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ABSTRACT

Evidence has shown that random screening tests are effective in reducing COVID-19 infections in schools.
However, test administration may be hindered due to a limited budget or low participation caused by
pandemic fatigue. Thus, we seek to balance the number of tests administered with end-of-semester
infections. To do this we use an SEIR model to simulate SARS-CoV-2 transmissions within K-12 schools,
design a multi-objective simulation optimization problem, and tune an NSGA-II algorithm to find the best
testing schedules. We find the Pareto front of optimal schedules of screening tests, which can be used
by stakeholders to inform test administration strategies. We discuss insights about the characteristics of
optimal strategies, for example, when there are limited number of tests available or a desire to use few
tests, the optimal plan is to perform the tests earlier in the semester and at higher intensity.

1 INTRODUCTION

COVID-19 has dramatically disrupted the global healthcare system. In the US alone, the virus has been
responsible for over 5.7 million hospital admissions (CDC 2023a) and over 1 million deaths (DCD 2023).
For people below the age of 18, the disease has caused more than 177 thousand hospital admissions (CDC
2023a) and 1.6 thousand deaths (CDC 2023b). As the main places for children to study and socialize,
schools can play a very important role in protecting children from infection. The measures taken by schools
directly impact disease transmission and the health of students in schools.

Through disease modeling, evidence shows that testing policies have been useful tools for keeping
COVID-19 incidence low in schools. In 2021, Asgary et al. (2021) simulated preventive testing policies
in schools using an agent-based model to verify the effectiveness of testing policies within schools. They
analyzed and compared a variety of testing scenarios, such as test frequency, test result days, and test
expiration days. They concluded that frequent testing, expedited test results, and self-isolation together are
effective in controlling in-school infections. In our previous work, we also demonstrated the effectiveness
of random screening tests implemented in K-12 schools (Zhang et al. 2022), in particular when used as
one of several layered interventions.

There also exist many studies that apply optimization methods while analyzing COVID-19 screening
testing strategies. Van Pelt et al. (2021) utilized a decision tree model to optimize the detection of true
positives and negatives as well as the number of tests needed among college students by designing and
assessing five different strategies associated with RT-PCR tests. Aragón-Caqueo et al. (2020) built a
mathematical model to optimize the group size in pool testing using RT-PCR tests, which as a result,
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was able to boost the testing capacity. Abdin et al. (2023) proposed a non-linear programming model to
minimize the spread of COVID-19 by optimizing the allocation of limited testing resources in France.

However, we noticed that K-12 school students and teachers were rarely considered as the target
population in the studies of screening tests and optimization algorithms were not commonly used in the
analysis of COVID-19 testing schedules (Jordan et al. 2021). In addition, almost all the studies we reviewed
analyzed PCR tests instead of rapid antigen tests. Thus, we proposed this study to focus on screening tests
using rapid antigen tests in K-12 schools and apply an optimization algorithm to solve the problem.

As the highly contagious subvariant of Omicron spread in late 2022 and early 2023, some school
districts were supported by the government to utilize tests as a measure to protect children in school. For
instance, the North Carolina Department of Health and Human Services (NCDHHS) encouraged schools
to participate in the state-funded testing program for the 2022-23 school year, in which schools were
responsible for deciding on their own testing plans and providing guidance for quarantine and isolation
(NCDHHS 2022). Our goal is to provide guidance to decision makers about the most effective and efficient
ways to administer random screening tests in schools. Therefore, in this study, we use an SEIR simulation
model to capture the disease transmission within K-12 schools, then, we design an optimization problem
based on the simulation model. Because there are trade-offs between testing and infection reduction, we
modeled a bi-criteria optimization problem with the number of end-of-semester infections and the total
number of screening tests administered as the objectives. The decision variables are the timing and intensity
of tests over a semester. By solving the multi-criteria simulation optimization problem, this study aims to
help K-12 schools optimally plan test administration over the entire semester using simulation optimization.
In addition, due to the large decision space and the multi-objective nature of the problem, the NSGA-II
algorithm is tuned and used to solve the optimization problem.

