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ABSTRACT

Resource planning during pandemics presents many challenges and equitable decisions about resource
allocation must be made. There is no standard definition of equity. Robust mathematical formulations
can require a lot of data. In a novel pandemic there is limited historical information available to inform
decisions. Decision makers can look to define equity through population proportions (pro-rata). This
notion of equity is readily implementable. We present a practical framework for an equitable allocation of
scarce resources using population proportions, disease demographics, and resource utilization. We assess
our framework using a stochastic simulation model, calibrated to COVID-19 case data, in a case study for
convalescent plasma distribution in the context of the clinical trial CONCOR-1. We show that pro-rata
resource allocation can be inequitable and that decision makers can consider readily available information,
such as resource utilization and case data, to inform equity and proactively manage scarce resources during
a pandemic.

1 INTRODUCTION

Equity is a notion of fairness or justice, which has no standard definition. Resource planning can be
difficult and resource planning during pandemics present unique challenges since resources are often
scarce. Equitable decisions about the allocation of resources must be made. Allocating resources to obtain
the maximum utility (benefit) is utilitarianism (Bertsimas et al. 2011). Horizontal equity (Epstein et al.
2007) is the notion that groups in the same circumstances should have similar access to resources. Vertical
equity (Breugem and Van Wassenhove 2022) is a notion that groups in different circumstances should have
different access to resources. Proportional equity (Bertsimas et al. 2011) involves distributing resources to
a group in proportion to a claim about each group member’s worth. Max-min (Min-max) equity (Bertsimas
et al. 2011) will find an allocation of resources to a group such that trying to increase (decrease) the utility
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of any group member results in a decrease (increase) in the utility among group members with an equal
or lesser (greater) utility.

In a novel pandemic there is limited historical information available to inform decisions. Decision
makers can look to population and disease demographics to inform an equitable allocation of healthcare
resources. In this paper, we present a practical and readily implementable framework to equitably distribute
scarce resources based on population proportions, disease demographics, and resource utilization. These
strategies subsume aspects of proportional and vertical equity. We assess our framework using a simulation
model in a case study for COVID-19 convalescent plasma (CCP) distribution. This paper is organized as
follows. Section 2 and Section 3 discuss relevant literature and CONCOR-1, respectively. In Section 4, we
present our practical framework for an equitable allocation of resources during a pandemic. We present
our model and results in Section 5. We end with a discussion.

2 RELEVANT LITERATURE

There are many factors that go into decision making for the allocation of healthcare resources (Guindo et al.
2012; Lane et al. 2017). In this section we discuss some modelling methodologies oriented towards an
equitable distribution of resources. Cost-utility analysis (CUA) (Brandeau et al. 2003), sometimes called
cost-effectiveness analysis, has been used to allocate a fixed budget to a set of healthcare interventions
that maximizes total utility (sum of health benefits for patients). The optimal solution to this problem is
an allocation of funding such that no greater total health benefits can be obtained for the given budget
constraint. This is utilitarianism, which has its biases. There is no standard method to determine the utility
of each intervention. Assuming a linear and/or deterministic relationship between cost and equity may not
always be appropriate. Epstein et al. (2007) incorporate equity concerns, including horizontal equity, as
constraints into a CUA formulation and find that imposing their notions of equity results in an optimal
resource allocation with utility less than the utility of an optimal allocation from their formulation without
equity constraints. Breugem and Van Wassenhove (2022) derive an analytical upper bound for the loss of
utility under vertical equity considerations posed as constraints in their mathematical formulation.

Plans-Rubió (2012) studied two priority-setting frameworks for allocating resources to two healthcare
interventions based on cost-utility and social-welfare objectives. Argyris et al. (2022) achieve an equitable
distribution of resources by maximizing resource allocation efficiency subject to welfare-based dominance
constraints. Mathematical models have been used to study equitable resource allocation decisions for HIV
prevention activities (Cleary et al. 2010; Earnshaw et al. 2007) and kidneys (Bertsimas et al. 2013; Yuan
et al. 1994; Zenios et al. 2000). Bertsimas et al. (2011) compare the relative merit of proportional and
max-min equity. The aforementioned models and frameworks may not be readily implementable during a
pandemic since they may require data that is not available during a public health emergency, such as the
real-time supply and demand for a given resource.

