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ABSTRACT

The COVID-19 pandemic has emphasized the importance of preparedness and response plans for healthcare
providers and rational responses from society to effectively manage infectious disease outbreaks. Strategic
guidelines should be created to ensure the availability of required resources while considering the rational
response of individuals under different policy scenarios. This study uses a simulation-optimization-game
theory approach to first determine the daily number of infected people in response to social distancing
policies in a game theoretical setup. Second, this daily number of infected people is used in a simulation
to determine an optimal replenishment policy for restocking personal protective equipment (PPE) items.
The model incorporates a combination of mean field games modeling and a simulation model in Simio
to perform optimization tasks. This approach aims to guarantee the availability of required resources by
taking into account the rational response of individuals under different policy scenarios.

1 INTRODUCTION

Many healthcare providers in the USA experienced a shortage of personal protective equipment (PPE)
during the COVID-19 pandemic due to the lack of preparedness and response plans (Dai et al. 2020).
This shortage of PPE can jeopardize the safety of frontline medical staff and impact the quality of care
provided. The level of preparedness to combat unprecedented outbreaks depends on proactive planning,
strategic thinking, and demand forecasts (Petrović 2020). Effective preparedness plans provide operational
and strategic insights and ensure critical resources such as staffing needs, beds, and equipment are available
when needed. Simulation is an essential tool during outbreaks to study infectious diseases, understand
outbreak dynamics, and analyze the impact of interventions (Eriksson et al. 2009).

This study demonstrates the capabilities of simulation modeling to support healthcare providers in
making informed decisions and improving hospital preparedness. To account for the rational decision-
making process of individuals during an outbreak, the simulation is combined with mean field game
modeling, introducing a game-theoretical point of view. In other words, individuals control their contact
rate (i.e., socialization levels) to minimize their own individual costs (such as costs from not following
the policies set by the government closely or the cost of being infected) while taking into account other
individuals’ decisions. Accordingly, the daily number of infected people will be endogenously determined
instead of exogenously inputted by finding a Nash equilibrium in the population. It is known that finding a
Nash equilibrium becomes a more complex task when the number of players are increased because of the
increasing number of interactions. Therefore, in order to find a tractable equilibrium in games with a large
number of players, the mean field games methodology is adopted (Lasry and Lions 2006a; Lasry and Lions
2006b; Huang et al. 2006). In mean field games, the players are assumed to be identical and have symmetric
interactions. In this way, the methodology focuses on a representative player and her interactions with the
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distribution of the population. In this way, the equilibrium can be characterized by forward and backward
(partial or stochastic) differential equations. Because of the tractability for finding the Nash equilibrium,
mean field games approach was implemented in different applications, such as modeling of energy markets
in (Alasseur et al. 2020; Aid et al. 2021; Carmona et al. 2022) and modeling of financial systemic risk
in (Carmona et al. 2015; Élie et al. 2020). Later extensions to introduce heterogeneities among players
are introduced through multipopulation mean field games, see e.g. (Bensoussan et al. 2018) and graphon
games, see e.g. (Parise and Ozdaglar 2019; Aurell et al. 2022).

This paper aims to highlight the importance of accurate modeling for disease outbreak preparedness.
Having an accurate model to predict infected cases, as well as an accurate model to simulate hospital
operations, is crucial to have a well-suited decision-making tool for healthcare managers. Therefore, this
paper’s main contributions are:

• Introducing a game theoretical model that can predict the number of infected patients during a
pandemic and integrating them with a simulation model that can properly model hospital operations.

• Implementing this hybrid model to demonstrate its practicality.
• Analyzing healthcare resource requirements in different pandemic situations.

The approach proposed in this paper comprises of two interconnected modules. The first module
employs a mean field model to compute infectious disease spread and generate expected daily patient
numbers by building a game theoretical model in order to take into account the rational decision making
of individuals. The second module simulates hospital operations by estimating resource utilization and
PPE consumption rates under different circumstances. To achieve this, the study employs the mean field
games methodology and uses Simio, a well-known and powerful simulation software with optimization
capabilities. The generated number of daily patients by using our mean field model in Module 1 is used
as the input of the simulation model in Module 2.