2 METHODS

2.1 Simulation Model Overview

The simulation model we used in the study was adapted from our previous work (Zhang et al. 2022). It is
a multi-grouped SEIR model specific to K-12 schools, where individuals transition between 10 different
disease states with a one-day time step, as shown in Figure 1. To capture the different social dynamics
between students from different classrooms and teachers, we split the school population into subgroups. We
parameterized three distinct contact matrices to accommodate the different social mixing patterns within
elementary (K-5), middle, and high schools. We simulated the start of the Spring 2022 semester. As such,
the parameters were chosen according to the Omicron variant and the best evidence at the time.

In our previous work, we mainly focused on quantifying the effect of different non-pharmaceutical
interventions (NPIs) implemented within K-12 schools during the pandemic. Then, we estimated the impact
of different and potentially layered NPIs, including baseline interventions of masks and random screening,
as well as three strategies of contact reduction, school closures, and test-to-stay on COVID-19 transmission
within K-12 schools. We focused what combinations of interventions were most effective in mitigating
disease transmission within school settings under different assumptions about the school population (such
as incoming protection). Under the strategy of contact reduction, our simulation model achieved face
validity because the level of reduction in infections was consistent with Boutzoukas et al. (2022)’s analysis
when the universal masking policy was implemented.

In this paper, we extended the analysis by adding the design of a multi-objective optimization problem
to the simulation model. We also made some crucial changes to the model structure. These changes
include updates to capture changes in the new subvariants of Omicron, refinement to allow for day-to-day
decision-making, and updates based on changes in human behavior.

In late 2022 and early 2023, BA.4, BA.5, BQ.1, BQ.1.1, and XBB.1.5 took turns becoming the dominant
subvariants of Omicron (Zimmer, Carl 2023). They are known to be able to dodge antibodies produced by
vaccines or previous infections (Uraki et al. 2022), which means people who recovered from the disease

1007



Zhang, Mayorga, Ivy, and Swann

Figure 1: Flowchart of the COVID-19 disease model, including the transition from recovered to susceptible
shown in blue added as part of this work.

can become infected again. Thus, we added the transition of reinfection to the previous model; that is,
people who are recovered from the disease, can transition back to the "susceptible" state at a later date, as
shown by the blue line in Figure 1. We assumed that the reinfection rate of the subvariants of Omicron
was 13%, based on (Özüdoğru et al. 2022). We assume that on average, it takes about 100 days for
a recovered individual to be susceptible to infection again (Nordström et al. 2022). Furthermore, for
the optimal solution to return a precise screening schedule, we updated the model to treat weekdays and
weekends differently, with the transmission rate within schools being zero on weekends. Note that we
allow for outside infections that students bring to school from outside of school, as later discussed. One
semester’s total number of days is assumed to be 107 days, with a starting day of Monday based on the
North Carolina school calendar.

Additionally, we updated the model to account for changes in recommendations and human behavior in
early 2023 compared to early 2022. For instance, the CDC now suggests an isolation time of 5 days, which
is shorter compared to when the original strain of Omicron was dominant. We assumed the social mixing
among students and teachers is "well-mixed" with 0% contact reduction, representing that social contact
patterns have returned to pre-pandemic levels with social distancing policies rescinded. The "well-mixed"
contact pattern implies that each individual has an equal probability of making contact with other individuals
from the same or different population groups. It is possible for symptomatic individuals to self-quarantine.
However, because COVID-19 symptoms are often mild in children and can be confused with a common
cold, we assume a low, 20%, level of self-quarantine. Moreover, we increased the level of incoming
protection to represent a higher percentage of previous infection or vaccination among school-aged students
and teachers. Lastly, we considered the isolation due to testing compliance rate to be 100%. This assumes
the screened testing results are strictly enforced in schools. Thus the results represent the highest benefits
that can be obtained from random screening. The full list of model parameters is provided in Appendix A.

