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ABSTRACT 

Emergency Departments (EDs) are the primary access points for millions of patients seeking medical care. 
The increasing patient demand and lack of long-term dynamic planning strain the EDs in providing timely 

patient care, leading to crowding. While a well-recognized problem, ED crowding is still prevalent, where 
suboptimal resource allocation is one significant contributing factor. In this research, we developed an end-
to-end solution that first forecasted the patient arrivals to the partner ED and then used an optimization 
model to develop an optimal physician staffing schedule to minimize the combined cost of patient wait 
times, handoffs, and physician shifts. Finally, the new schedule was tested using the validated simulation 
model to evaluate the ED performance. By generating shift schedules based on forecasts and testing them 

in the validated simulation model, we observed that patient time in the ED and handoffs could be reduced 
by 5.6% and 9.2% compared to current practices. 

1 INTRODUCTION 

The Emergency Department (ED) is a critical division in a health system where patients receive care for 
various conditions, including life-threatening emergencies, chronic ailments, and non-emergent situations. 
This diverse nature of ED to care for patients and the Emergency Medical Treatment and Labor Act 

(EMTALA), which mandates ED to provide screening and stabilizing care to all patients regardless of their 
ability to pay, makes ED a primary access point for patients seeking care (Laxmisan et al. 2007; McDonnell 
et al. 2013). Over the last several years, patient arrivals to EDs in the US have increased from 96.5 million 
annual visits in 1995 to 115.3 million in 2005 and 151 million in 2019 (Cairns et al. 2019; Centers for 
Disease Control and Prevention 2010). At the same time, the number of EDs in the US has decreased by 
over 15% in the last decade (Hsia et al. 2011). The ever-increasing patient volume and the decreasing 

number of EDs lead to mismatch, predisposing EDs to crowding (Di Somma et al. 2015; George and 
Evridiki 2015; Kelen et al. 2021). The American College of Emergency Physicians (ACEP) defines ED 
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crowding as the situation that "occurs when the identified need for emergency services exceeds available 
resources for patient care in the ED, hospital, or both" (American College of Emergency Physicians 2019). 
Crowding in ED is a global concern, and studies have often linked this as a factor leading to suboptimal 
care, delays in care, and higher chances of medical errors (Di Somma et al. 2015; Kulstad et al. 2010).  

A few leading causes of ED crowding include high patient census (patient arrivals), inadequate 

resources (beds, medical devices, etc.), inadequate planning, and poor ED design (Morley et al. 2018; 

Moskop et al. 2009). Some of the most commonly adopted solutions to avoid ED crowding include 

expanding ED capacity, stopping boarding admitted patients in ED, adding hallway beds, increasing on-

call providers, and adding temporary resources (Derlet and Richards 2008). While these solutions are 

effective temporary fixes, they can often be costly and negatively impact patient safety and physician 

wellbeing. A recent study investigating ED crowding identified that access to future patient demands 

(arrivals to ED) during shift scheduling and resource allocation can improve ED planning and potentially 

avoid crowding (Kelen et al. 2021). Most EDs, including our partner ED, build their clinician schedules 

about one quarter (3 months, 90 days) ahead. Hence, it is critical to have robust 90-day forecasts to assist 

ED administrators in planning clinician schedules to improve ED performance. 

Researchers have used various forecasting methods to predict patient arrivals to the ED for different 

horizons (Aboagye-Sarfo et al. 2015; Batal et al. 2001; Carvalho-Silva et al. 2018; Choudhury and Urena 

2020; Côté et al. 2013; Hertzum 2017; Jones et al. 2008; Kadri et al. 2014; Khaldi et al. 2019; Sun et al. 

2009; Whitt and Zhang 2019; Xu et al. 2013; Zhang et al. 2022). Additionally, a few studies have focused 

on forecasting specific types of patient arrivals to the ED (primarily patients with respiratory diseases)  

(Becerra et al. 2020; Rosychuk et al. 2015). Regarding the methodology for forecasting patient arrivals to 

the ED, Autoregressive Moving Average (ARMA), Vector Autoregressive Moving Average (VARMA), 

Holt-Winters, linear regression, multiple linear regression (MLR), Autoregressive Integrated Moving 