Simulation models (Abdel-Hadi and Clancy 2014; Cao and Huang 2012) have been used to evaluate
resource allocation strategies, which is appropriate given the complexity of incorporating equity into a
mathematical formulation. Performance measures can vary depending on the underlying notion of equity.
Common performance measures for simulation models are costs, utility, waiting times, and quantity of
resources allocated. However, it is unclear on how to best use simulation results to inform real-world
decision making (Brandeau et al. 2009).

Wu et al. (2007) use a deterministic model to evaluate pre-pandemic influenza vaccine allocation
policies, and show that resource allocation based solely on population proportions (pro-rata) may not be
the most efficient or equitable. Pro-rata resource allocation is appealing since it is practical. There is
potential to optimize pro-rata allocations in an easily implementable manner. Ethical considerations for
resource allocation during the COVID-19 pandemic have been studied (Day et al. 2020; Boylan 2022;
Yuk-Chiu Yip 2021); many of these publications do not use any data-driven modelling methodologies to
support their notions of equity. Authors have studied the equitable allocation of scarce resources, such
as vaccines (Breugem and Van Wassenhove 2022; Enayati and Özaltın 2020) and ventilators (Yin et al.
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2023). Kenan and Diabat (2022) study the supply chain of blood products in the wake of disasters, such as
COVID-19, using a stochastic two-stage programming model. They incorporate equity into their modeling
by considering objectives for minimizing the maximum unmet demand and minimizing the sum of the
total and maximum unmet demand. Li et al. (2022) use supply and demand forecasts in a min-max model
to allocate resources. The model is validated through a convalescent plasma distribution case study in the
context of the randomized control trial CONCOR-1 in Ontario, Canada. In the aforementioned model,
sparse supply and demand data can affect the accuracy of the forecasts, which can result in sub-optimal
allocations for trial sites that use little plasma. Kostandova et al. (2023) use a compartmental model to test
potential convalescent plasma allocation strategies at reducing infections and mortality. They comment on
the relative merit of each strategy with respect to the metric of cost to health benefit.

3 REFLECTING ON CONCOR-1

There is no immediate treatment for a novel pathogen. Historically, the plasma that contains an immune
response from individuals who have recovered from an illness, called convalescent plasma (CP), can be
given to an infected individual to help fight off the illness. This process is called CP therapy (Ripoll et al.
2021). CONCOR-1 (Bégin et al. 2021) was a randomized control trial to determine the efficacy of treating
acute hospitalized patients with a SARS-CoV-2 infection with convalescent plasma therapy compared to
the standard level of care in reducing risk of intubation or death. The trial ended early due to futility.
CONCOR-1 was a unique clinical trial, in that the trial had expedited Health Canada approvals and was an
immediate response measure to provide individuals infected with the SARS-CoV-2 virus with a potentially
life-saving treatment when no other treatment was available.

The BC CONCOR-1 Implementation Study (Johns et al. 2022) reflects on CONCOR-1 as a case study
to inform future therapeutic trials and pandemic planning by interviewing key CONCOR-1 stakeholders
and performing qualitative analysis of the interview transcripts to identify key themes (lessons identified),
process mapping the rollout of CONCOR-1 in BC using and unified modelling language activity diagram,
and attempting to refine a plasma allocation model (Li et al. 2022) validated on Ontario trial data to the
jurisdiction of BC. Trial data was very sparse in BC; therefore, the aforementioned model did not work
well for BC CONCOR-1 data. Compared to other provinces BC has many hard-to-reach hospitals due
to their rurality, remoteness, or other geographical constraints. We identified the need for practical and
readily implementable resource allocation strategies.

4 A PRACTICAL FRAMEWORK FOR EQUITABLE SCARCE RESOURCE ALLOCATION

Resource allocation in healthcare can be hierarchical from the top down: level 1 involves allocating resources
to different health authorities, level 2 allocates resources within the health authority, and level 3 is allocating
resources to patients. We focus on equitably distributing resources to level 1. In this section, we define a
practical framework that results in an equitable fixed interval allocation of resources during a pandemic.