We assume a school population of 500 individuals. As mentioned earlier, students can bring infections
to the school from outside. To simulate a dynamic change of the disease prevalence in the community,
we created discrete uniform random number generators Yi

iid∼ DU [3,4] and Yi
iid∼ DU [1,2], representing the

newly exposed individuals coming from exposures occurring outside of school each week during the first
month of the school semester, and a lower level of newly exposed each week later on, respectively. This
was designed to simulate the surge of COVID-19 cases at the beginning of the semester after summer
vacation or winter break. In addition, we assumed one student was already exposed to the disease at the
beginning of the semester, which represents the virus invasion into the school environment.
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In this study, we focused on rapid antigen tests, not PCR tests, as rapid antigen tests do not require
lab work to retrieve results, which makes them desirable for screening purposes. One disadvantage of
rapid antigen tests is the low accuracy of the testing results for asymptomatic people. However, the model
contains a post-testing state of "Infected tested; false negative", thus it is able to accommodate the impact
of undetected infections. The sensitivity rate and specificity rate shown in Table 1 (Dinnes et al. 2022).

Table 1: Sensitivity rate and specificity rate of symptomatic and asymptomatic people.

Symptomatic Asymptomatic
Sensitivity 73% 54.7%
Specificity 99.1% 99.7%

Based on the values of the disease parameters, the SEIR model was used to simulate the disease
progression within the school over the entire semester. While the SEIR model is a deterministic compartmental
model, because we generate the “newly exposed" using discrete uniform random number generators, different
seeding results in distinct projections. When performing the parameter tuning for NSGA-II, we repeat the
optimization process with different seeding and compare the results.

2.2 Problem Definition

The optimization problem designed in this study is aims to help K-12 schools find the optimal schedule
for random screening tests. Specifically, when proposing a schedule of random screening for the semester,
the schedule is broken down week by week. During each week, the school determines whether to schedule
random screening tests for that week or not. If tests are scheduled, it is assumed that the possible test
ratio is 20%, 40%, 60%, or 80%, which means that among all students and teachers who are present at
school on that day, 20%, 40%, 60%, or 80% of them will be randomly selected to receive a rapid antigen
test, respectively. Because we assume the isolation compliance rate is 100% despite symptoms, all the
individuals who receive positive results will be isolated. If they do not schedule a set of random screening
tests that week, the test ratio is set to be 0%. We call this planned testing.

By distinguishing weekdays and weekends in our simulation, we were able to specify the testing day
for each week. The frequencies of planned testing we considered are 1, 2, or 5 days per week. If one
planned test is scheduled during the week, it is set to performed on Wednesday. Two planned testing days
are scheduled on Wednesday and Friday. Five planned testing days means random screening tests are
performed every weekday. Note that the test ratio remains constant within the week regardless of the testing
frequency, meaning that if 20% is chosen and we are testing two days then we test 20% of individuals
each day. The model runs separately for different testing frequencies, and the testing frequency remains
unchanged during the entire semester within each run. In other words, we optimize the weeks selected
for testing and intensity of testing separately for one day, two days, and five days of testing per week. In
future work we discuss the possibility of combining these decisions.

Thus, we defined a set of decision variables X = {X1, ...,X j, ...,X16} , where X j represents the ratio
of planned testing during week j. The possible values for X j are 0%, 20%, 40%, 60%, and 80%. 0%
means that there will be no planned testing for that week. The two cost functions together comprise our
objective: C1 is the end-of-semester infections within the school; C2 is the number of random screening
tests performed. These are obtained as a result of the simulation. Note that C2 equals the sum of the test
ratio multiplied by the total number of individuals in school on test days. Thus, the values of the cost
functions change as the testing schedule changes. By minimizing the two objectives together, we aimed to
determine the optimal weekly schedule and intensity of tests for the entire semester. The formulation of
the multi-objective optimization problem is shown in Equation (1):

min
X

F = (C1(X),C2(X))

s.t. X j ∈ {0%,20%,40%,60%,80%} j = 1,2, ...,16
(1)
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X j is the planned testing rate of week j,
C1 is the end-of-semester infection,
C2 is the number of screening tests performed.

