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ABSTRACT

IT/OT driven industrial control systems (ICSs) such as water/power/transportation networks are increasingly
meeting the daily functional needs of civilian society around the globe. This, alongside making societal
businesses more automated, efficient, productive, and profitable. However, often poorly configured IoT
security settings increase the chances of occurrence of (nation-sponsored) stealthy spread-based APT
malware attacks in ICSs that might go undetected over a considerable period of time. The ICS enterprise
management is often keen to get apriori statistical estimates of cyber-loss impact post any cyber-attack event
such that it can plan ahead on its cyber-resilience budget. In this paper, we propose the first mathematical
theory, based upon stochastic processes and concentration inequalities, to (a) statistically quantify apriori
the cyber-loss impact (distribution) on an ICS infrastructure network post an APT cyber-attack event, and
subsequently (b) bound the tail of such a cyber-risk distribution, for arbitrary impact distributions.

1 INTRODUCTION

Cloud and sensor network driven machine-to-machine (M2M) communication is triggering a paradigm
shift in the way various industrial (decision-making) processes are conducted and managed. The aggressive
adoption of this M2M communication for service applications in industrial control systems (ICSs) such
as smart grids and across various (critical) industries/industry verticals such as automotive, utilities, home
automation, healthcare, and security, is expected to rapidly accelerate the industrial Internet of Things
(IIoT) market. To drive home our point, the global IIoT market, as of 2021, is worth USD 100+ billion
dollars (projected to reach a trillion USD by 2028), with a steady yearly growth rate, i.e., a CAGR of ≈
22.8%, according to a recent report by Grand View Research, Inc.

The effectiveness of an IIoT controlled ICS enterprise (e.g., a smart grid, a smart factory) solely relies
upon the reliable and resilient functioning of networked IoT devices underlying an ICS infrastructure
that operate collaboratively in collecting, transmitting, relaying, and intelligently processing application
information over wireless/wired communication network (e.g., 5G, WiFi, Ethernet). However, the last
half a decade has seen (nation-state sponsored) attacks with increasing frequency on IoT-driven industrial
control systems (ICSs). The prime set of reasons (see (Xenofontos et al. 2021)) attributed to this trend are
(a) the increase in the density and scale of sensor networks associated with an organization’s underlying
IoT network infrastructure forming a large cyber-attack surface that has sub-optimal OT/IT air-gaps, (b)
hard-to-replace old but Internet exposed OT and control equipment modestly capable of being robust to cyber-
attacks, (c) IoT-equipped machines (e.g., HMI computers, SCADAmaster computers, PLCs) from multiple
vendors running a patchwork of proprietary, heterogeneous, and non-updatable software, (d) poor or absent
(behavioral) organizational cyber-security practices (e.g., poorly configured default security IoT device
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settings), (e) organizational C-suites allocating insufficient budget to implement cyber-security awareness,
monitoring, and prevention technology, (f) a rise in hybrid and in-secure remote work environments post
the COVID outbreak, and (g) a significant rise in the number, type, and quality of cyber-attackers.

The above set of reasons increase the chances of occurrence of stealthy but popular advanced persistent
threat (APT) attacks in IoT driven ICS network systems that (a) spear-phish IT administrators or other
employees to gain persistent high level IT network access within the target industrial site via (but not
limited to) user accounts, hardware and software assets, (b) consequentially, move laterally inside the site
to find and exploit insecure devices and machines (e.g., botnets discovering open RDP ports using the
Shodan search engine), (c) usually go undetected (due to weak security monitoring) over a considerable
period of time (e.g., via a timed logic bomb in a malware that might delay activation of specified maximal
adverse impact event(s)) - consequently not allowing the defender(s) to segment and isolate the network,
and (d) result in cascading IoT device (and machine) failures that disrupt device and employee networked
communication systems, and cause significant physical and/or service quality damage in the long-run.
The quantitative measure of such an adverse impact in an arbitrary IoT driven ICS network is usually a
time-dependent and non-deterministic (random) variable over a family of APT cyber-attacks reflecting a
loss (usually converted to tangible units w.r.t. a quality of service (QoS) metric) with financial consequences
for the ICS driven enterprise. As an example of an outcome of such a random variable, consider a modern
cyber-inspired version of the Northeast power blackout of 2003 that was triggered by a transmission line
failure and cascaded into a massive power failure affecting 55 million people in the northeast region of the
USA, and resulted in an economic (first and third-party damage) of USD 6 billion (Minkel 2008).