Average (ARIMA), Seasonal ARIMA (SARIMA), and machine learning models (ANNs and RNNs) have 

been used extensively. In terms of forecasting horizon, researchers have forecasted hourly, daily, and 

monthly patient arrivals. Finally, regarding the data used, some studies have reported better performance 

when using multiple input variables. However, these often require expert manipulation, making them 

difficult for ED administrators and stakeholders to use. A significant gap among prior studies that forecasted 

patient arrivals to the ED is that none included the Emergency Severity Index (ESI) levels of the patients 

while generating the forecasts. ESI is a standardized index assigned to each patient presenting to the ED 

across North America that varies from 1-5, representing the patient's severity and the expected resources 

the patient would require (Hossein et al. 2013). Hence, from a resource allocation standpoint, including ESI 

levels in the patient forecasts is critical for better planning the ED resource allocation. 
A variety of operations research approaches, including mathematical optimization models, queuing 

theory models, simulation modeling, and probabilistic models, have been used to address various challenges 

observed in the ED, including resource allocation (Ahsan et al. 2019; Connelly and Bair 2004; Elalouf and 

Wachtel 2021; Rais and Vianaa 2011). While simulation is popular for addressing operational issues, its 

outcome is a realization and not an optimal solution. However, by identifying a specific objective, 

researchers have developed mathematical models to identify optimal staffing levels, generate schedules, 

determine optimal bed or other resource requirements, etc. One study used a mixed-integer linear 

programming (MILP) model to minimize understaffing with respect to patient volumes which resulted in 

significant improvements to median length of stay, door-to-provider time, and door-to-bed time (Sir et al. 

2017). Researchers have also used a combination of simulation-optimization models to identify optimal 

solutions and test them in the simulation model to validate them (Ghanes et al. 2015). Most of the ED 

studies have focused on identifying solutions that reduce patient waiting time, reduce length of stay or 

improve ED throughput. While a few studies have used patient wait times as surrogates for patient safety, 

we introduce a new metric – handoffs, directly quantifying patient safety (Maughan et al. 2011).  
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Patient safety is a crucial part of the ED as continuous patient flow and interactions with multiple 

departments and providers make it prone to errors. Additionally, researchers have observed ED as one of 

the hospital departments with high error rates. Among different issues that lead to medical errors, studies 

have identified handoffs, transfer of a patient's care, and responsibility from one physician to another as 

major patient safety issues (Maughan et al. 2011; Venkatesh et al. 2015). Specifically, studies investigating 

ED handoffs observed that the vital signs were not communicated for approximately 75% of the patients, 

and errors were observed in about 60% of cases (Venkatesh et al. 2015). Hence, while developing the ED 

physician shift schedules, it is crucial to consider patient safety metrics such as handoffs. 

Our literature review shows that researchers have used time series forecasting, mathematical models, 

and simulations to improve ED operations. However, to our knowledge, these studies have not combined 

these approaches and included patient severity in their forecast. Moreover, as noted earlier, few have 

considered a direct patient safety metric in the mathematical model. To address these research gaps, we 

first develop forecasting models for predicting the 90-day patient arrivals to the ED, including their ESI 

level, which is then inputted into the mathematical model for developing the schedule. The objective of the 

mathematical model was to identify optimal shift schedules that minimize the combined cost of patient wait 

times, handoffs, and physician shifts, thus considering the patient flow, patient safety, and staffing budget 

to generate schedules. Further, to test the impact of the generated schedules on the ED performance, we 

used our validated simulation model (Girishan Prabhu et al. 2022). 

2 DATA 

Input data for developing the forecasting model included two specific data points: the time of the day and 
the ESI levels assigned to the patient presenting to the ED. However, for developing the optimization and 

models, other data points, including the number of beds, allowable physician shifts, patient arrivals, ESI 
level of the patients, patient time in the ED, and the number of interactions between physicians and patients, 
were gathered from the PRISMA Health Greenville Memorial Hospital (GMH), Greenville, SC. 
Additionally, the research team included ED physicians working in GMH, SC for guidance and addressing 
any other physician-dependent activities in the ED to be included in the model. PRISMA Health is the 
largest healthcare provider in South Carolina and serves as a tertiary referral center. The flagship GMH 

academic ED is an Adult Level 1 Trauma Center seeing over 106,000 patients annually. Figure 1, below, 
represents the patient arrivals to the GMH ED averaged for 2017-2019 used for our forecasting model. 