2.3 Parameter Tuning for NSGA-II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a powerful evolutionary algorithm that
specializes in solving optimization problems with multiple objectives and large solution spaces. Within
each iteration, the algorithm sorts the parent and offspring population of solutions and keeps the results
that belong to the best non-dominated set for the next iteration until iterations are exhausted. To ensure
that the solutions are diverse, solutions corresponding to the largest crowding distance will also be selected
for the next iteration. Thus, in a single simulation run, the algorithm is able to find multiple diverse Pareto
front solutions (Deb et al. 2002; Anagnostopoulos and Mamanis 2010; Adyatama, Arga 2020).

There are four main parameters in the NSGA-II algorithm: number of generations, population size,
probability of crossover (Pc), and probability of mutation (Pm). Distinctive choices of the combination of
these parameters may affect the solutions found by the algorithm. Thus, we performed parameter tuning for
the NSGA-II’s Pc and Pm parameters to check whether there is a better combination of these two parameters
before taking a deeper look at the simulation optimization results.

3 RESULTS

The simulation model we used in the study is capable of simulating elementary schools (K-5), middle
schools, and high schools separately. As previously stated, K-5, middle schools, and high schools have
slightly different assumptions of structures and age-specific parameters. However, in this paper we limited
our analysis to a K-5 school size of 500 individuals with a "well-mixed" contact pattern.

3.1 Statistical Analysis for Parameter Tuning

This multi-objective optimization problem (MOOP) was solved using the function "nsga2R" in the R
package called "nsga2R". Here, we fixed the number of generations and the population size within each
generation to be 100 and 50, respectively. These two values were chosen based on previous parameter
tuning literature (Samsuri et al. 2019), computation time, and initial testing which show little improvement
in solutions as these values were increased further. Among the 50 initial parents, two of them were assumed
to be: 0% testing ratio every week and 80% testing ratio every week during each run. This helped to
reduce the run time by seeding the two extreme solutions.

As seen from other studies, the conventional choice for Pc is 0.9, and 1/N for Pm, where N corresponds
to the number of variables in the optimization problem, which in our case was 16 (Samsuri et al. 2019;
Wang et al. 2019; Feng et al. 2016). Then, we expanded the possible values for Pc and Pm and performed
statistical analysis on the two parameters of the NSGA-II. More specifically, we treated Pc and Pm as two
independent variables. The possible values for Pc were 0.88, 0.9, and 0.92. For Pm, the 8 possible values
we considered range from 1/N (0.0625) to 1/2N (0.03125) with 0.005 increment.

For each of the parameter combinations, we ran the simulation optimization process and obtained a
set of Pareto front solutions, that is a set of non-dominated solutions. Thus, it is not possible to directly
compare all solutions in the Pareto front between parameter combinations, as each may produce a different
number and set of solutions. Thus, we needed a way to compare the set of solutions.

Since this is a minimization problem, when plotting the Pareto front solutions with the x-axis and
y-axis representing the two cost functions (shown in Figure 3), the closer the optimal solutions to the axes
the better. The Manhattan distance of a point is usually used to examine how far a point is from the axes
and is calculated by summing up the distances between the x and y coordinates in the two-dimensional
coordinate system. However, from Figure 3 we can see that the x-axis and y-axis have very different scales.
Thus, we standardized the distances by dividing the distances by the maximum value of the corresponding

1010



Zhang, Mayorga, Ivy, and Swann

axes. For each simulation run, we averaged the Manhattan distances of all the points in the Pareto front.
In summary, we calculated the average standardized Manhattan distance of the optimal solutions in the
Pareto front set and treated the results of distance as the response variable in the parameter tuning analysis.