1.1 Research Motivation and Goal

It is often the case in recent years, during the wake of major cyber-attacks in the past decade, that an
ICS enterprise management (e.g., CEO, CISO, board) is interested to tangibly estimate apriori statistical
metrics (e.g., mean, tail-risk) related to the cyber-loss impact post a cyber-attack (e.g., via an APT) event
to budget cyber-resilience management within the enterprise. This is important to minimize tangible (e.g.,
monetary, stock value) and non-tangible (e.g., reputation) multi-party losses post an inevitable future cyber-
attack event (as part of incident response) through investing effectively in cyber-protection mechanisms.
Note that it is usual in practice for managers to find it difficult to estimate the hypothetical impact of an
adverse cyber-incident (Butler 2002). This difficulty is aggravated by uncertainties in the knowledge of the
cyber-risk terrain, system complexity, lack of cyber-incident data and cyber-loss impact metrics, and the
inability to predict future cyber-incidents (Jalali et al. 2019; Komljenovic et al. 2016). Add to this is the
role of cognitive biases that prevent even the most experienced of system managers to assess the impact
of cyber-risk accurately enough (Tversky and Kahneman 1974; Madnick et al. 2016; Straub and Welke
1998). In such environments, it is best that managers consider worst case statistical estimates of cyber-risk
impact (the analysis of which needs to consider a family of parameters for a given cyber-attack type) into
account rather than work with a faulty perception of exact cyber-risk impact. As management guru Peter
Drucker once famously said: “if you cannot measure it, you cannot manage it”. Our research goal in this
paper is to develop a mathematical theory that (a) develops apriori, a generic closed form expression for
the cyber-loss impact post the occurrence of a cyber-attack event drawn from a family of malware driven
APT cyber-attacks, and (b) generates worst case apriori statistical estimates of cyber-loss (evaluated via
the closed form expression) for these cyber-attacks to support cyber-resilience management planning.

1.2 Research Contributions

We make the following theoretical research contributions in this paper.

1. We design a novel stealthy cyber-malware spreading framework for a parameterized family of
APT-type cyber-attacks in IoT driven ICS networks, that captures the time-varying attack-defense-
impact trio as a time-dependent Markov-Feller (MF) continuous stochastic process. This process
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is ideally suited to capture the stealthy infection spread of a parameterized family of APTs across
a network topology, and their impact launching time periods. Our proposed model extends a huge
literature on attack-defense type models that omit providing a systematic framework to quantify the
adverse impact on (wireless) organizational network assets when modeling cyber-malware spread
as a time-dependent continuous stochastic process only (see Section 2).

2. Furthermore, for the MF malware spread process, we provide a closed-form analysis of the non-
deterministic time-aggregate adverse impact of an APT attack on the entire ICS network. As a
research novelty, this ‘time-space’ adverse impact analysis extends the Factor Analysis of Information
Risk (FAIR) model (Freund and Jones 2014)(a standard industry model to quantify cyber-risk) to
settings where network connections between system risk variables are explicitly accounted for, and
showcases the likelihood of extreme impact events in the ICS network (see Section 3).