Figure 1: Patient arrivals to the GMH ED. 
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One of the first patterns that can be noticed is the impact of hours of the day where the patient arrivals 

are low during the early hours and slowly start picking up from 7:00 am until 12:00 pm when they reach 

the maximum and stay the same until 7:00 pm. This patient arrival trend aligns with some prior studies 

(Alvarez et al. 2009; Whitt and Zhang 2019). Another pattern that can be noticed is the difference between 

weekdays and weekends, where weekdays have higher patient arrivals compared to weekends, and 

Mondays have the highest patient arrivals. These observations clearly suggest the need for long-term 

planning as each day and hour of the day require different staffing levels. In terms of ESI levels, we 

observed that about 50% of patient arrivals to the ED are ESI-3 patients, followed by ESI 2 and ESI 4, 

which contributed 25% and 20% of the patient arrivals. Finally, ESI 1 and 5 each contributed only 2-3% of 

the total arrivals. ESI 1 refers to severely unstable patients who need immediate intervention, and ESI 5 

patients are the most stable patients and may be treated non-urgently and mostly require the least resources. 

ESI levels are critical during forecasting as each ESI demands different resources. 

For training the forecasting model, we used 2017, 2018, and the first six months of 2019 data, and the 

predictions were made on the last six months divided into clusters of 3 months. Rather than using an entire 

year of patient arrival and using it for physician scheduling, we created clusters of 3 months and used the 

cluster with the highest patient arrivals for this research (July 2019 – September 2019). Using the whole 

year's data was impossible because of the variability. However, relying on daily or weekly data will fail to 

account for operational biases such as leave of absence, vacations, etc., which could impact patient times 

in the ED. Clustering the data by quarters allowed us to address these issues. Additionally, based on expert 

opinions from the ED physicians, we wanted to use the pre-COVID-19 data as the patient arrivals varied 

significantly during 2020. Another reason for using this specific period was to test the optimal schedule in 

our validated simulation model that used the same patient arrivals. However, both models were developed 

such that any patient arrivals can be used to generate a weekly schedule. Next, we introduce Table 1, which 

represents the time a patient spends in the ED based on their ESI levels.  

Table 1: Patient time in the ED. 

Severity Bed to Disposition (mins) Disposition to ED Departure (mins) Total Time (mins) 

ESI 1 115 121 236 

ESI 2 186  86 272 

ESI 3 175 54 229 

ESI 4 90 24 114 

ESI 5 107 15 122 

 
As seen above, we split the data into two parts: "Bed to Disposition" and "Disposition to ED Departure." 

Bed to disposition represents the time a patient occupies an ED bed and is provided care by physicians and 
other medical providers, including performing tests, providing medicines, blood draws, etc. Although 

patients will be waiting in their beds during this period without receiving direct care, all these delays are 
due to waiting for their test results, medicines, etc. In general, this represents the period a patient first 
occupies a bed in the ED until the physicians make a disposition decision (admit, discharge, or transfer). 
The second part, "Disposition to Departure," is the period for which a patient occupies the ED bed from the 
time the physician makes a disposition decision until they are physically moved from the ED (discharged, 
admitted, or transferred). Hence, these are logistical delays where a patient can be either waiting until a bed 

is available in the hospital (admission) or waiting for transportation (discharged or transfer). While we 
primarily focus on the bed-to-departure time for this study, our model still accounts for delays before 
assigning a bed in the ED, where the patients wait in a waiting room until the beds are available, similar to 
an actual setting. As mentioned earlier, the entire bed-to-disposition time of a patient is not spent with a 
physician as it includes other activities. Based on literature and discussions with ED physicians, we used 
between 15-30% of total time as the care time where a patient would be cared for by a physician (Füchtbauer 
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et al. 2013). The percentages were assigned based on severity such that the total time spent with an ESI-1 
patient was the highest and that with an ESI-5 patient was the lowest. This approach was used mainly used 
because of the lack of detailed visit-by-visit data available to support detailed modeling.  

Further, to build a model representative of ED operations where a physician visits patients multiple 
times based on their severity (ESI- level), we split the care time into multiple smaller windows. Based on 

our past observational studies and discussion with ED faculties and physicians, on average, an ES1-1 patient 
was visited four times by a physician, ESI-2 and 3 were visited three times, and ES1-4 and 5 were visited 
two times (Girishan Prabhu et al. 2020). The physician's time with a patient for each visit was a constant 
time block of 15 minutes, as the MILP modeling approach considers time as a discrete block of events. 