One simulation run (for a parameter combination) of 100 generations took approximately 3.75 hours.
Overall, the experiment was replicated 10 times with different initial seeding. Table 2 summarizes the
mean and standard deviation of the Manhattan distance over the 10 replications under each combination
of Pc and Pm.

Table 2: The mean and standard deviation of the Manhattan distance under each combination of Pc and
Pm.

Pm

0.03125 0.0325 0.0375 0.0425 0.0475 0.0525 0.0575 0.0625
(n=10) (n=10) (n=10) (n=10) (n=10) (n=10) (n=10) (n=10)

Pc = 0.88
Mean (SD) 1.3423

(0.0092)
1.3350
(0.0145)

1.3381
(0.0164)

1.3432
(0.0121)

1.3397
(0.0124)

1.3310
(0.0101)

1.3425
(0.0116)

1.3361
(0.0172)

Pc = 0.9
Mean (SD) 1.3326

(0.0099)
1.3355
(0.0143)

1.3431
(0.0173)

1.3417
(0.0114)

1.3416
(0.0118)

1.3421
(0.0145)

1.3397
(0.0148)

1.3395
(0.0168)

Pc = 0.92
Mean (SD) 1.3381

(0.0102)
1.3429
(0.0118)

1.3407
(0.0138)

1.3374
(0.0096)

1.3497
(0.0103)

1.3333
(0.0097)

1.3339
(0.0119)

1.3346
(0.0158)

Figure 2 illustrates the relationship between the average values of the response variable. The nonparallel
lines in the interaction plot indicate that the relationship between Pc and the Manhattan distance depends
on the value of Pm. Both Table 2 and Figure 2 suggested that the best two pairs of Pc and Pm were 0.88
and 0.0525, 0.9 and 0.03125, since they corresponded to the two smallest distance values.

Figure 2: Interaction plot of the mean Manhattan distance under different combinations of Pc and Pm values.
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Then, we performed a two-way ANOVA test on the results we obtained through simulation. The main
effects as well as their interaction effect were considered. P-values in Table 3 suggested that there were
no significant differences between the sample means.

Table 3: The result of two-way ANOVA with interaction effect.

Df Sum Sq Mean Sq F value Pr(>F)
pc 2 0.00 0.00 0.12 0.8896
pm 7 0.00 0.00 1.21 0.2972
pc:pm 14 0.00 0.00 1.21 0.2672
Residuals 216 0.04 0.00

The parameter tuning process suggested that the different values we assigned to Pc and Pm did not make
a large impact on the Pareto front obtained through the algorithm. From Table 2 we saw that although the
pair of Pc and Pm being 0.9 and 0.03125, was associated with the second-lowest mean Manhattan distance,
it corresponded to a slightly smaller standard deviation than the pair associated with the lowest mean
Manhattan distance, which indicates the stability of this group. Thus, we chose this pair and proceeded
with more analysis.

3.2 Results with One Planned Testing Day Per Week

After determining the optimal choices for Pc and Pm, more random screening scenarios were considered in
the study. By minimizing the end-of-semester infections and the number of random screening tests needed
at the same time, we successfully obtain the optimal solution set (shown in Figure 3). Each of the optimal
solutions within the set can be interpreted as the lowest number of tests needed for the end-of-semester
infections to reach a certain level. For instance, the leftmost point in Figure 3 represents that the number
of end-of-semester infections is 301 when no random screening tests were performed during the entire
semester. Compared to the rightmost point, we can see that 31 infections were reduced when almost 6,000
tests were used. In a school of 500, this corresponds to about 12 tests per person over the semester. Thus,
a lot of tests must be conducted to reduce infections by only a small about. This is due to several factors,
such as limiting tests to once per week and lack of other interventions. We explore this further later.

