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ABSTRACT 

Individual-based models (IBMs) of infectious disease dynamics with full-country populations often suffer 

from high runtimes. While there are approaches to parallelize simulations, many prominent epidemic 

models exhibit single-core implementations, suggesting a lack of consensus among the research community 

on whether parallelization is desirable or achievable. Rising demands in model scope and complexity, 

however, imply that performance will continue to be a bottleneck. In this paper, we discuss the requirements 

and challenges of parallel IBMs in general and the German Epidemic Micro-Simulation System (GEMS) 

in particular. While the exploitation of unique model characteristics can yield significant performance 

improvement potential, parallelization strategies generally necessitate trade-offs in either hardware 

requirements, model fidelity, or implementation complexity. Therefore, the selection of parallelization 

strategies requires a comprehensive assessment. We present a point-based evaluation scheme to assess the 

potential of parallelization strategies as our main contribution and exemplify its application in the context 

of GEMS. 

1 INTRODUCTION AND BACKGROUND 

The COVID-19 pandemic has demonstrated that individual-based infectious disease models can yield a 

profound contribution to public health decision-making and intervention planning as they allow for 

modeling complex social interactions and individual behavior (Lorig et al. 2021). Several models such as 

the GEPOC model (Bicher et al. 2020) or the ICM model (Niedzielewski et al. 2022) even simulate the 

population of entire countries to account for regional demographic heterogeneity and interregional mobility 

which pose a significant benefit over ordinary differential equation-based infection models. The models 

cover the entire populations of Austria (~8 million individuals) and Poland (~38 million individuals). 
The recently founded OptimAgent consortium, a team of 14 German and international research 

institutions and partners funded by the German Federal Ministry of Education and Research, is currently 

working on GEMS. GEMS is intended to be a flexible individual-based infectious disease modeling 
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framework that covers the full German population (roughly 84 million). The framework is meant to provide 

model-driven public health decision support enabling the evaluation of non-pharmaceutical intervention 

measures to contact-communicable infectious disease outbreaks. GEMS should be easily adaptable to 

newly emerging pathogens, epidemic-, and endemic scenarios. The foundation of the microsimulation is a 

realistic synthetic population, including features such as age, sex, preexisting health conditions, household 

compositions, and assignments to schools and workplaces. Moreover, the model includes realistic age-

dependent contact structures, individual behavioral adaptation mechanisms (e.g., as a reaction to an 

infection or the emergence of collective behavior like mask-wearing), realistic disease progressions, and 

comprehensive intervention planning. 

Given the size and complexity of the model and anticipating its application as a (timely) decision 

support tool during infectious disease outbreaks, the simulation runtime will be one of the most critical 

success factors. Especially the simulation of human mobility and individual trajectories requires extensive 

computational resources, as shown in agent-based mobility models like the much-cited MATSim 

(Axhausen et al. 2016). Although respiratory viral infections are enforced by social contacts in close 

physical proximity, the driving factors are not necessarily random outdoor (open-air) encounters. A 2021 

review study finds that indoor transmissions for COVID-19 were more than 18 times more likely than 

outdoor transmissions (Bulfone et al. 2021). Thus, a simulation can assume an epidemiologically relevant 

connection of individuals (e.g., via the same workplace) without moving them to these physical locations. 

We rather situate them in so-called settings (households, workplaces, schools, etc.) in which they might 

interact. Commuting and long-distance trips can hereby be modeled by mapping individuals to a 

transportation hub setting (e.g., train stations or airports) or sampling interregional contact candidates based 

on travel data. Therefore, GEMS can be considered as an individual-based microsimulation model with a 

superimposed network structure. 

However, in its current state, this model architecture is limited to the execution within a single thread. 

In contrast, a parallelized execution may enable a speed up of the currently planned implementation, also 

leaving performance headroom for future extensions and to achieve scalability. There is a large body of 

literature discussing various strategies to parallelize individual-based models (Fujimoto 1990; Parry and 

Bithell 2012; Fachada et al. 2017) and even in the context of infectious disease simulations. For example, 

Perumalla and Seal (2012) achieve significant performance improvements using an Optimistic Discrete 
Event Simulation approach (discussed in more detail in Chapter 2.4) on a 65,536-core Cray supercomputer. 