3. We derive tight error bounds of empirical Conditional-Value-at-Risk (CVaR), i.e., the measure of
APT cyber-risk, that is usually obtained in practice, w.r.t. the true theoretical CVaR estimates of the
time and space aggregate adverse impact distribution in an ICS network. Since cyber-risk managers
will only have access to empirical estimates of CVaR, the latter’s accuracy is of paramount importance
to their business. To this end, we conduct the derivation of (theory-practice) error bounds using a
rigorous analysis based on the theory of large deviations (TLD) in probability theory. Specifically,
we derive a tight upper and lower bound of the CVaR (APT risk) estimation error using properties
of the Chernoff-Hoeffding and the McDiarmid concentration inequalities from TLD, respectively.
The novelty of this analysis is in the tight (empirical) estimation error bounds obtained in theory as
a function of the finite number of empirical data samples of the impact distribution that a cyber-risk
manager might have access to in practice. The theory also hints at the threshold number of empirical
samples from the adverse impact distribution a cyber-risk manager (e.g., insurer) should demand
of the ICS network manager to satisfy its error tolerance (see Section 4).

Related Work and Novelty - Deriving formal tail cyber-risk bounds with performance guarantees is
completely new in the networked cyber-risk quantification literature - let alone such quantification in APT
affected ICS network settings. In recent years, there has been a number of efforts modeling the spread
of stealthy cyber-malware (e.g., APTs) in arbitrary communication networks using approaches seeded by
the SIS methodology (Yang et al. 2015; Yang et al. 2017; Yang et al. 2017; Xu et al. 2011; Xu et al.
2012; Xu et al. 2014; Wu et al. 2017). In the same regard, the use of the network-based SIS model
(also known as contact processes), as a continuous time Markov chain, to model an epidemic spread is a
standard in computer epidemiology studies, and has been used and analyzed in multiple research efforts
(Liggett 2012; Liggett 2013; Bezuidenhout and Grimmett 1990; Durrett and Liu 1988; Mountford et al.
2016; Bailey 1975; Van Mieghem et al. 2008; Van Mieghem and van de Bovenkamp 2015; Pastor-Satorras
et al. 2015) - be it related to cyber-infections, or otherwise. However, none of these above-mentioned
works on the dynamics of spread processes account for the time and node aggregate cyber-loss impact
(and their statistics) post a cyber-breach incident. This is a basic necessity for enterprises to budget plan
on cyber-resilience management activities prior to the occurrence of any cyber-attack.

2 THE APT MALWARE SPREAD PROCESS SPECIFICS

In this section, we propose models to (a) capture stealthy malware spread dynamics in an ICS network
characterized by an APT attack, and (b) formulate the node and time aggregate adverse impact of the spread
in the ICS network. Wherever applicable, we complement modeling elements with real-world parallels
borrowed from popular cyber-attacks conducted on ICS enterprises.

2.1 The Spread Model

Network Model - We consider an ICS network of IoT and/or OT devices with sensors (henceforward,
both being referred to as an IoT device) labeled 1, · · · ,N on a simple unweighted bidirectional graph.
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Each IoT device (inside an IoT-driven ICS subnet and/or across subnets) is capable of getting infected
(a) indirectly, i.e., by malware transmission (e.g., via emails, AUTORUN, open port exploitation through
message broadcasting) from neighboring infected nodes (e.g., post the event when a DMZ inside an ICS is
breached), and (b) directly, for example via it downloading malicious code from the Internet or the code
being injected on them via a backdoor (e.g., the event when the DMZ is breached due to social engineering
attacks or due to infected plug-able external devices). The network is represented by a symmetric adjacency
matrix A ∈ {0,1}N×N , with aii = 0 for all i, and ai j = 1 indicates a connection between network nodes i
and j, and ai j = 0 indicates otherwise.

