and technical insights into RtS implementation (Mustafee et al. 2023). One important challenge identified 
by Mustafee et al. (2023) was the concept of information fusion, i.e., combining real-time data with values 

generated from distributions to represent, at the start of the experimentation (and after model warmup), the 
best possible approximation of the physical system at the current wallclock time. This necessitated new 
approaches for model initialization and execution of RtS. In this paper we focus on data synchronization 
between the real-system and the DT/RtS computational model during the experimentation phase. While 
presented in the context of healthcare RtS, the approach is more widely applicable. 
 Real-time data is received as timestamped messages from Data Acquisition Systems (DAS). Due to 

interruptions in the communication channel, network latency, server outages etc., the communication 
between DAS and DT/RtS may be interrupted. This poses a problem for a DT that “mirrors” the current 
state of an operational system such as a factory or a hospital. Should the DT pause itself at the timestep of 
the last acknowledged message from the DAS? Or do algorithms that progress the DT based on best 
estimates need to be implemented? The synchronization problem becomes a more significant issue when 
the computational model executes faster-than-real-time experiments. Unlike the mirroring functionality, 

which, per our definition, applies only to DT, both DT and RtS include a core computational model. During 
model execution, if new data is received from DAS this may lead to a causality error in real-time simulation; 
how do DT/RtS respond? In this paper we discuss concepts from Parallel and Distributed Simulation 
(PADS) time management, causality error and synchronization protocols for distributed simulation that 
prevent or correct such causality errors.  
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