Yet, many large-scale individual-based models that played an active role in supporting European COVID-

response strategies such as Bicher et al. (2020) in Austria, Adamik et al. (2020) in Poland, and Ferguson et 

al. (2020) in the UK, do not parallelize individual simulation runs. Preceding discussions with select 

members of Austrian and Polish teams suggested that the principal reasons against single-run parallelization 
were that the legacy code of established models would require substantial refactoring and revalidation, 

parallelization would compromise model flexibility, and a parallelized architecture would impair the 

model’s ability to be executable on less-performant hardware, effectively enforcing simulations to be run 

on a supercomputer exclusively. These facilities might not be permanently available. However, the 

discussions also suggested that single-run parallelization is likely inevitable for a model the size of GEMS 

(~84 million individuals), combined with its anticipated complexity due to the expected runtime.  

Summarizing, the preceding arguments show, that the selection of parallelization strategies necessitates 

the careful consideration of factors unrelated to the mere parallel performance improvements, such as the 

required compromises in model flexibility, single-core performance, or expected implementation 

complexity. Thus, a more comprehensive evaluation is required. In this paper, we therefore perform a 

systematic evaluation of four candidate parallelization strategies for the intended individual-based network 

model (three approaches stem from literature while a fourth approach has been proposed by us), which we 

introduce in Chapter 2. We deliberately exclude GPU-based approaches as the model complexity will likely 

impede effective vectorization and the expected model size will exceed standard VRAM sizes. As the main 
contribution of this paper, we introduce a point-based grading scheme assessing the presented 

parallelization strategies with respect to seven evaluation criteria (including the aforementioned 
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implications for modeling and development), exemplify it through an application on GEMS and explain 

our results in detail in Chapter 3. Due to the early stage of the research and application field, the evaluation 

scheme represents a first high-level analysis. We discuss our findings and offer a conclusion on our results 

in Chapter 4. While we do perform this evaluation for the GEMS model, we argue that our results are 

transferable to other individual-based epidemiological models and that our evaluation scheme can be 

applied in various contexts where the potential of parallelization strategies needs to be evaluated. 

2 PARALLELIZATION STRATEGIES 

GEMS makes use of model elements following the commonly used SEIR Model (c.f. Bjørnstad et al. 2020). 

Thus, individuals can have the following states: Susceptible (individual can be infected), Exposed 

(individual is infected, but not infectious), Infectious (individual can infect others) and Recovered 

(individual is not infectious and immune). GEMS considers pathogens that will be transmitted via contacts 

between individuals. Only the transition of individuals from Susceptible to Exposed is dependent on a 
contact, while an individual will otherwise transition through all states on its own. Therefore, we investigate 

the parallelization of the simulation of infectious contacts. 

 In existing approaches for individual-based models (IBM), predominantly two different types of 

handling times during the simulation are employed: On the one hand, the states of all individuals can be 

calculated and synchronized after fixed-interval time-steps. We hereby call this approach fixed-interval 

spatial IBMs. On the other hand, the states of the individuals can be calculated and synchronized after 

dynamic-interval time-steps. The dynamic-interval lengths are then calculated as the time spent between 

the occurrence of two events in the system. These approaches are known as discrete-event simulation (DES) 

(Grimm and Railsback 2005). It is possible to combine both approaches, but such combinations do not find 

common applications within epidemic simulation models and are therefore not considered here. 

 Generally, DES are seen as advantageous, as the dynamic time-intervals promise overall less 

calculation by skipping time-steps, in which no significant state changes of the individuals occur. This 

increase in performance is however gained through a more complicated implementation. Furthermore, it is 

oftentimes not sufficient to separate the calculation by cores within a DES. Instead, separate memories are 

also allocated, whereby the combination of cores and this memory is depicted as a logical process (LP) 

(Fujimoto 1990). A further downside of DES approaches is that multiple events may occur within a single 

timestep, making it impossible to analyze sequence-dependent implications of these events. However, this 

is not of interest for GEMS, as individuals usually only become Infectious several timesteps after being 

infected. Thus, the sequence of the infections is not changing the simulation output. The increased effort in 

implementation does not seem worthwhile for GEMS, as the high number of considered individuals (~84 

million) will likely cause events to be created in each time-step that would be considered within a fixed-

interval spatial IBM anyway As DES approaches are more commonly used in literature, it is nevertheless 

relevant to analyze the parallelization approaches employed within these. 