3 MODEL DEVELOPMENT 

3.1 Forecasting Models 

In this study, we used the moving average naive model as our benchmark model to compare the forecasts 
from other models. Based on literature and data visualizations, we decided to develop both ARIMA and 
SARIMA models as these models are effective in forecasting time series data, especially SARIMA, when 
the data is considered to have seasonality (Carvalho-Silva et al. 2018; Choudhury and Urena 2020; Hertzum 
2017; Kadri et al. 2014; Sun et al. 2009; Whitt and Zhang 2019). Additionally, we developed a Holt-Winters 
forecasting model as this approach can account for the level, trend, and seasonality component in the time-

series data. Finally, we also developed two machine learning models: Extreme Gradient Boosting 
(XGBoost) and Random Forest Regression model. Both are decision tree machine learning algorithms and 
require a supervised learning approach where each input requires an output pair within the training model 
for the model to learn and predict. However, the foundation of each algorithm is different, where Random 
Forest Regression uses a bagging technique, whereas the XGBoost uses a boosting technique for learning.  

To avoid the potential issue of overfitting with the machine learning models and tuning the 

hyperparameters, we used a blocked-crossed validation approach. This approach was preferred as it can 
avoid memorizing the patterns and leakage from future data, which is unavoidable when using k-fold cross-
validation with time-series data. Specifically, the blocked-cross-validation approach accounts for this issue 
by adding margins at two positions: (i) between the training and validation folds and (ii) between the folds 
used at each iteration. Finally, to evaluate the performance of each model, we used Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percent Error (MAPE). 

3.2 Optimization Model 

We formulate the ED physician shift scheduling problem as a MILP problem. The primary goal is to identify 
the optimal staffing levels of ED physicians such that the patient onboarding time, waiting time after ED 
admission, and patient handoffs are minimized while considering the physician staffing cost. To compare 
the impact of each factor, we use dollar amount as the common scale.  
 Before formulating the problem, we first list the key ED operational activities to replicate the partner 

ED. The first was accounting for the varying patient arrivals to the ED, including patient ESI levels. The 
second was modeling multiple patient-physician interactions based on the patient's ESI, accounting for 
minimum delays between patient-physician interactions for secondary care (imaging, blood draws, etc.), 
ensuring that the same physician provides care for the patient unless the physician ends their shift (handoff), 
physician shift length is limited to 8 hours. Next, we define the notation used in the MILP model. The model 
included four sets and corresponding indices as follows: (i) I represents the set of patient arrivals to the 

GMH ED indexed by I, (ii) K represents the set of possible physicians that can be staffed for a day indexed 
by k, (iii)T represents the set of time slots considered for staff scheduling indexed by t and (iv) M represents 
the set of physician visits required by a patient indexed by m.  

1140



Prabhu, Taaffe, Pirrallo, Jackson, Ramsay, and Hobbs 

 

 
 

 Here, set I include all the unique patient arrivals to the GMH ED for a week, which totals more than 
1500. Set K consists of the unique physician identification number that can start an ED shift for a day with 
an upper threshold of 25 physicians per day. Further, T represents timeslots for an entire week (which varies 
based on slot length). Finally, set M includes values from 1 through 4, representing the patient interaction 
with a physician. Next, we introduce the parameters considered in the model. Most of the parameters 

represent various patient characteristics, including severity, arrival time, physician visits, and fixed time 
slots that should be avoided for calculating patient wait time as these delays are inherent and one parameter 
defining the ED bed capacity.  

 
• αi represents the time slot of arrival for patient i. 
• βi represents the severity level of patient i. 

• γi represents the total number of visits required by patient i. 
• wi represents the total time slots for patient i that should not be considered for waiting cost. 
• C represents the total bed capacity of the GMH ED. 
 