The paper is organized as follows: Section 2 presents a summary of related works, followed by
a description of the mean field games model in Section 3, which is used to simulate daily number of
infected people to be inputted in the Simio model. This section also provides simulation modeling details
and healthcare center operations. Experimental analyses are conducted in Section 4 to demonstrate the
applicability of simulation modeling for outbreak preparedness. Finally, the paper concludes in Section 5,
followed by some future extension insights.

2 LITERATURE REVIEW

Simulation has proven to be a useful tool for hospital preparedness plans during outbreaks such as poliovirus,
influenza, and Ebola. It has been used for decision-making problems related to pandemic preparedness,
including resource allocations, disease spread modeling, and vaccination plans. Simulation is also useful
for analyzing the supply chain of healthcare systems during epidemics. Studies have used simulation and
optimization software to predict supply chain performance, address sustainability concerns, and mitigate
drug shortage risks. Currie et al. (2020), Ivanov (2020), Goodarzian et al. (2021), Tirkolaee et al.
(2022) offer further insights into the topic. This section provides an overview of existing works that
address healthcare preparedness for combating pandemics from two perspectives: (i) applied discrete event
simulation models and (ii) Mean Field models.

2.1 Healthcare Preparedness using Discrete Event Simulation

Several studies have addressed the importance of adequate staffing in healthcare preparedness during
pandemics. Beeler et al. (2016) used discrete-event simulation (DES) to determine staffing levels at mass
immunization clinics (MICs). Beeler et al. (2011) developed a DES model to estimate the expected number
of infections in healthcare facilities. Lu et al. (2020) used Arena to evaluate bed utilization and supply
needs during a pandemic in individual hospitals. The Winter Simulation Conference in the past two years
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saw many researchers contribute to simulation modeling to address COVID-19 related problems. Currie
et al. (2020) developed an optimization-based, data-driven hospital load balancing model, while Schultz
et al. (2021) simulated an airport environment to evaluate the impact of COVID-19 restrictions. Neuner
et al. (2021) used simulation to analyze patient treatment in an Italian hospital’s ED, while Maghoulan
et al. (2022) developed a simulation-optimization approach to determine an optimal replenishment policy
for PPE and proactive demand planning for critical resources.

2.2 Pandemic Preparedness using Mean Field Models

Recently, mean field models have been commonly used to find approximate equilibrium and social optimum
in the applications with large number of interacting agents. In order to find the equilibrium behavior of
the agents, Cho (2020), Charpentier et al. (2020) uses mean field games, Tembine (2020) uses mean
field type games and Lee et al. (2020) uses mean field control. In order to find the optimal incentives to
mitigate the epidemics Aurell et al. (2022) analyzes Stackelberg mean field game equilibrium between a
regulator (i.e., principal) who sets social distancing policies and a population of agents responding with
their Nash equilibrium socialization levels. Hubert et al. (2020) focuses on a Stackelberg equilibrium
between a principal that controls the testing accuracy and a cooperative population of agents. Related to
epidemiology applications, efficiency of vaccination has been studied by Doncel et al. (2022), Gaujal et al.
(2021), Laguzet and Turinici (2015). In order to model the heterogeneity among the agents (either through
asymmetricity in the interactions and/or through heterogeneity in agents model parameters), graphon games
have been used to model the epidemics by Aurell et al. (2022).

2.3 Paper Novelty

This study aims to leverage simulation modeling to assist with disease outbreak preparedness and response
by incorporating the game theoretical decision-making process in the simulation of daily infected numbers
of people. The applied simulation model will serve as a decision support tool to estimate the capacities
and quantities required for care delivery to the infected population.