 In the following, we will introduce three parallelization approaches that have been employed in other 

epidemics-related microsimulations (Rakowski et al. 2010; Perumella & Seal 2012): Conservative Discrete 

Event Simulation (CDES), Optimistic Discrete Event Simulation (ODES), and Generative Turns Fixed-

Time Intervals (GTFTI). While not all considered simulation models published their parallelization 

approaches, we were made aware of the used approaches through interviews with the respective simulation 

model developers. Generally, our descriptions are based on two survey papers depicting the state-of-the-art 

parallelization in IBMs (Fachada et al. 2017; Parry & Bithell 2012). Subsequently, we synthesize a fourth 

approach, that we consider promising for employment within GEMS: The active setting approach for fixed-
time-intervals (ASFTI – marked bold as our own development). 

2.1 Discrete Event Simulation 

Synchronizing the states between individuals is particularly computationally expensive when considering 

DES approaches, as the localized memory states within each LP need to be adapted as well. Hence, the 
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approaches for the parallelization of DES commonly aim to reduce the need for such synchronizations. 

Generally, DES parallelization approaches can be classified as either Conservative or Optimistic. Both 

approaches in turn can be classified as environmental-parallel, as they parallelize the simulation of a subset 

of the overall environment in which the individuals operate. 

 Naron and Wasserkrug (2007) studied the parallelization of DES-based agent-based models in the 

context of infectious diseases, making use of a Conservative approach utilizing time-windows. These time-

windows specify when LPs can safely process events with a synchronization step. In their work Naron and 

Wasserkrug (2007) assume that most contacts that an individual may have occur within tightly defined 

geographical regions. Therefore, they argue events are distributed according to these geographical regions, 

i.e., every LP in their approach only handles the events of a certain geographical region. 

Figure 1 shows the concept of Conservative DES (CDES). The LPs handle events separated by 

geographical regions considering all individuals mainly operating within this region for a time window 𝑊𝑛, 

where events are safe to process. Afterwards, a synchronization step is executed (possibly causing 

infections between LPs) before continuing with the next time window 𝑊𝑛+1. Hereby, contacts between 

individuals of different LPs can only occur during this synchronization step. 

 

Figure 1: Conservative discrete event simulation. 

In contrast to the CDES, the Optimistic DES (ODES) approach initially allows for state changes between 

LPs at any given time, but only synchronizes these at predefined time-intervals. Hence, the different LPs 

may assume conflicting states whenever contacts between LPs occur, which must be retroactively repaired 

to ensure a consistent behavior of the overall simulation model. For this purpose, rollback mechanisms are 

employed. Hereby, a commonly used rollback mechanism is the Time Warp protocol, first introduced by 

Jefferson (1985), which assigns each LP its own virtual time. A rollback of an LP occurs when mismatching 

states are recognized. When executing a rollback, every event (and hence contact) that occurred during the 

simulation is reset back to a time point before the mismatching states occurred. Therefore, each LP must 

keep a history of the preceding model states in memory, requiring further memory capacities. Figure 2 

demonstrates the Optimistic approach. Every LP is calculated for its own virtual time 𝑇𝑖 , where the 

timesteps can change independently from each other. Furthermore, when the global time of the simulation 

model advances (usually by defining the time, in which no further rollbacks can occur anymore), the virtual 

times will have changed by an independent increment 𝑘𝑖. 
 There are several variations of the Time Warp protocol for certain model types. We focus on spatial 

IBMs, for which Görür et al. (2019) proposed a variant of the Time Warp mechanism to reduce unnecessary 

rollbacks, improving the ODES approach. Furthermore, analogous to the CDES approach, every LP can be 

separated by geographical regions to reduce the contacts that occur between LPs.  

Figure 2: Optimistic discrete event simulation. 