Pro-rata resource allocation is appealing since this notion of equity is readily implementable. Let
S be the supply of a resource, K be the number of distinct regions in demand of said resource, and
P = (P1,P2, ...,PK) be a vector of the respective population sizes. Let P = P/∑

K
i=1 Pi, then S ·P can be used

to allocate resources, with some rounding. However, pro-rata resource allocation may not be optimal. We
can adjust pro-rata resource allocations based upon metrics of equity, as shown in Figure 1. Adjustments
are a re-evaluation of the current resource allocation policy in effect to dynamically allocate resources
for equity. We consider the metrics of utilization (unmet demand) and cases counts; decision makers can
readily turn to these metrics to inform equity in the context of scarce resources in a pandemic. We discuss
the process for adjustments later. In the next section, we test our practical framework in a case study for
CCP distribution in the context of BC CONCOR-1. Our framework can be applied to most resources.
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Figure 1: A practical framework for scarce resource allocation during a pandemic on a fixed interval. The
blue and red boxes indicate the supplier and demand sites, respectively. The dotted arrow indicates that
the activity update metrics will influence the adjustment of the allocation in the next shipment. Stop refers
to when there is no more of resource to be allocated or when a resource is no longer needed, e.g., CCP is
no longer needed at CONCOR-1 trial sites when the trial has ended.

5 CASE STUDY FOR CONVALESCENT PLASMA DISTRIBUTION

Blood is a crucial life-saving product in most healthcare systems that is needed in both daily hospital
procedures and life-threatening emergencies. There are four blood groups: A, B, AB, and O. Blood
products include: red blood cells, platelets, plasma, and plasma derivatives. Hospitals must maintain
an adequate supply of blood products at all times. Blood products have stochastic supply and demand,
compatibility constraints, and a finite shelf life; therefore, finding an optimal inventory policy for these
scarce resources is difficult (Beliën and Forcé 2012). Plasma can be frozen and stored for up to one year.
Typically, thawed plasma must be used within 24 hours to five days depending on the product and thawed
plasma cannot be refrozen. Temperature controlled shipping containers are costly. A blood product can
only be given to a blood group compatible patient. Figure 2 shows the compatibility constraints of plasma
and details the CONCOR-1 plasma group segmentation.

Inventory management of blood products is a challenge in BC because of the large area of land and
varied geography. The five regional BC health authorities are: Fraser, Interior, Northern, Vancouver Coastal,
and Vancouver Island Health who approximately serve 38, 16, 5, 24, 17 percent of BC’s total population,
respectively (BC STATS 2020). Compared to Ontario, the sites in BC implementing the CONCOR-1 trial
did not randomize many patients. Not all health authorities in BC participated. We consider the scenario
where all health authorities participated in CONCOR-1. We investigate the allocation of CCP in the context
of BC CONCOR-1 using our practical framework to ensure the right plasma gets to the right patient in an
equitable manner.

Canadian Blood Services (CBS) is the suppler of blood products to all provinces in Canada (except
Quebec). The CBS supply is centralized in each province, there is usually only one CBS distribution
site that allocates blood products to a province’s blood banks. BC CBS Distributions is located within

985



Dhahan, Rutherford, Shih, Li, and Down

Vancouver Coastal Health. Some health authority blood banks can be difficult to stock due to geographical
constraints with respect to CBS and can experience delays in shipments due to poor weather. Figure 3
shows the flow of CCP during the CONCOR-1 trial. CBS supplies frozen CCP units to hospital hub sites.
Each hub site i supplies its spoke hospital sites 1 . . . ji with CCP. Spoke sites can contact their hub site for
CCP as needed. At each trial site, acute hospitalized patients with COVID-19 are contacted to take part
in the trial. If recruited, a patient is randomized to be infused with CCP or receive the standard level of
care in a two-to-one ratio, respectively.

Figure 2: A directed graph of plasma compatibility constraints. A blood group (vertex) can be infused
(given) to a patient with the blood group it is adjacent to. To address rarity of group B and AB plasma the
BC CONCOR-1 trial considered two plasma groups (dotted line represents the division into groups B-AB
and A-O). Group AB plasma can be given to group AB or B, group B can be given to group B, group A
can be given to group A or O, and group O can be given to group O patients.

Figure 3: Hub and spoke network for CCP distribution.