Finally, we introduce the decision variables in the model:  
 

• Uik          {
1, If patient i served by physician k

0, otherwise
} 

 

• Ystartkt   {
1, If physician k starts their shift at time slot t

0,  otherwise
} 

 

• Ykt          {
1, If physician k is available for service at time slot t

0, otherwise
} 

 

• Xiktm       {
1, If patient i is served by physician  k at time slot t for their visit m

0,  otherwise
} 

 

Minimize: 

SC* ∑ Ystartkt

kt

+ OC* ∑ t*Xikt1 - αi

ikt

+ OC*F* ∑ (t*X
iktγi

 - t*Xikt1

ikt

 - wi) + HC* ∑ Uik

ik

   

Subject to: 

∑ 𝑡 ∗ Xikt1

kt

≥  αi       ∀i ∈ I  

∑ Xiktm

ktm

=  γ
i
          ∀i ∈ I 

∑ Xiktm

km

 ≤ 2   ∀i ∈ I , ∀t ∈ T 

∑ Xiktm

kt

 = 1   ∀i ∈ I , ∀m ∈ M  
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∑ Xiktm

ikm

  ≤ C        ∀t ∈ T 

∑ t*Xiktm

kt

≤ ∑ t*Xiktm +1

kt

    ∀i ∈ I  

∑ Xiktm

mt

  ≤ 4*Uik       ∀i ∈ I , ∀k ∈ K  

∑ Xiktm

im

  ≤ 4*Ykt       ∀k ∈ K , ∀t ∈ T 

∑ Ystrtkt

t

≤1      ∀k ∈ K 

∑ Ystrtkt

kt

≤  K 

8*Ystrtkt ≤ ∑ Y𝑘𝑞

Min(168, t+7)

q=t

   ∀k ∈ K, ∀t ∈ T 

Uik ,Ystartkt , Ykt , Xiktm   ∈ {0, 1} 

 
In the formulation, the objective function minimizes the cost of staffing the ED physicians, handoffs, 

patient onboarding, and patient waiting time in the ED. The cost of staffing an ED physician (SC) was based 
using the national average rate for ED physicians, and the onboarding cost (OC) for patients based on their 
ESI level was derived from the literature (Salary.com 2021; Woodworth and Holmes 2020). However, 
because of the lack of data on the cost of patient waiting once admitted, we used a factor value (F) between 

0 and 1 and multiplied it by the OC to calculate the waiting cost. Finally, for the handoff cost (HC), we 
used high values ($1,000) to avoid any possible handoffs. 

The first constraint ensures that a patient is served their first visit (m=1) only after their arrival at the 
ED. The second constraint ensures that the patient is provided with all their required visits before discharge. 
As mentioned earlier, each hour represents a time slot, but from observations and discussions with 
physicians, we assume that a physician can visit four patients in an hour. However, the same patient cannot 

be visited four times in an hour as that is not realistic as patients wait to get their tests, imaging, radiology, 
etc., completed. The third constraint ensures that a patient can be visited at most twice by a physician in an 
hour. The fourth constraint assures that each visit m for a patient cannot exceed 1, making sure that each 
visit is completed fully during a physician visit. The next constraint ensures that at any given time t the 
patients served cannot exceed the ED bed capacity. As patients have multiple interactions with physicians 
during an ED stay, these visits must be ordered such that a later visit (m+1) follows the prior visit (m) in 

terms of time slot, and our sixth constraint ensures the visits are ordered. The next two constraints ensure 
that a patient can be visited a maximum of four times by a physician, and a physician can visit up to four 
patients during any given time slot (1-hour block). The next two constraints ensure that a physician starts 
their shift only once a day and that the total number of physicians staffed per day does not exceed the 
maximum number of possible physicians that can work for a day based on health system budget constraints. 
To ensure that a physician shift, once started lasts for eight hours, we use the second to the last constraint. 

Finally, the last constraint defines the variable types, which are all binary in this case.  
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3.3 Simulation Model 

We utilized a novel hybrid modeling approach to develop the discrete event simulation where both patients 
and physicians are represented as agents with unique attributes. This approach allowed us to simulate the 
actual patient arrivals to the PRISMA health ED with specific features, including severity level, arrival 
time, etc. Moreover, the main reason to adopt this modeling methodology was to replicate the physician 

activities in the ED in a realistic manner, including starting a shift at a particular time, spending time in 
their workstation ordering tests, updating a patient record, visiting patients' multiple times, and finally 
handing off a patient to the next physician when the shift ends. These activities would have been challenging 
to replicate using a traditional modeling approach where physicians are denoted as simple resources. A 
detailed description of the simulation model is discussed in our prior work (Girishan Prabhu et al. 2022). 