1091



Ponge, Bayer, Horstkemper, Bock, Hellingrath, and Karch 
 

 

2.2 Fixed-interval Spatial Individual-based Modeling 

Unlike in DES, where all identified approaches follow an environmental-parallel approach, Fixed-interval 

spatial IBMs are commonly also following an agent-parallel approach (Parry and Bithell 2012). Hereby, 

the individuals themselves are distributed to be handled by different cores, as opposed to the geographical 

regions in an environmental-parallel approach. We refer to the agent-parallel approach as Generative 
Turns Fixed-Time Intervals (GTFTI), where fixed-time-intervals represent the times in which the 

individuals states are updated. To reduce the computational effort, a separation of the individuals into 

Infected and Susceptible is performed. It is only needed to calculate the state change caused by one of these 

subsets of all individuals to be able to determine the outcome of all contacts. Therefore, we need to decide 

which subset is more computationally optimal to simulate. 

 When simulating all infected individuals, one initially only must simulate a very low number of 

individuals, as indicated within Figure 3. Here, in a timestep 𝑇𝑛 only one individual is Infected and causes 

a second infection within the timestep  𝑇𝑛+1. However, when a high number of individuals is Infected, this 

results in a situation in which an individual that is Susceptible may be infected by several other individuals 

within the same timestep. When these individuals are processed on different cores, this also causes 

extensive synchronization efforts. This synchronization can be performed by having a copy of the model’s 

state at a time 𝑇𝑛 for every core, in which the outcomes of the different contacts calculated by the core are 

documented. These copies would be manipulated by the different cores and the state of the model for time 

𝑇𝑛+1 has to be obtained by synthesizing these copies into an overall state. 

 Alternatively, the parallelization could occur by simulating the Susceptible individuals. In a situation 

with only a few Infected individuals (as seen in Figure 3) this would initially cause a much higher 

computational effort. We can then calculate whether each Susceptible individual would become infected in 

each timestep. During a timestep, we would distribute the Susceptible individuals to different cores and 

calculate the risk of infection for each individual. Changing the state of a Susceptible individual during a 

time step 𝑇𝑛 however could also change the infection probability of other Susceptible individuals. This issue 

can be handled by introducing a single individual copy of the overall state of the model, that represents an 

intermediate state between two time-steps and is continuously updated with the results of the calculations 

for each Susceptible individual. When all calculations have been performed, this copy represents the new 

state of the overall model after calculating the time step 𝑇𝑛. An alternative approach to update the IBM 

without the creation of a copy would be to calculate the infection probability on each core at time 𝑇𝑛, while 

only updating the status of the individuals at time 𝑇𝑛+1. As fewer copies of the overall network need to be 

handled when considering the simulation of Susceptible individuals (the synchronization issue, that a 

Susceptible individual gets infected from multiple Infected individuals on different cores does not occur in 

this case), it is overall less computationally expensive compared to simulating the Infected individuals, 

despite having to perform calculations for more individuals overall. 

 

 
  

Figure 3: Model states for the generative turns approach for fixed-time-intervals. 

As the presentation of DES-based approaches has shown, a high reduction of contacts affecting multiple 

cores can be achieved by performing an environmental-parallel assignment of individuals to cores. Hence, 

we introduce such an approach for fixed-interval spatial IBMs as well. This approach has been further 

extended by Bicher et al. (2020), who define specific “rooms”, for which subsets of a population can be 
defined. Hereby, we call such rooms a setting. Settings can in turn be characterized by different types, e.g., 

households, workplaces, and schools. Furthermore, settings of the same type are disjoint, i.e., every 
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individual is at most assigned towards one setting of each type. The parallelization can thus be performed 

by computing infections inside settings of the same type in parallel for all setting types. 

 As we focus on the simulation of infectious contacts, we consider the notion of “active” settings within 

a parallelization strategy we have developed ourselves. We call a setting “active”, if an infection could 

potentially happen inside it (i.e. it contains at least one infectious individual). Restricting the simulation to 

active settings therefore reduces the computational complexity. The active setting approach for fixed-time-
intervals (ASFTI) is depicted in Figure 4 with the active settings being highlighted by dashed white borders. 

The model state at time 𝑇𝑛  depicts one active setting in the school layer and one active setting at the 

household layer, as both settings contain an infected individual. At time 𝑇𝑛+1 a setting in the workplace 

layer becomes active because of a new infection that occurred within the setting on the household layer, 

affecting an individual that is a member of both settings. Multiple active settings of the same layer can be 

distributed and simulated on different cores due to the disjointed assignment of individuals to these settings. 