5.1 Model

In this section, we present a stochastic simulation model for our practical framework in the context of CCP
distribution in BC CONCOR-1. The BC Centre for Disease Control (BC CDC), a program of the Provincial
Health Services Authority, provides cases counts segmented by day for confirmed positive COVID-19
infections. We use the online BC CDC case count data (BC Centre for Disease Control 2023) for the
CONCOR-1 trial period (August 26, 2020 - January 20, 2021) to calibrate supply and demand of CCP
in our model. Figure 4 outlines our methods. We use our model to asses our practical framework for an
equitable distribution of resources. Figure 5 provides the flow of activities in our CONCOR-1 simulation.
Each week CBS allocates CCP to trials sites using our framework. Trial sites randomize patients to be
infused with CPP and update their metrics at the end of the week. This process repeats until the end of
our 22 week trial period. We assume the following:
Assumption 1 One hub site per health authority.
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Assumption 2 CBS ships plasma once a week to each hub site.
Assumption 3 Hub sites do not transfer frozen plasma outside their health authority.
Assumption 4 Unmet demand from week t−1 is not carried over to week t.

Figure 4: Methods for evaluation of our practical resource allocation framework. The input allocation
strategies refers to our processes for adjusting shipments that will be discussed in Section 5.3. Figure 5
outlines our CONCOR-1 simulation.

Figure 5: A unified modelling language activity diagram of the events in our CONCOR-1 simulation model.
The red arrow flow into the input pin indicates that the activity update metrics will influence the activity
adjust shipment.

Assumption 1 is reasonable given the structure of the health authorities and how they manage resources.
Moreover, we can view a hub site and all of its spoke sites as a single entity. Assumption 2 is reasonable as
CCP is scarce resource during a pandemic. Assumption 3 is generally true in practice since most hospitals
are not equipped with proper shipping containers for frozen blood products. Assumption 4 is reasonable
since we want to test the merit of our framework on providing an equitable allocation of CCP by quantifying
its impact on unmet demand, which we define to be the number trial patients that were randomized but
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not infused with CCP due to inventory constraints. We note that in the actual CONCOR-1 trial emergency
CCP orders were made and a patient was not randomized until a compatible unit of CCP was secured for
their infusion (Li et al. 2022).

5.2 Model Calibration

Our model parameters, as outlined below, were calibrated using Ontario CONCOR-1 data. We do not
state all the exact parameters used since the product of the calibrated parameters is essentially scaling our
weekly demand so that the total CCP demand and supply over the trial period are roughly equal, i.e., CCP
units are sufficiently scarce week to week.

The supply of CCP is calibrated using the confirmed COVID cases in BC during the trial period
multiplied by a donation probability and a probability that their plasma contains a sufficient level of
neutralizing antibodies for COVID-19. This gives us the total amount of CCP available. We divide this by
the number of trial weeks, which results in the number of CPP units to allocate each week. Each week,
Bernoulli trials (Binomial) are used to determine the number A-O (p = 0.81) and B-AB (1− p) CCP units.

The arrivals in our model are individuals who are confirmed to have COVID-19, see Figure 6. The
arrivals have a hospitalization probability and a hospitalization delay of 5-12 days according to uniform
distribution. The arrivals have a recruitment probability and randomization probability, followed by a
Bernoulli trial to determine a blood group (A-O (p = 0.81) and B-AB (1− p)).
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Figure 6: Arrival rates of confirmed positive COVID-19 cases for a health authority with high case counts
and a health authority with low case counts during the CONCOR-1 trial. Arrival rates are calibrated to a
non-homogeneous Poisson process by day of week using online BC CDC case counts for the CONCOR-1
trial period; in increasing order of total reported cases, the health authorities are: Fraser, Vancouver Coastal,
Interior, Northern, and Vancouver Island Heath.

5.3 Adjusting Shipments

One practical way to adjust weekly CCP shipments for equity is using resource utilization. In our case study,
utilization occurs if trial patient is infused with CCP. We view utilization from the perspective of unmet
demand, the number of trial patients randomized but not infused with CCP due to inventory constraints.
Let the proportion of unmet demand (PUD) be the fraction of total unmet demand over total demand. For
a given week t and blood group, we can adjust the fixed interval pro-rata allocation from CBS to hub
sites by pulling CCP units to be allocated to sites that have a "low" PUD and threshold level of inventory
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onhand; then, distribute (via pro-rata) the pulled CCP units to sites that have "high" PUD. We set the PUD
threshold value to be the mean PUD across health authorities in week t, i.e., for each health authority hub,
compute the PUD over week 1 to week t−1 then take the average. The inventory threshold for a week t
for a hub site is the average demand from week 1 to t−1. This procedure is given in Algorithm AdjShip.