3 METHODOLOGY

Simulation is an excellent tool for testing various scenarios and drawing insights based on different outbreak
circumstances. Simio, a powerful data-driven simulation tool, allows users to apply user-defined parameters
and input data tables (Dehghanimohammadabadi and Kabadayi 2020). The aim of this study is to model
demand uncertainty and assess the capacity of critical hospital resources to cope with unprecedented
conditions using a hybrid simulation-optimization approach. The model consists of two interconnected
modules. The first module uses mean field models to generate expected daily patient numbers and applies a
game theoretical approach to capture the rational decision-making process of individuals who try to attain
their best outcomes. The second module simulates hospital operations, estimating resource utilization and
PPE consumption rates under different circumstances. This integrated approach enables the study to make
more informed decisions regarding hospital preparedness for future outbreaks (Figure 1).

Mean Field model Simulation model
- PPE items consumption
- Bed utilization
- Ventilator utilization

Output

Figure 1: Hybrid integration of Module 1: Mean Field model and Module 2: DES simulation model.
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3.1 Module 1: Mean Field Models for Disease Spread.

In order to add the game theoretical decision making process of the agents in the simulation process, the
generation of daily patient numbers will be made through a graphon game model. In general, a graphon
is defined as a symmetric measurable function such that w : [0,1]× [0,1] 7→ [0,1] where w(x,y) denotes
the strength between agent x and agent y. In order to incorporate heterogeneities of the individuals (such
as different age groups), we move beyond the naive mean field game setup and use a graphon model
where the graphon is chosen to be a piecewise constant graphon similar to the setup given in (Aurell
et al. 2022). Choosing a piecewise constant graphon to model the interactions creates a similar structure
to multi-population mean field games. We want to stress that each individual has their own objectives
and they give their best responses by taking into account other individuals behavior and different policies
(such as no social distancing restrictions, quarantining infected people or full lockdown). Individuals are
assumed to be rational players which means that they do not have to follow the policies perfectly, instead
individuals decide on their behavior by giving their best responses to other’s behavior and the policies
and an equilibrium in the population is found. In this way, we calculate daily number of infected people
when individuals react to different types of policies. This is different than just simulating SIS dynamics
or finding the optimal behavior of only one individual under different policies, since it incorporates the
decision making of individuals who interact with each other to find the Nash equilibrium in the population.

We divide the population to 9 age groups (0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+)
where mi for i ∈ {1, . . . ,9} denotes the weight of the group i in the population such that ∑

9
i=1 mi = 1. As

usual in the graphon games setup, we focus on agent x where x ∈ [0,1] denotes the index of the agent and
agent x will be placed in group k = 1 if x ∈ [0,m1), etc. We will assume that the individuals in the same
group are indistinguishable; however, individuals in different age groups can have different hospitalization
rates and contagion rates (β ). They also have differences between group and within group connection
rates: The connection between agent x in group i and agent y in group k will be given by w(x,y) = wik.
The individuals control their contact rate (i.e., socialization level) over the time interval t ∈ [0,T ] that is
denoted by (αt)t∈[0,T ] where αt ∈ [0,1]. When αt is lower it means they decrease their contact rates. The
individual’s state is denoted with e ∈ E and they are either in susceptible (S) or infected (I) state, i.e.,
E = {S, I}. They jump from state S to I after an exponentially distributed time with a rate that depends on
the exogenous contagion rate β that depends on the disease specifications, the individuals own contact rate
(i.e., socialization level) and the aggregate interactions with the other agents Zx

t . The aggregate interactions
of agent x in group i with the other agents are given as

Zx
t =

9

∑
k=1

wikᾱ
k
t (I)pk

t (I)mk

where pk
t (I) denotes the proportion of infected people in group k at time t, wik gives the connection strength

between group i and group k and ᾱk
t (I) denotes the average contact rate of the infected people in group

k at time t. Intuitively, this gives a the weighted (according to the connection strength) average of the
contact rates of the infected individuals in the population. In Figure 2, we can see the jump rates of agent
x between states S and I where β x > 0 and κx > 0 are contagion and recovery rates respectively that are
exogenous. In our simulations, we take β k = [0.3,0.35,0.35,0.3,0.3,0.3,0.2,0.2,0.2], ∀k ∈ {1, . . . ,9} to
have differences among different age groups where β x = β k when agent x is in group k. Furthermore, we
take κx = 0, ∀x ∈ [0,1] since we want to simulate the hospitalization and recovery processes in Module 2.
We can see that the jump rate of agent x from state S to I at time t is given as β xαx

t Zx
t .