 As previously mentioned, this type of parallelization can be considered as an “environment-parallel” 

approach as regarded by Parry and Bithell (2012). They identified two main problems with such approaches, 

namely load balancing and non-local interactions. If infections occur outside of settings, these infections 

have to be simulated additionally and require communication between settings. While this poses a potential 

bottleneck for the active settings approach, if most of the infections happen in settings, sporadic infections 

become minimal and possibly negligible. This requires however the need to divide the environment into a 

sufficiently high number of settings. Furthermore, load-balancing issues can be addressed through reducing 

the variance of the number of individuals assigned to each setting. 

 

  

Figure 4: Active settings in a fixed-time-interval IBM. 

3 EVALUATION 

3.1 Evaluation Criteria 

In order to evaluate the parallelization strategies, we introduce seven quality criteria: Three performance-

related (Single-core Performance, Load-Balancing, Memory Efficiency), three model-related (Model 

Flexibility, Synchronization Overhead, Scalability), and one development-related criterion 

(Implementation Complexity) as seen in Table 1. These criteria were collected during a two-day systematic 

requirement analysis workshop among the OptimAgent project consortium where the intended application 

of the GEMS model and its anticipated conceptualization were discussed in detail. 

3.2 Evaluation Scheme 

As implementing functionally equivalent full-scale models for each of the four strategies is not realistically 

feasible, the parallelization potential according to the seven introduced evaluation criteria is assessed based 
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on careful theoretical considerations. Supporting this process, we present a point-based rating scheme, 

ranging from 1 (worst case) to 3 (best case). Performance criteria will achieve three points if there is little 

to no loss in expected runtime or memory efficiency compared to a non-parallel implementation. Two 

points suggest a reasonable efficiency loss that can be covered by adding capable hardware (e.g. an 

additional memory requirement of <100% would be considered reasonable). One point indicates a non-

acceptable loss in expected performance such as a doubled required memory or severe non-preventable 

runtime performance losses. Among the model quality criteria, three points denote the best-case scenario 

which refers to no losses in flexibility (compared to the non-parallel implementation), no synchronization 

overhead, and full scalability with additional hardware. Two points indicate reasonable compromises in 

model flexibility without rendering the results unusable. A synchronization overhead might be present, but 

realistically coverable by means of adding computing resources. In terms of scalability, a two-point rating 

suggests that more hardware might incur more synchronization overhead, potentially even to a point where 

added resources and added overhead break even.  

Table 1: Evaluation criteria. 

Class Criterion Description 

Perfor-

mance 
Single-core 

Perfor-

mance 

The GEMS framework is designed to run on clusters and home computers, 

acknowledging scenarios where users run simulations on a single core due to 

hardware scarcity or the need for concurrent Monte Carlo-like simulations. The 

Single-core Performance criterion estimates the runtime of a parallelized 

model on a single core. It is thus mainly an “overhead estimator”. 

Load 

Balancing 
The Load Balancing criterion assesses the ability to efficiently distribute the 

workload across all cores depending on the parallelization strategies. 

Memory 

Efficiency 
The Memory Efficiency criterion assesses the expected memory overhead due 

to parallelization. 

Model Model 

Flexibility 
Efficient parallelization generally requires disjunctive synchronized 

workloads. Partitioning a model (e.g. into geographical areas) or discretizing 

time (e.g. into daily timesteps) can inflict certain assumptions about the general 

model structure. The Model Flexibility criterion assesses the impact of such 

compromises induced by the proposed parallelization strategies. 

Synchroni-

zation 

Overhead 

To reliably simulate infection chains across computing nodes, synchronization 

is of utmost importance. The Synchronization Overhead criterion assesses the 

resources required to achieve such synchronization. 

Scalability Adding computing resources in a parallel environment generally increases 

overhead. The Scalability criterion assesses the strategies’ ability to effectively 

reduce runtime by adding more resources. 

Devel-

opment 
Implemen-

tation 

Complexity 

Besides the theoretical considerations, developing parallel models is generally 

a challenging endeavor. The Implementation Complexity criterion assesses the 

severity of additionally required efforts to implement the proposed strategies. 