Algorithm AdjShip
Input: Blood group pro-rata allocation for week t and hub site metrics for for weeks 1,2, . . . , t−1
Output: Blood group allocation

Compute PUD and inventory thresholds for week t
I ← /0
D← /0
for each hub site h do

if PUD at hub site h≤ PUD threshold and inventory at hub site h≥ inventory threshold then
D←D+h

end if
if PUD at hub site h > PUD threshold then

I ← I+h
end if

end for
if D and I are nonempty then

Pull resources to be allocated to hub sites indexed by D and distribute (via pro-rata) to hub sites indexed by I
return Adjusted allocation

else
return Pro-rata allocation

end if

We can also distribute the pulled resources according to the proportion of COVID-19 case counts (CC)
within the last two weeks, let us call this procedure Algorithm AdjShipCC. There are other ways to adjust
shipments for equity. Our notions of equity are based on how to distribute CCP to where it is most needed
subject to the scarcity of resources and data limitations during a pandemic, while balancing availability for
patients at each hub site.

5.4 Experimental Analysis and Results

The goal of our experiments is to use simulation to compare the relative merit of allocating CCP in the
context of BC CONCOR-1 using (1) pro-rata allocation with no adjustments (NoAdj), (2) Algorithm
AdjShip, and (3) Algorithm AdjShipCC within our practical framework. Our simulation model was coded
in R. Each scenario 1-3 ran in under an thirty minutes for 500 simulation replications on standard laptop.
We evaluate our resource allocation strategies using the performance measures: demand (D), unmet demand
(UD), PUD, and ratio of total received inventory to total utilization (TI:TU). We average the performance
measures of the simulation replications; in Table 1, the prefix E stands for expected. Unless otherwise
stated, the performance measures are computed over both blood groups.

Allocating resources pro-rata (NoAdj), as expected favours hub sites that can potentially serve larger
patient populations, which has the unintended consequence of under stocking high-utilization hub sites
and overstocking low-utilization sites, as shown by the EPUD and ETI:ETU ratios in Table 1. Algorithm
AdjShip decreases the total EUD compared to NoAdj. Algorithm AdjShipCC has EUD and ETI:ETU
ratios similar to Algorithm AdjShip, with some differences in EPUD. This is due to Algorithm AdjShipCC
allocating more CCP to health authorities that have more confirmed COVID-19 cases in the last two weeks
of an allocating period; hence, are expected to have greater need of CCP.

The ETI:ETU ratio for low-utlization sites will be higher, as these sites do not use much but still have
some CCP onhand in case the need arises. For the rarer plasma group B-AB, the ETI:ETU is also higher.
We observe a more equitable (our notions of equity) ETI:ETU ratio when comparing algorithms AdjShip
and AdjShipCC to NoAdj. Figure 7 is a bar plot of the EPUD. This is a visualisation of equity under the
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different allocation strategies. We ran our simulations for sparse and extremely sparse supply of CCP. As
the supply of a resource becomes scarcer, the algorithms AdjShip and AdjShipCC perform similarly and
are more efficient (with respect to decreasing total unmet demand) and equitable (our notions of equity)
than NoAdj.

Table 1: Simulation key performance indicators plus or minus standard error.

Hub Algorithm ED EUD EPUD ETI:ETU ETI:ETU (A-O) ETI:ETU (B-AB)
Fraser

NoAdj

134.88±0.30 28.76±0.33 0.2114±0.0020 1.0180±0.0009 1.0060±0.0006 1.0805±0.0057
Interior 29.33±0.14 4.76±0.11 0.1577±0.0033 1.1065±0.0040 1.0806±0.0043 1.3693±0.0310

Northern 20.35±0.13 2.28±0.08 0.1099±0.0037 1.4225±0.0105 1.4501±0.0119 1.2135±0.0231
Vancouver Coastal 55.65±0.21 4.59±0.17 0.0799±0.0028 1.1808±0.0038 1.0950±0.0043 1.6649±0.0315
Vancouver Island 14.61±0.10 0.06±0.02 0.0040±0.0012 2.2598±0.0192 2.0326±0.0326 3.9129±0.1216