Each individual aims to minimize the following cost function over the time interval T > 0 where in
the simulations T is taken to be 100:

E
[∫ T

0
1{et=S}

(cS

2
(λ S

t −αt)
2
)
+1{et=I}

(
1
2
(λ I

t −αt)
2 + cI

)
dt
]
.
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Figure 2: Diagram of SIS model for individual x

Here, λ S
t and λ I

t are the social distancing policies set by the regulator (i.e., government) at time t for
susceptible and infected people, respectively. The policies can be set differently for different age groups;
however, in our simulation, we assume that government sets population level policies. Therefore λ S

t and λ I
t

do not depend on agent group k. From the cost function, it can be seen that both susceptible and infected
people want to be close to the social distancing levels prescribed by the regulator and the infected people
incur an extra cost cI > 0. The parameter cS > 0 is exogenous and should be chosen to show the importance
given to the social contact by the susceptible people depending on the properties of the population modeled.
In our experiments we took cS = 5 and cI = 1 for all age groups. However, they could be chosen differently
for each age group, too.

In order to be able to write the forward backward differential equations, we introduce the value function:

ux
t (e) = min

αs|s∈[t,T ]
E
[∫ T

t
1{es=S}

(cS

2
(λ S

s −αs)
2
)
+1{es=I}

(
1
2
(λ I

s −αs)
2 + cI

)
ds
∣∣∣et = e

]
.

Intuitively the value function is the minimum cost incurred between time t and T when the agent x starts
from state e at time t. By following the ideas in Aurell et al. (2022), we find the optimal contact rate of
agent x in states S and I by minimizing the Hamiltonians:

Hx(t,S,α,Z,u) =
cS

2
(λ S

t −α)2 +β
x
αZ

(
u(I)−u(S)

)
,

Hx(t, I,α,Z,u) =
1
2
(λ I

t −αt)
2 + cI +κ

(
u(S)−u(I)

)
.

Therefore, the optimal contact rate of agent x at states S and I are given as:

α̂
x
t (S) =

β xZx
t (u

x
t (S)−ux

t (I))+ cSλ S
t

cS
, α̂

x
t (I) = λ

I
t .

Since we assume the underlying graphon is piecewise constant, all agents in group k will have the same
optimal contact rates which can be denoted by α̂k

t (S) and α̂k
t (I). Therefore, we also have ᾱk

t (I) = α̂k
t (I).

Then, the Nash equilibrium in the population can be characterized by the following forward backward
ordinary differential equation system (FBODE):

ṗk
t (S) =−pk

t (S)β
kZk

t α̂
k
t (S)+ pk

t (I)κ
k

ṗk
t (I) = pk

t (S)β
kZk

t α̂
k
t (S)− pk

t (I)κ
k

u̇k
t (S) =−

(cS

2
(λ S

t − α̂
k
t (S))

2 +β
k
α̂

k
t (S)Z

k
t
(
uk

t (I)−uk
t (S)

))
u̇k

t (I) =−
(

cI +κ
k(uk

t (S)−uk
t (I)