One point in each of the categories suggests non-acceptable compromises, more overhead than performance 

benefits, or no scalability. Lastly, the implementation complexity criterion is evaluated with three points if 
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development efforts can be kept to a minimum (which includes the parallelization of certain loops, taking 

care of concurrent data logging, parallel random number generators, and other non-preventable features). 

Two points indicate reasonable effort that needs to go into code development, compared to a non-parallel 

implementation. One point suggests that parallelizing the code will be the major task during development 

and abstract the overall project from infectious disease modeling to parallel simulation development. 

3.3 Results 

Generative Turns Fixed Time-Interval. The GTFTI approach appears to be the most straightforward 

parallelization concept with the least expected implementation complexity (3 points). As a new iteration of 

the overall model is generated in each turn, solely based on the current state, we assume that very little 

synchronization overhead is incurred (3 points). Given that infections are evaluated from the susceptible 

individuals’ perspective, infection routines are purely passive. Individuals are being infected rather than 

actively infecting. This feature allows for near-optimal segmentation for parallelization purposes as no 
infection can be triggered in a part of the model that is outside the computing core’s assigned partition. As 

the approach is turn-based, overhead might be incurred due to certain cores waiting for others to finish. 

However, we assume this overhead can be kept to a minimum as the approach allows for very good load 

balancing (3 points). Since infection events are evaluated for all individuals in each turn, the overall 

collection of individuals can be distributed to the available cores. Minor deviation of core runtimes might 

occur if a particular core handles more actual infections as this usually triggers a logging event which can 

involve “costly” data-writing. While evaluating infections for all susceptible individuals in each turn yields 

excellent load balancing, it heavily impacts single-core performance (1 point). Assuming that most of the 

individuals will not be infected in any given turn, a large part of the calculations and thus the induced 

runtime will not have an impact on the simulation outcome. The strategy will require a considerable 

minimum number of computing cores just to break even with a non-parallel variant that handles infections 

more efficiently. However, due to the little synchronization overhead, we assume a very high potential for 

scalability (3 points). We rated model flexibility reasonable (2 points) as the turn-based nature necessarily 

induces fixed-time-intervals (e.g., a day). These discrete units impose certain model characteristics by 

assuming disease properties (such as the incubation period) are bound to be expressed in integer multiples 

of the step length. A 36-hour incubation period could not directly be simulated in a day-time-step model. 

However, as time steps can be chosen to match the model, these constraints are acceptable. A significant 

shortcoming of this strategy is related to memory efficiency (1 point). Since each turn results in a copy of 

the model, GTFTI requires at least twice the amount of available memory as a non-parallel implementation. 

Active Settings Fixed-Time-Interval. The ASFTI approach deviates from the GTFTI in the 

assumption that all infections happen in self-contained settings. This prerequisite enforces a disjunct 

subnetwork structure across the setting types (households, schools, workplaces, and others) which allows 

for the parallel simulation of settings of the same type. Moreover, it provides the option to only consider 

settings that potentially host an infection event (active settings). In contrast to the passive GTFTI approach, 

this strategy avoids simulating a large number of non-infectious contacts without triggering infections in a 

partition of the model that is handled by another core. Infections can only happen within the current setting. 

All setting-related individuals are handled by the same core. The approach dictates that all agents are 

assigned to strictly disjunct settings (of the same type). No agent can be assigned to two households or two 

workplaces. We assessed this as a reasonable assumption in terms of model flexibility (2 points) as it is 

always possible to add more setting types, adding complexity to the overall network. We rate the 

implementation complexity as reasonable (2 points) as it suggests considerable refactoring of the model 

structure compared to the naive non-parallel approach. As the list of active settings can be easily assigned 

to computing cores, we consider the potential for load balancing very good (3 points) as well as the expected 

scalability (3 points). After each turn, there will be a necessary consolidation procedure that activates or 
deactivates settings with agents that became infectious during the current turn but in other settings (an 

infection at work will activate the agent’s household) introducing a certain degree of synchronization 

overhead (2 points). This overhead will also be present in a non-parallel simulation run and thus most likely 
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results in noticeably reduced but acceptable single-core performance compared to a naive non-parallel 

approach (2 points). Implementing multiple layers of subnetworks for the same agents will lead to a larger 

overall model size and thus reduced but acceptable memory efficiency (2 points). 