As examples of a direct cyber-infection from popular cyber-attacks, we have (a) phishing-driven
BlackEnergy3 malware infecting IoT driven components (acting as nodes) of the Ukraine power grid (in
2015) via which login credentials for these components were obtained by hackers, (b) camera software
vulnerabilities exploited by hackers to get entry into computers (both cameras and the computers acting as
nodes) of the SCADA systems of a Turkish oil pipeline (in 2008), and (c) the Stuxnet worm utilizing four
zero-day exploits to infiltrate the Supervisory Control and Data Acquisition (SCADA) systems controlling
uranium centrifuges (acting as nodes among other CPS components that include PLC-controlled variable
frequency drives (VFDs) and print spoolers) in an Iranian nuclear plant. As examples of corresponding
indirect cyber-infection (post the direct infection) from the above-mentioned cyber-attacks, we have (a)
hackers opening switches that distribute power to the Ukrainian power grid and overwriting switch-controlling
firmware controlling serial-to-ethernet controllers, (b) causing the Turkish oil pipeline to become over-
pressurized via control commands on the IoT-controlled SCADA computers, and (c) causing the uranium
centrifuges to slow up and down, crossing through mechanical resonances, till their failure via compromised
PLC controller controlled VFDs. More generally, the direct-indirect nature of cyber-attacks on ICSs have
been studied in (Jalali et al. 2019; Martinez-Moyano et al. 2015; Kure and Islam 2019; Sepúlveda Estay
2021; Zeijlemaker et al. 2018).
Threat Model - We consider cyber-threats that are representative of the malware-induced advanced persistent
threat (APT) family (e.g, WannaCry, NotPetya) popularly affecting many ICS networks today. The initial
stage of an APT, i.e., the spread of cyber-infection (malware such as the BlackEnergy3) through an ICS
network (e.g., by open port scanning of vulnerable IoT devices) post initial malicious code injection on
a set of devices, is (often) dynamically modelled using the seminal susceptible-infected-susceptible (SIS)
methodology (Pastor-Satorras, Castellano, Van Mieghem, and Vespignani 2015). WLOG, we adopt the SIS
model in our work. The rationale being that (a) it is intractable to plug all security deficiencies in a computer
device, leave alone a system of devices (Pfleeger and Cunningham 2010), and (b) consequently, IoT device
i in the network is never immune, i.e., always eventually susceptible to infection in the cyber-world, despite
measures taken via technology and/or human efforts to repair it post attack or prevent it from being attacked
(Anderson and Moore 2009). The latter point is because IIoT network security is primarily about the use of
IDSs and security-monitoring driven alarm systems that are merely detective measures, and not preventive
measures (though all existing preventive measures are inevitably imperfect).

2.2 The Spread Dynamics

State Evolutions - The state of node i at time t is denoted by Xi(t), where Xi(t) = 1 indicates that i is
infected at time t, and Xi(t) = 0 indicates that is susceptible. Each node can be infected by its neighbors, but
is cured independently of all other nodes in the network. Each node in the IoT network is endowed with an
independent exponential clock and changes its state when the exponential clock rings (from (Fahrenwaldt
et al. 2018)). The rate of state changes by node i is given as a Markov chain:

Xi : 0 → 1, withrate

(
1
α
+β

N

∑
j=1

ai jX j(t)

)
Xi : 1 → 0, withrate δ ,

(1)
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for α,β ,δ > 0 (from (Fahrenwaldt et al. 2018)). Here (a) α is the probability that a node becomes infected
directly, e.g., by downloading malicious code from the Internet (Xu et al. 2012); (b) β = 1