))
uk

T (e) = 0, pk
0(e) = pk

0(e), e ∈ {S, I},

Zk
t =

9

∑
i=1

wkiα̂
i
t (I)pi

t(I)mi, t ∈ [0,T ], k ∈ {1, . . . ,9},

where pk
t (e) denotes the proportion of individuals with state e in group k at time t and uk

t (e) denotes the
value function of an individual with state e in group k at time t. For the detailed derivation of this system,
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please refer to Aurell et al. (2022). Realize that the forward and backward equations in the FBODE are
coupled. In order to solve them, we time discretize the FBODE and simulate the forward and backward
components iteratively until convergence. In the simulation, the initial proportion of the infected individuals
(pk

0(I)) is taken as 3% for age groups between 0 and 19, 2% for the age groups between 20-59, and 1% for
the age groups above 60+. Since κk = 0, ∀k ∈ {1, . . . ,9} in our simulations pk

t (I) will give the cumulative
infections in group k until time t. After finding the cumulative infected proportion at time t in each group
k, (pk

t (I)), we find the daily infected proportions by calculating pk
t (I)− pk

t−∆t(I). Finally, we find the
daily number of infected in each age group k by multiplying this proportion with the number of people
in each group and input this number in our Simio simulations. We focus on 3 different scenarios in our
daily infected number of people simulations: i) No social distancing restrictions (i.e., λ S

t = 1,λ I
t = 1 for

all t ∈ [0,T ]), ii) Quarantining infected people (i.e., λ S
t = 1,λ I

t = 0.5 for all t ∈ [0,T ]), iii) Lockdown for
everyone (i.e., λ S

t = 0.5,λ I
t = 0.5 for all t ∈ [0,T ]).

3.2 Module 2: Hospital Operations and Resource Allocation

The model considers hospitalized cases as a Patient Entity, and they undergo the steps outlined in Figure
3. Firstly, patients arrive at the hospital and are assigned to an available bed if possible. Next, it is checked
whether a ventilator is required, and the number of PPEs used by the patient is calculated. Finally, the
patient is discharged based on the assigned length of stay. The patient arrival rate is directly determined
by the mean field model explained in subsection 3.1.

Patients Arrival Assign a Bed Assign a Ventilator PPE Materials Discharge

Figure 3: Hospital operations and resource allocation process.

3.2.1 Resource Allocation Process

Figure 4 illustrates the implementation details of this process. The process first determines if a hospitalized
patient requires a ventilator based on their age. If a ventilator is necessary and available, the patient will
occupy one unit through the Seize step. The Seize step in Simio refers to the process in which a patient, if a
ventilator is necessary and available, will acquire and occupy a designated unit, specifically a ventilator unit.
Otherwise, the VentDeficientCount variable will be incremented by 1 to account for ventilator unavailability.
If a ventilator is not required, the patient will be delayed for the length of stay without using the ventilator.
The variables defined in these processes provide measures for the number of times a critical resource was
unavailable, including beds, ventilators, and PPE items. The ultimate goal is to ensure that all resources
are available when needed to avoid deficits throughout the simulation run.

3.2.2 PPE Items Replenishment Process.

During pandemics, donning and doffing of personal protective equipment (PPE) is essential (Murray,
Heather and Purdy, Eve 2020) both for staff and patients. The rampant nature of COVID-19 has caused a
shortage of PPE in high-demand areas (Ahmed et al. 2020). Therefore, it is critical for a hospital to have
a robust replenishment policy to ensure PPE items are available for both its patients and staff.

To model the demand/supply trade-off of the PPE items in the simulation environment, a process is
defined based on a (s,S) inventory policy. As depicted in Figure 5, in this policy, an order is placed when
the inventory level drops to the reorder point (s) or lower. This way the inventory can be replenished to
level S (order up to level or upper stock) (Helal et al. 2021). The order will be delivered based on the
defined lead time for each item. Table 1 lists the order lead time and consumption rate of each of the PPE
items in this study. To implement this inventory policy in Simio, the PPE re-order process (Figure 5) is
triggered to Produce the required PPE item after some delay based on its lead time distribution defined
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Figure 4: Hospital operation process in Simio. In this process, the Decide step checks whether the patient
requires a ventilator. If the patient needs a ventilator, the subsequent Decide step verifies its availability.
If a ventilator is available, the patient seizes the unit using the Seize step. The patient then utilizes the
ventilator resource until the Length of Stay (LOS) specified by the Delay step is completed, after which
it is released using the Release step. If the patient does not require a ventilator, they experience a delay
based on their LOS. All patients are discharged and counted as Recovered patients.