Before we explore other results, we look at the solutions more closely. Each point in the Pareto Front
corresponds to a specific week-by-week testing schedule. Figure 4 demonstrates the testing ratios in each
week under different schedules. The schedules were listed in descending order of the end-of-semester
infections, which were labeled on top of each corresponding schedule. For example, Schedule 1 (never
test) results in 301 infections. Comparing Schedule 2 to 5, we can see that if testing were scheduled during
the same week, the higher the testing ratio, the lower the end-of-semester infections. In addition, the first
half of the heatmap also suggested that if the number of weeks for testing is limited, it is always optimal
to arrange them earlier during the semester. Furthermore, we see that when testing does occur it is usually
done at a high level (as seen by the yellow color in Figure 4), and that most policies are monotonic (they
start at stop once). While not shown here, we tested the results by changing parameters (such as the number
of initial infections) and found that the structure of the optimal policy was robust to changes in parameters.

3.3 Different Testing Frequencies

The problem was solved separately under the different testing frequency assumptions. In general, increasing
the frequency allows more tests to be performed. The first row of Figure 5 demonstrates the Pareto front
under different testing frequencies without the usage of masks. Performing 5 planned tests per week, 30,000
tests resulted in reducing 86 infections compared with no tests. Additionally, higher testing frequency
makes screening tests more efficient at reducing infections. For example, if the random screening tests
were scheduled 2 times per week, performing 10,000 random screening tests reduced the end-of-semester
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Figure 3: Pareto front of one planned testing per week.

infection to 257. By comparison, if increasing the testing frequency to 5 times per week, the same number
of tests was able to reduce the end-of-semester infection to 250. This implies that there might be a benefit
to more frequent tests over shorter periods of time.

3.4 Layered Intervention of Masks

Almost all K-12 schools lifted mask mandates in early 2022 (The Center for Disability, Equity, and
Intersectionality 2022), as such the previous results assume no masks are in place. Unfortunately, evidence
shows the removal of masks increased infections among students and staff in the Massachusetts school
district (Cowger et al. 2022). Raifman and Green (2022) also stated that universal masks are effective as
this measure reduces the overall density of the virus in shared air, which decreases the chances of being
exposed within the environment. Thus, as the highly contagious subvariants of Omicron spread in late
2022 and early 2023, some school districts are brought back mask recommendations after winter break
(Kekatos, Mary 2022).

In the study, an additional scenario of universal masking policy was considered. More precisely, masks
were assumed to be utilized during the first 4 weeks of the semester. When masks are recommended, we
assumed the overall effectiveness of masks is 25%, which is calculated by multiplying the mask efficacy
of 50% by the mask adherence level of 50%. The second row of Figure 5 demonstrates the Pareto front
results of testing when utilizing universal masking policy as a layered intervention under different testing
frequencies. By comparing the results between the first and second rows of Figure 5, we can see that
the universal masking policy itself could reduce the end-of-semester infections from 301 to 292, even if
no tests are administered. Furthermore, a universal masking policy and random screening tests together
provided additional benefits in reducing infections. For example, infections were reduced from 215 to 200
when 30,000 tests were administered (5 day testing frequency) when masks were utilized the first 4 weeks
of the semester.

4 CONCLUSIONS AND FUTURE WORK

In the study, we designed and solved a simulation optimization problem to help K-12 schools plan their
random screening test schedules using NSGA-II. The results provided multiple optimal schedules of random
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Figure 4: All the testing schedules in the Pareto front.

screening tests within K-12 schools, each with different testing requirements. By calculating descriptive
statistics and performing a two-way ANOVA test, we conclude that there are no statistically significant
relationships between Pc and Pm and the corresponding performance of NSGA-II, as the Pareto front of the
optimal solutions generated behave very similarly. The statistical analysis suggests that NSGA-II is robust
in general for solving the problem. However, the pair where Pc and Pm are equal to 0.9 and 0.03125 is
slightly preferred due to its overall performance and stability. This suggests that the conventional choice
for Pc = 0.9 works in our model. In addition, if the number of variables is small, 1/2N can be a good
candidate for Pm.