γiu(t)
, where γ is

the probability of a susceptible node v being infected by an infected neighbor u, i.e., auv = 1; iv(t) is the
probability that node v is infected at time t; and (c) δ is the rate at which a node becomes susceptible from
the infected state (Xu et al. 2011). We assume, for the purpose of analytical tractability and w. l. o. g, that
α , β , and γ are uniform for all the nodes in the network. We rationalize this uniformity for another practical
reason: in any ICS, the attacker and the defender both improve their strategies over time hand in hand
(Furnell and Thomson 2009; Liginlal et al. 2009; Pattinson et al. 2012; Lewis 2003; Thalheimer 2006).
Thus, at any point of time we find it rational to assume that the aforementioned parameters are uniform.
We also assume that parameters α,β ,γ,δ are common knowledge to a network administrator. While
the knowledge of β ,γ,δ can be estimated from internal measurements and observations (and furthermore
depends on cyber-protection quality that the administrator deploys) through network telemetry, we admit
that it is difficult to accurately estimate α (apart from a naive history-based estimate) - as knowing it would
severely constrain the ability of a strategic attacker. The latter point is only relevant if a system manager is
trying to evaluate the loss impact post a cyber-attack event - not the goal of our paper where we pre-analyze
potential loss impact over an entire parameterized family (w.r.t. α,β ,γ,δ ) of cyber-attacks if they were
to happen. The state evolution logic adheres to reality that IDS and security-monitoring alarm-triggered
incident response are imperfect, and takes time within which cyber-adversaries take network control.
The Underlying Stochastic Process - We first provide an intuition for the general audience of the N-
dimensional Markov process X stitched out by the above-mentioned one-dimensional Markov chain, where
N is the number of nodes in the ICS network. More specifically, at any time instant t, X(t) is the vector
of random variables Xi(t)’s - capturing the I/S state of each node in the ICS network. Hence, X(t) is an
N-dimensional random function over time, where each random instance of the single-dimensional Xi(t)
over t evolves according to one-dimensional Markov chain Xi. Geometrically, at each time instant t, the
N-dimensional function represents a random (I/S) configuration of the entire IIoT network. Each such
random instance of the N-dimensional function X(t) evolves according to a special N-dimensional Markov
chain (contributing to a special stochastic process known as a Feller process (Rogers and Williams 1994))
that is decomposable using the one-dimensional Markov chains Xi.

This intuition can be formally represented as follows. Let (Ω,F ,P) be a probability space with filtration
F = (Ft)t≥0, where F is right continuous and F0 contains all the P-null sets (Potter 2004). Ω is the sample
space, and P is the probability function mapping each event in F to [0,1]. Intuitively, Ft can be thought
of as the family of all N-dimensional random functions X(t) charted out till time t, with F0 consisting
of all functions whose probability measure of occurrence is zero (e.g., a point function in N dimensions,
where the points are random initial (I/S) configurations of the N-node ICS network). The process X is a
Markov process with state space E = {0,1}N with X0 = x ∈ E. We assume that X is a Feller process with
generator G : C(E)→ R, notated by G( f (x))| f∈C(E),x∈E and expressed as:

N

∑
i=1

(
(1− xi)

1
α
+β (1− xi)

N

∑
j=1

ai jx j + xiδ

)
( f (xi)− f (x)),

where state transitions xi
j = x j for i ̸= j and xi

i = 1−xi (from (Fahrenwaldt et al. 2018)). The family C(E)
consists of all cadlag functions on E (these are N-dimensional random functions admitting jumps, i.e.,
discontinuities, in the stochastic process {Xt}), but form a Skorohod space on which probability measures
are always defined (Liggett 2012). The concept of the jump is relevant in the N-dimensional setting because
the (I/S) network configuration changes over time may have abrupt changes. The cadlag functions lying
on the Skorohod space just enables us to be always able to quantify the probability mass of a collection of
random functions. The Markov process X has exponential waiting times between jumps, with an exponential
state space of cardinality 2N . Note that for each α,β ,γ,δ instance, the Markov-Feller process captures all
possible malware spread variations and resulting (I/S) node states in the N-node ICS network. Hence our
choice of the stochastic process sets the necessary foundations.
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2.3 The Adverse Impact Generating Stochastic Process Model