Conservative Discrete Event Simulation. Interestingly, the two discrete event simulation approaches 

appear to excel in contrasting categories compared to the fixed-time-interval variants. The CDES approach 

in particular will likely be very memory efficient (3 points) as it does not require a model copy or additional 

model layers for parallelization. The events that will have to be stored temporarily until synchronization is 

established are likely negligible compared to the overall model size. The strategy also retains the same level 

of model flexibility compared to its non-parallel counterpart (3 points) as the principal model structure is 

not compromised to facilitate parallelization. We assume single-core performance to be not considerably 

lower than the non-parallel implementation (3 points) as the introduced overhead mainly arises from core 

synchronization. On a single core, there is no synchronization backlog. This, however, suggests that added 

resources result in more synchronization overhead (2 points). As the model is sliced into segments that are 

assigned to LPs, more LPs will result in smaller model segments. Thus, more segments necessarily increase 

the need for synchronization. We would even expect that there is a natural limit for parallelization where 

the runtime benefit of one further attached LP and the additional synchronization overhead break even. 

Therefore, we assess scalability as reasonable but not optimal (2 points). Efficient load balancing will hardly 

be possible to achieve (1 point). The apriori model segmentation (e.g. based on geographical regions) does 

not take the actual workload into account. Considering that the CDES approach only simulates infectious 

agents, a fair load balancing could only be achieved if the infectious agents were evenly distributed 

geographically. Local infection hotspots (which are a prevalent scenario in infectious disease modeling) 

would cause high workloads for the core taking care of the respective geographical region while others idle 

(Naron and Wasserkrug 2007). The same problem applies when partitioning the model along other pivotal 

dimensions such as social network subgroups. 

Optimistic Discrete Event Simulation. The ODES approach differs from the CDES variant in that 

synchronization is done upon the occurrence of divergences via messages between LPs and subsequent 

rollbacks of events, and not in continuous synchronizations. In the context of the proposed infectious 

disease model (Chapter 2.4), however, it suffers from the same load balancing issues as the CDES approach 

(1 point). Local infection hotspots might heavily occupy a single LPs while others idle. As the ODES variant 

does not have a periodic synchronization, we must assume that this can lead to significant deviations in 

simulation time between LPs. The update messages between LPs may then trigger extensive event 

rollbacks. Even worse, they might trigger recursive rollbacks, resulting in a system where anti-messages 

chase their initial messages indefinitely (Vee and Hsu 1999). Thus, we expect the synchronization overhead 

to be severe (1 point). The proposed rollback system requires that each LP stores a comprehensive list of 
local events that impacted the model state. A fair level of memory efficiency will hardly be achievable (1 

point). While it would be theoretically feasible to dispose of events that are definitely out-of-scope (e.g., 

by tracking the slowest core’s internal simulation clock time), this garbage-collecting process would induce 

further overhead. In terms of model flexibility and single-core performance, the ODES approach matches 

with the CDES (3 points each). The same applies to its scalability which we rate as reasonable following 

the CDES arguments (2 points). We expect this approach to yield the highest implementation complexity 

(1 point) due to the complex event management (Jafer et al. 2013). While the literature provides many 

suggestions to improve this strategy (e.g., by means of the previously mentioned memory management), 

optimizing the parallelization strategy would likely be the dominant task in a simulation project. 

The results of our analysis are summarized in Table 2. They suggest that each parallelization strategy 

excels in a different set of evaluation criteria. GTFTI, ASFTI, and CDES achieve 16 points each, topping 

the ODES approach by four points. However, as the categories are unweighted, their relative importance in 

a particular project may depend on the available hardware, experience, and manpower. 

 Figure 5 visualizes the potential tradeoffs. With unweighted criteria, the ASFTI approach appears to 
be a good compromise as it achieves at least two points in every category. As we define a one-point rating 

as “non-acceptable”, it would remain as the only “completely acceptable” approach. However, in a scenario 
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where the model is intended to run exclusively on high-performance clusters, single-core performance, and 

memory efficiency might be negligible. In that case, the GTFTI strategy is a prominent candidate as it 

achieves the maximum points in four out of the seven criteria. Thus, we suggest that the rating scheme 

might require slight adaptations in other use cases. The two discrete event simulation variants both suggest 

poor load balancing which is generally considered a necessity for effective parallelization. We therefore 

argue that CDES and ODES are no feasible candidate strategies although both strategies yield the highest 

potential to retain model flexibility, especially as their step-free approach does not enforce integer multiples 

of the step lengths for disease parameters such as the incubation period. We also observe that memory 

efficiency has the lowest accumulated rating acknowledging the well-known dilemma of runtime 

performance and memory efficiency generally depicting conflicting goals. All strategies achieve at least 

two points for the model flexibility and scalability criteria. 