in Table 1. The Discrete distribution is specified using the syntax Discrete (α1, X1, α2, X2, . . .), where X
represents discrete values and α is corresponding cumulative probabilities.

t

It

S

s Lead time
Order placed

Order received

Figure 5: Inventory level over time for PPE items with (s,S) replenishment policy model. Here, t represents
Time and It represents Inventory level. When the inventory level falls below the reorder point s, an order
is placed to replenish the inventory up to the maximum level S.

Table 1: PPE supplies.

Items Order Lead time Patient use per day
Masks Triangular(1,1,4) Discrete (0.50, 1, 1.0, 2)
Gloves Uniform(2,4) Discrete (0.75, 2, 1.0, 4)
Gowns Uniform(4,7) 1

3.3 Simulation Model Parameters and Data-table Inputs

The simulation model utilized in this research is a data-driven model, constructed based on multiple
data-table inputs. These tables contain information related to patients’ age groups, hospitalization rates,
population mix, and the probability of requiring a ventilator for different age groups. To construct these
tables, various data sources are utilized, based on a regional hospital in the Boston, MA area. Simio’s
data-table function capabilities are used to import this data, which is listed below:

• Hospitalization Rates by Age Groups: Obtained from the Massachusetts Department of Public
Health (Figure 6-a).
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• Ventilator Needs by Age Groups: Obtained from a study conducted by (Nicholson et al. 2021)
(Figure 6-b).

• Population Mix by Age Groups in the City of Boston: Obtained from available demographic data
(Figure 7).
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Figure 6: Hospitalization needs, (a) hospitalization rate - August 2020 (in percentages) (Mass.gov 2021),
(b) age group-wise percentage of ventilator need (Nicholson et al. 2021).
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Figure 7: Percentage distribution of the population in the city of Boston (worldpopulationreview 2021).

The important simulation model parameters are listed in Table 2. The length of stay for hospitalized
patients in the hospital is determined by a triangular distribution with a minimum of 1 day, a maximum
of approximately 3 weeks (20 days), and a mode of 2 weeks (14 days). Congestion duration refers to the
time it takes for an infection to be diagnosed after the initial infection. This duration follows a uniform
distribution ranging from 1 day to 2 weeks (14 days).

It needs to be noted that these values are subject to change depending on the hospital’s capacity and the
disease’s characteristics. In the next section, an experimental analysis is provided to study how changing
the Contagion Factor and Social Distancing Factor can impact the supply needs of the PPE items. The
other factors are remained the same throughout the study, however, interested readers can extend the scope
of the experiment and analyze the effect of other parameterization combinations.

Table 2: Simulation model parameters.

Model Settings Values Fixed Parameters Values
Ventilator Capacity 50 Hospital Stay Length Triangular(1,7,20)
Beds Capacity 100 Service Area Population 25,000
Reported Cases 50 Contagion Duration Uniform(1,14)

4 EXPERIMENTAL RESULTS, COMPARISON, AND ANALYSIS

To demonstrate the applicability of the proposed hybrid model, three scenarios are considered as follows:
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Figure 8: Area chart showing the number of infections based on three scenarios: 1) fully open, 2) infected
quarantine, and 3) full lockdown segregated by age group.

• Fully Open: In this scenario, there are no restrictions on movement, and individuals are free to
move around without any limitations.

• Quarantine: In this scenario, individuals who are infected or have come into contact with infected
individuals are required to stay in quarantine, while others are free to move around without any
restrictions.

• Full Lockdown: In this scenario, all individuals are required to stay in their homes, and movement
is strictly restricted.