The end goal of an APT is to cause system-wide damage (e.g., revenue loss via business disruption) in the
ICS network, after it has stealthily infected (a subset of) nodes in its initial stage, where infection does not
imply node/device damage that is left for later. More specifically, at certain times post its infection stage,
the APT attack decides to launch damage on certain infected nodes making them dysfunctional (incapable
of providing QoS). These times, unknown to a system manager, are denoted by (Tn)n∈N. The corresponding
number of cumulative damage launches by these time instants are counted through a stochastic process
M = (M(t))t≥0 (from (Fahrenwaldt et al. 2018)). The size of the negative/adverse impact on infected
nodes becoming dysfunctional at any time instant t is modeled by another N-dimensional stochastic process
L = (L(t))t≥0, where L(t) = (L1(t), . . . ,LN(t))T, where each dimension represents the adverse impact on a
given node in the ICS network. The value Li(t) for node i is zero if it is either not infected at time t or
the APT attack does not launch damage on i at t.
Note that M is a left-continuous counting stochastic process with a deterministic and non-deterministic
component (according to the seminal Doob-Meyer decomposition theorem (Brémaud 1981)), and adapted
to the filtration F, i.e., random functions spanned upto M(t) is inside the family of functions Ft . One of the
components is its stochastic intensity (λ (t))t≥0, where λ is a non-negative F-predictable process (because it
is a continuous time-adapted process that is left-continuous). The other component, M(t∧Tn)−

∫ t∧Tn
0 λ (s)ds,

is the martingale, i.e., the non-deterministic component for all n ∈ N. The martingale property ensures that
the conditional expectation, M′(t +δ t)−E[M′(t +δ t)]|Ft , equals M′(t) for a stochastic process M′(t). In
our setting, since M is a counting process, it is a sub-martingale by the Doob-Meyer decomposition theorem.
In practical jargon, the sub-martingale property simply and evidently implies that the expected number of
launched damages by the APT at time t +∆t given time history is greater than the number of launched
damages by time t. L is predictable (again due to it being a time-adapted process that is left-continuous)
and non-negative. Both M and L are independent from the Markovian infection spread process X .

3 NETWORK AND TIME AGGREGATE ADVERSE CYBER-LOSS IMPACT

We (e.g., cyber-loss managers) are concerned with the expected network aggregate adverse impact of the
APT attack over a fixed time window [0,T ] with T > 0, where we assume that the tangible impact units
are the same for all the nodes.

3.1 A Formal Model of the Expected Space (Network) Time Aggregate Cyber-Loss Impact

In practice, such units can be mapped to the loss in quality of experience (QoE) derived from dysfunctional
nodes (e.g., dysfunctional IoT-embedded CNC industrial machines) (Suryanegara et al. 2019; Minovski
et al. 2020; Serral-Gracià et al. 2010). Consider a measurable function f (·; ·) : R+×RN

+ → R+, where the
first argument refers to the time, and the second - to the N-dimensional (for N nodes) adverse impact (i.e.,
FAIR for networks) generated by an APT cyber-attack (ref. (Fahrenwaldt, Weber, and Weske 2018)). The
expected aggregate impact (adopted from (Fahrenwaldt et al. 2018)) incurred over the period [0,T ], given
by E

[∫ T
0 f (t;L(t)◦X(t))dM(t)

]
, obey the following equivalent equalities:

E
[∫ T

0
f (t;L(t)◦X(t))dM(t)

]
= E

[∫ T

0
f (t;L(t)◦X(t−))dM(t)

]
,

E
[∫ T

0
f (t;L(t)◦X(t))dM(t)

]
= E

[∫ T

0
f (t;L(t)◦X(t−))λ (t)dt

]
,

E
[∫ T

0
f (t;L(t)◦X(t))dM(t)

]
= E

[∫ T

0
f (t;L(t)◦X(t))λ (t)dt

]
.