After developing the simulation model of PRISMA Health ED, the next step was validating the model 

against actual data. We used the patient time in the ED for each ESI level and daily number of handoffs as 
the validation metrics to ensure that the model is representative of the partner ED. The model was simulated 
for a three-week schedule with an additional two-day warm-up period for the model to attain equilibrium. 
A total of 60 replications were performed, such that the margin of error on time in the ED metric was ± 10 
minutes (at α=0.05). We first compared the simulated weekly throughput and the daily number of handoffs 
to the retrospective data from partner ED. On performing a t-test, we observed that the actual weekly 

throughput (1508±8.2) and simulated weekly throughput (1505±5.3) values did not vary significantly (p-
value = 0.90). Similarly, we observed that the actual daily handoffs (92±4.2) and simulated daily handoffs 
(93±5.8) values did not vary significantly (p-value = 0.11). Finally, comparing the simulated average time 
in the ED to the actual data for each ESI, we did not observe any significant differences (p-value > 0.05). 
Table 2 below represents the simulated and actual data for each ESI level. 

Table 2: Simulation model validation. 

Severity Actual Time in ED (mins) Simulated Time in ED (mins) Percent Difference 

ESI 1 236 218 -7.6% 

ESI 2 272  281 3.3% 

ESI 3 229 216 -5.7% 

ESI 4 114 121 6.1% 

ESI 5 122 122 0% 

4 RESULTS 

Upon developing the model and tuning the parameters on the training data, the next step was to use these 
models to forecast patient arrivals to the ED. We first discuss the findings from the long-term forecasting 
model – ED patient arrivals for the next 90 days. Table 3 represents the performance metrics score for each 
model output for the long-term forecasts. It is evident that both machine learning models outperformed the 

naïve model and other traditional time series models. However, it is interesting to notice that the Holt-
Winters approach outperformed the ARIMA model, and this can be primarily attributed to the fact that the 
Holt-Winters model can account for seasonality. However, comparing the SARIMA model to the Holt-
Winters model, SARIMA was slightly better. The most significant improvements were observed with the 
machine learning models, where the MAPE value was reduced by half compared to the traditional time 
series forecasting model. Among the two machine learning models, XGBoost outperformed the Random 

Forest model for all the performance metrics. One of the key observations here is the high RMSE values 
irrespective of the forecasting approach, which could be caused by extreme values (outliers). Even with a 
significant change in patient demands and arrivals, the machine learning models forecast was robust (based 
on RMSE, MAE, and MAPE), as models with a MAPE value of 5.0% are considered excellent. However, 
to avoid bias and over-relying on one value, we look at RMSE (16.6), which is comparatively low given 
the daily arrivals vary from 150 patients a day to as high as 270 patients. 
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 After identifying the best-performing model, the next step was to look at the ESI predictions for the 90-
day forecast. Table 4 above represents the performance metrics score for each ESI level from the XGBoost 
forecast. The first thing to notice is the varying RMSE, MAE, and MAPE values across the ESI levels. 
Specifically, it can be noticed that MAPE values are high for ESI 1 and 5 and minimum for ESI 3, whereas 
the RMSE and MAE behave vice versa. This represents the bias associated with each metric where MAPE 

penalizes heavily when the forecasted values are smaller as it is a percentage value. However, by using a 
combination of performance metrics, we can identify that the ESI-level forecasts from the model are robust. 

 Table 3: Model performance for the 90-day forecast.        Table 4: XGBoost ESI level 90-day forecast. 
 

 
The forecasted patient arrivals, along with other data, were inputted into the mathematical model to 

identify staffing schedules that can minimize patient handoffs, physician shifts, and patient wait times while 

considering the staffing budget. Table 5 below represents the physician shift start times for the week. While 
the table below represents the shift start times for the whole week, the mathematical model output provides 
specific start times and the number of shifts for each day, as some days require more resources.  

Table 5: Weekly physician shift start times. 