The policy parameters in the mean field model for each scenario are also presented in Table 3. The
experimental analysis is conducted to understand how different pandemic situations and policies will impact
healthcare resource utilization and optimal replenishment policy for PPE items.

Table 3: Experiment settings with three scenarios.

Scenarios
Mean Field Model Parameters
λ S

t λ I
t

Fully Open 1 1
Quarantine 1 0.5

Fully Lockdown 0.5 0.5

The mean field model generated infected patients for each of the above-mentioned scenarios distributed
into different age groups. As shown in Figure 8, more people are infected in Scenario 1, where the
community is fully open and there are no restrictions such as social distancing or wearing masks. The
provided graphs give an overview of how different infected patients will emerge within a 60-day period.
Furthermore, when we compute the value function of the agents under different scenarios, we can see that
at time 0, for susceptible people it gets lower as the restrictions are getting stricter. The reason for this is
that when there are less restrictions it is a higher possibility a susceptible person becomes infected which
is costlier with the extra cost cI; therefore, their expected cost is higher.

Each of these scenarios is simulated in Simio and followed by an optimization process to find the
optimal replenishment policy for parameters such as reorder point s and reorder quantity S for each PPE
item. The experimental results are presented in Table 4, which provides guidance on how hospitals should
set their replenishment policy in different stages. It is evident that there is a higher burden in a fully open
situation, and therefore hospitals need to set higher values for the reorder point and reorder quantity for
masks, gloves, and gowns. Implementing quarantine measures can provide some relief for hospitals and
enable them to fulfill their PPE item requirements at a lower rate and frequency. Finally, in the lockdown
situation, the consumption of PPE items becomes minimal.
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Table 4: Optimal reorder points and order quantities for each PPE item are determined under different
pandemic situations.

Fully Open Quarantine Fully Lockdown
Items s S s S s S

Masks 5,050 17,200 4,940 10,450 2,800 5,300

Gowns 5,000 21,500 4,350 12,200 2,850 4,500

Gloves 5,300 19,975 4,940 14,300 4,250 8,500

The impact of each scenario on resource utilization is illustrated in Figure 9, where boxplots represent the
average utilization of resources obtained from multiple simulation replications. It is evident that ventilators
play a critical role during the fully open phase, while during the lockdown phase, there are available
resources for both ventilators and hospital beds. It should be noted that while every patient requires a bed
for hospitalization, the number of ventilators needed for each patient is determined by the process described
in Figure 4.

Figure 9: Resource utilization for (a) ventilators, (b) hospital beds.

5 CONCLUSION

In summary, this study proposed a novel approach that combined simulation-optimization and game theory
to assess the impact of various pandemic scenarios on healthcare resource utilization and optimize the
replenishment policy for PPE items. By considering three different scenarios, fully open, quarantine, and
fully locked, this study provided insights into the resource utilization and demonstrated the importance
of having effective PPE replenishment policies in place. The simulation results revealed the significance
of the community’s engagement and the level of restriction in managing a pandemic. The optimization
model provided hospitals with guidance on setting up an effective replenishment policy for PPE items under
different scenarios. The proposed approach could significantly contribute to decision-makers’ efforts to
develop well-prepared supply chain strategies for pandemics, ultimately improving the healthcare system’s
overall response to public health emergencies.

This study is one of the early examples that integrates a discrete event simulation and mean field
model, providing potential opportunities for improvement and extensions. Some future works that could
be considered include:
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• Investigating the impact of different vaccination rates and distribution strategies on the proposed
hybrid model’s results.

• Considering the impact of other pandemic-related variables, such as infection rate and mortality
rate, on the healthcare resource utilization and PPE replenishment policy.

• Extending the model to include other healthcare resources, such as medication and medical equipment,
and optimizing their replenishment policies during pandemics.

These future works can further enhance the proposed approach’s applicability and contribute to devel-
oping effective and efficient supply chain strategies for healthcare systems during pandemics.
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