Fraser

AdjShip

135.47±0.30 13.87±0.17 0.1020±0.0012 1.0281±0.0010 1.0203±0.0009 1.0738±0.0051
Interior 29.30±0.13 4.79±0.07 0.1648±0.0027 1.2828± .0.0101 1.1420±0.0083 2.3180±0.0827

Northern 20.49±0.13 4.80±0.10 0.2330±0.0049 1.5121±0.0194 1.3413±0.0192 2.5982±0.1042
Vancouver Coastal 55.56±0.20 7.51±0.10 0.1350±0.0017 1.0912±0.0032 1.0488±0.0024 1.3474±0.0222
Vancouver Island 14.66±0.10 2.17±0.04 0.1477±0.0024 1.6553±0.0236 1.5680±0.0271 2.3333±0.1010

Fraser

AdjShipCC

135.54±0.30 12.17±0.16 0.0896±0.0011 1.0314±0.0010 1.0234±0.0010 1.0779±0.0050
Interior 29.25±0.14 5.06±0.08 0.1734±0.0027 1.2894±0.0105 1.1557±0.0087 2.2129±0.0742

Northern 20.21±0.13 5.84±0.12 0.2866±0.0057 1.5420±0.0202 1.3863±0.0204 2.4496±0.0938
Vancouver Coastal 55.50±0.20 8.10±0.10 0.1454±0.0018 1.0986±0.0036 1.0523±0.0026 1.3952±0.0269
Vancouver Island 14.77±0.11 2.33±0.04 0.1577±0.0028 1.7592±0.0269 1.6447±0.0331 2.5158±0.0942
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Figure 7: A bar plot of expected PUD for each health authority with standard error bars.

6 DISCUSSION

We have shown that pro-rata resource allocation can be inequitable and inefficient. This resonates with
the findings of Wu et al. (2007). In our case study, our practical framework for the allocation of
scarce resources outperforms pro-rata resource allocation with respect to decreasing unmet demand, while
considering equity over health authorities. Any mathematical formula that solely aims to decrease unmet
demand will naturally bias health authorities who have larger patient populations and case counts, e.g.,
put most of a scarce resource in Fraser Health and Vancouver Coastal Health, which can be inequitable to
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the more remote/rural health authorities. A similar bias would result if the cost of managing inventory is
incorporated into a mathematical formulation.

In our modelling we made some assumptions that can impact equity. Assuming a fixed interval resource
allocation will affect equity since emergency orders for blood products can be made in the real world.
It would not significantly impact our modelling if we incorporated emergency orders. If resources are
sufficiently scarce then emergency orders cannot be filled. We assumed unmet demand is not carried over
to the next period, which is not what happened in CONCOR-1 and can be inequitable to patients who
were randomized near the next fixed-interval shipment. Nonetheless, our modelling still serves as a good
approximation for the merit of our framework for scarce resource allocation.

Recall that our framework takes a tentative pro-rata resource allocation and, if applicable, adjusts the
allocation based on utilization and/or case data. This serves as an approximation for a demand site’s
need for a resource. The underlying notion of equity in our case study can be viewed as a combination
of proportional and vertical equity. This is because our definitions of equity are biased towards demand
and/or case counts, which can be an oversimplification of equity. Biased notions of equity can result
from lack of data collection and data transparency. For example, we do not have real time data for blood
group CCP supply, the actual number of COVID-19 patients in ICU, etc. Due to data limitations, we have
considered a simplified equity definition using other data to make approximations. Notions of equity in
healthcare will come from decision makers and any model used to inform decision making must quantify
said notions of equity. A bulk of the relevant literature we discussed pertains to mathematical models
that focus on min-max equity, proportional equity, incorporating notions of equity through constraints, or
that use simulation to test notions of equity. A broader notion of equity can be difficult to quantify and
incorporate into a mathematical model, while utilizing data pragmatically.

Collaborations between decision makers and modellers will allow for appropriate notions of equity
to be incorporated into mathematical models. Our framework and its dynamic allocation policies are
intuitive/transparent and can be extended to consume actual data. Decision makers can use our framework
to evaluate their quantitative notions of equity to proactively inform scarce resource planning during a
pandemic.
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