Applying the tuned NSGA-II algorithm to our problem, we found that random screening tests are
effective in reducing the number of cumulative infections within K-12 schools. However, a lot of tests
must be conducted to reduce infections by modest amounts. Layered interventions, such as mask usage
alongside screening can further reduce infections, even when mask recommendations are implemented
for a short period of time. Higher frequencies of random screening in schools are also beneficial, as it
improves the efficiency of tests. The same number of tests can prevent more infections when screening
tests are scheduled more frequently in schools. In addition, the week-by-week schedule of testing plays an
important part in the efficiency of tests as well. Our analysis shows that it is always optimal to schedule
tests more intensively during the early weeks of the semester, such as screening 80% every week for three
weeks during weeks 4 through 6, than scattered over the entire semester with low testing ratio. This is
particularly important if testing resources are limited.

There are some limitations to the study. Assumptions such as the number newly exposed coming from
outside of school each week may not be accurate. We assumed the number of newly exposed was higher
during the first month of the semester, and, lower for the rest of the semester. However, there might be
seasonal effects associated with outside infections. For instance, more newly exposed individual may return
to school after holidays. The impact of these and other parameters (such as self-quarantine) adherence could
be tested using sensitivity analysis. For example, when we increased the number of infected individuals
at the beginning of the semester, testing started in earlier weeks (results not shown). The method we
developed can be easily executed for changes to any parameters and can be tailored to any particular school.
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Figure 5: Pareto front under three different planned testing frequencies per week with and without masking
implemented.

In addition, this framework can be useful in future pandemics to test intervention strategies as new data
and information become available.

This study has demonstrated the effectiveness of masks in reducing infections and saving on the number
of screening tests. We believe future work can be done by treating masks as another set of variables, that is
adding a decision about which weeks to recommend masking. Then the redesigned optimization problem
will be able to provide an optimal schedule for random screening tests and masks at the same time. In
addition, we have obtained the results under different testing frequencies, we could let the testing frequency
(within a week) be a decision variable, such that a schedule would produce not only which weeks to test
but also how many days to test each week and at what intensity. Furthermore, we have only considered
rapid antigen tests when simulating the effects of random screening tests in K-12 schools. However, if
PCR tests are chosen instead of rapid antigen tests, the results may differ significantly due to the lower
false negative rate and longer time to obtain results for PCR tests. If we consider both rapid antigen and
PCR tests, the objective may need to change from total number of tests to total cost, as PCR tests are
more expensive. Lastly, our study successfully demonstrated the application of NSGA-II, we believe future
studies can be conducted by applying different algorithms to the optimization problem and comparing the
optimal results and computational efficiency.
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A APPENDIX

Table 4: Simulation parameters. Assumed, unless otherwise indicated.

PARAMETER ESTIMATES and REFERENCES
School size 500
Day-1 exposed 1
Semester length 107 days
Incoming protection level 30% for K-5 students, 50% for teachers, U.S. Department of Health

& Human Services (2022) and calibration
Proportion of asymptomatic 0.4, Ma et al. (2021)
Discount rate of asymptomatic
transmission

0.55 Li et al. (2020)

Pre-symptomatic period 2 days, CDC (2022a)
Latent period 1 day, Grant et al. (2022) and Brandal et al. (2021)
Isolation/Recover time 5 days, CDC (2022b)
Isolation compliance rate 100%
Reinfection rate of Omicron 13% , Özüdoğru et al. (2022)
Reinfection period 100 days, Nordström et al. (2022) and calibration
Contact reduction level 0%
Self-quarantine 20%
New “exposed” from community ∼DU [3,4]/week (week = [1,4]) ∼DU [1,2]/week (week = [5,16])
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