Time 00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Current 0 0 0 0 0 0 0 22 4 20 5 0 2 0 0 21 4 20 0 0 0 0 15 21 

New 0 0 0 0 0 0 0 14 14 14 7 7 0 7 7 14 21 0 0 0 0 0 0 21 

 

The first thing to notice here is how the start times are restricted to certain time frames that are very 
similar to the baseline policy, as these are operational policies where physicians cannot start shifts at certain 
hours (12:00 am, 2:00 am, etc.). Although the shift start windows are the same, one of the interesting factors 
to notice is how the schedule generated by the mathematical model recommends starting a shift in a 
staggering approach as opposed to starting shifts only at particular time frames (e.g., 7:00, 9:00, etc.) as 
observed in the current policy. Finally, in terms of total hours staffed for the week, there were no significant 

differences. After generating the new schedule, the next step was to compare the new policy to the current 
(baseline) policy in the validated simulation model. We used two ED performance metrics: number of 
handoffs and patient time in the ED. The first two metrics evaluate patient flow, and the third evaluates 
patient safety. Each policy was simulated for a three-week schedule and replicated until the margin of error 
on time in the ED metric was ± 10 minutes (at α=0.05).  

Table 6: Simulation model results. 

Policy Weekly 
Throughput 

# handoffs per 
day 

Time in the ED 
(mins) 

Change in hours/week 
(FTEs) 

Baseline 1505 93 213±4.6 0 
New  1503 84 201±5.9 +6 (+0.2 FTEs) 
 
From Table 6 above, on running an independent t-test, we observed that both handoffs per day and 

patient time in the ED varied significantly between the two policies (p-value <0.05), where the new policy 

ESI RMSE MAE MAPE 

ESI 1 3.1 2.8 38.0% 

ESI 2 8.9 7.0 12.5% 

ESI 3 13.4 10.1 8.4% 

ESI 4 6.0 5.1 15.5% 

ESI 5 1.9 1.4 46.1% 

Model RMSE MAE MAPE 

MA 30.1 23.6 14.2% 

ARIMA 27.2 21.6 10.6% 

SARIMA 25.6 19.2 9.9% 

Holt-Winters 26.8 19.8 10.0% 

XGBoost 16.6 14.1 5.9% 

Random Forest 17.4 14.6 6.4% 
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outperformed the baseline policy. Compared to the baseline policy, the new policy reduced the patient time 
in the ED by 5.6% and handoffs by 9.6% with a slight non-significant (p-value = 0.21) increase in FTE. 

5 CONCLUSIONS 

Protecting the ED from crowding is one of the highest public health priorities to ensure timely patient care 
and patient safety. Although most ED across the US plan in advance to avoid ED crowding, studies have 

observed that most EDs still rely on quick temporary fixes. Although sometimes ad-hoc actions are required 
because of unexpected issues such as evacuations and natural disasters, most of the time, these are required 
because of inadequate short and long-term planning. One of the most important inputs required for robust 
planning is the future patient census (arrivals) to the ED. Over the last decades, several studies have applied 
numerous approaches for forecasting patient arrivals to the ED and have generated acceptable results. 
However, most of these studies have focused on predicting daily patient arrivals to the ED, except for two 

recent studies that have explored hourly patient arrival forecasting (Choudhury and Urena 2020; Zhang et 
al. 2022). Surprisingly, none of these studies has included ESI levels of forecasted patient arrivals which 
significantly influences resource requirements.  

This research developed traditional time-series models and machine learning models to forecast long-
term (90 days ahead) patient arrivals to the partner ED with the patient's ESI levels. XGBoost algorithm 
generated the best long-term forecasts with MAPE values of 5.9%, outperforming prior studies. Moreover, 

we forecast ESI levels of these arrivals with a maximum RMSE value of 13.4. These findings are promising, 
given the simple input variables and the long-term forecasts. Further, we utilized these forecasts in the 
mathematical model to allocate an optimal number of physicians while minimizing onboarding time, 
waiting time after ED admission, and patient handoffs. Finally, the generated schedule was tested in our 
validated simulation model representative of the partner ED, and we observed that the new policy reduced 
the patient time in the ED by 5.6% and handoffs by 9.6% with a non-significant increase in FTE. 

Future research will focus on fine-tuning the forecasting model by incorporating other simple 
parameters that can be exported from EHR to investigate if the model predictions can be improved. 
Additionally, a hierarchical forecasting approach with an optimization function could potentially improve 
ESI-level forecasting. Additionally, a major limitation in the mathematical and simulation model is that we 
are not representing ancillary resources to the ED, including labs, consults, and nurses, as separate 
resources. However, the model still accounts for these delays. In future work, we plan to include the impact 

of these ancillary resources and processes to better represent the partner ED.  
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