Table 2: Evaluation results. 

Criteria/ 

Strategy 

Sg.-Core 

Perf. 

Load 

Balanc. 

Memory 

Eff. 

Model 

Flex. 

Sync. 

Overh. 

Scala-

bility 

Implem. 

Comp. Sum 

GTFTI 1 3 1 2 3 3 3 16 

ASFTI 2 3 2 2 2 3 2 16 
CDES 3 1 3 3 2 2 2 16 

ODES 3 1 1 3 1 2 1 12 

Sum 9 8 7 10 8 10 8  
 

 
Figure 5: Visualization of tradeoffs. 

4 DISCUSSION AND CONCLUSION 

The fact that three out of the four parallelization strategies achieve the same score but excel in different 

categories supports the notion of IBM parallelization being a controversial issue and highly use-case 

specific. The infectious disease application context allows for certain assumptions about the model which 

largely influence the anticipated performance improvement potential. Especially the aspect of only actively 

simulating infectious individuals and their immediate surroundings drastically cuts the expected workload 

in most of the scenarios. At the same time, this feature inflicts severe load-balancing challenges for the 

evaluated parallel discrete event simulation strategies which are otherwise very prominent approaches in 

IBM parallelization literature (Fujimoto 1990; Perumalla and Seal 2012). Generally, we observe that 

parallelization strategies tailored towards multicore platforms (such as the Active Setting Fixed-Time-
Interval approach) suggest fewer compromises and thus better parallelization potential over strategies that 

are parallelized ex-post. This perception coincides with the discussions we had with the European modelers. 

Many models are not parallelized because they were not designed to be parallelized. 
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Naturally, there are limitations to our work. We focused on the conceptual potential of different 

parallelization strategies as it is not within the scope of this work to implement four full-fledged functionally 

equivalent simulation systems. Therefore, we can only make well-reasoned assumptions about the actual 

performance of the evaluated strategies. Moreover, when going into the actual realization, further 

implementation-related criteria such as data transfer- and storage efficiency, programming skills, 

debugging, and testing abilities as well as hardware heterogeneity might become critical success factors. 

Consequently, future research should include such a comparative implementation of parallelization 

approaches to identify further relevant characteristics, fleshing out the evaluation scheme further. A 

generalization of the research results toward other kinds of microsimulations could be conducted as well. 

Our work contributes to the ongoing debate about the potential of parallelizing large-scale infectious 

disease microsimulations. We have provided an evaluation framework, which also considers factors beyond 

the mere parallelization itself, focusing on the implication of the modelling of the underlying decisions. 

Furthermore, we advocate that our evaluation methodology is applicable in a variety of contexts, enabling 

practitioners and researchers to select parallelization strategies for other individual-based epidemiological 

models. For our specific use-case, we elaborated on the importance of scalable individual-based infectious 

disease model architectures and thoroughly discussed the concomitant challenges. We then briefly 

presented the German Epidemic Micro-Simulation System (GEMS) and proposed four applicable 

parallelization strategies for such a model. Furthermore, we introduced a systematic point-based approach 

to evaluating the potential of candidate parallelization strategies. We applied the schema to the four 

identified candidate strategies with respect to the GEMS model. From the results, we conclude that 

parallelizing large epidemiologic microsimulations remains a complex issue and that the choice of 

parallelization strategies is not only a matter of mere performance improvements. Naturally, it necessitates 

tradeoffs, not only regarding the utilization of resources (performance vs. memory efficiency) but also the 

implied compromises in terms of model flexibility (e.g. accepting certain abstractions to partition the model 

into concurrently computable sections), and compromises regarding the enforced application environment 

(e.g. always requiring a computing cluster). As the ASFTI strategy is the only approach with no 1-point 

rating across the evaluation criteria, we conclude that it is the most promising candidate for GEMS.  
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