Here, the ◦ operator denotes the component-wise Hadamard product of vectors. The first equality is
due to the fact that X and M are independent and never jump at the same time with probability 1 (in
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practical terms an ICS node is not infected and launched an attack upon at the same time). The second
equality follows from the F-predictability of the integrand (Brémaud 1981) (because M is left-continuous),
and the third equality holds since the paths of X , i.e., the N-dimensional random functions, possess at most
countably many jumps in [0,T ] and constitute a Lebesgue null set, i.e., a set with a probability measure zero,
for each path (because in practice there are countably many malware spread paths and the probability of the
individual occurrence of each is zero amongst an infinite continuum of possible paths). Specific practical
forms of f (·) will be discussed in Section 6. Of equal importance as the mean, are the tail properties
of the distribution

∫ T
0 f (t;L(t)◦X(t))λ (t)dt that reflects the statistical spread of the adverse impact (risk)

distribution (the probability that network aggregate adverse impacts of an APT attack exceeds a certain
percentile). The spread metric will characterize the notion of APT risk that we model in our work with
the widely popular Conditional-Value-at-Risk (CVaR) risk measure of

∫ T
0 f (t;L(t)◦X(t))λ (t)dt from risk

theory (McNeil et al. 2015). A detailed analysis of this CVaR metric characterizing APT risk is deferred
till Section 4.

One could argue the feasibility of quantifying the adverse impact over time and space if the attack
type and parameter space is (partially) unknown. However, the aim of this paper is not to quantify this
impact post the occurrence of an (APT) attack event. We want to quantify (for cyber-protection budget
planning CISOs and CEOs) how much cyber-risk (induced by statistics of the adverse impact) an ICS can
potentially be subject to if it were to be affected by a family (characterized by all feasible α,β ,γ,δ , t) of
malware-spreading APT cyber-attacks. To complement our contribution rationale, note that it is usual in
practice for managers to find it difficult to estimate the hypothetical impact of an adverse cyber-incident
(Butler 2002). This difficulty is aggravated via uncertainties in the knowledge of the cyber-risk terrain,
system complexity, lack of cyber-incident data and cyber-loss impact metrics, and the inability to predict
future cyber-incidents (Jalali et al. 2019; Komljenovic et al. 2016). Add to this is the role of cognitive
biases that prevent even the most experienced of system managers to assess the impact of cyber-risk
accurately enough (Tversky and Kahneman 1974; Madnick et al. 2016; Straub and Welke 1998). In such
environments, it is best that managers consider worst case cyber-risk impact (this analysis needs to consider
a family of parameters) into account rather than have a faulty perception of the exact cyber-risk impact.

3.2 A Cyber-Risk Manager’s Closed-Form Expression for Aggregate Cyber-Loss

A closed form expression is often a necessary first step for cyber-risk managers to accurately estimate
space-time aggregate cyber-loss in any part of the ICS network. To this end, we first propose a framework
to derive a closed form expression for the node-aggregate cyber-loss impact,

∫ T
0 f (t;L(t)◦X(t))λ (t)dt, in a

given time period for an APT compromised IIoT network. More specifically, we will first propose a method
for a cyber-risk manager to accurately approximate any general f in closed form as a polynomial function
for analysis tractability (for ease of taking an integral), and follow that up with theoretically bounding the
function approximation error.
Assumptions - Though X is a Markov process with cadlag paths, we assume that all f ∈C(E) are continuous
functions over time, i.e., f (t;L(t)◦X(t) is continuous. However, it is a challenging problem to compute
aggregate (over time and space) loss values directly on top of general continuous loss functions. Thankfully,
the applicability of the Stone-Weierstrass theorem (Brosowski and Deutsch 1981) allows us to work with
polynomial loss functions that are outcomes of uniformly approximating arbitrary continuous functions
defined over a compact (closed and bounded) set in Rn - as in our case, with the Hadamard product lying in a
compact set. We also assume that time-aggregated loss function f will map into a one-dimensional tangible
scalar value, as is usual in practice. For a multi-variate f , we convert its range to a single dimensional
output, i.e., f : RN

+ → R+, via the transformation:

f (x1, . . . ,xN) = g(Λ(x1, . . . ,xN)) ,

where we assume Λ : RN
+ → R+ to be a linear increasing aggregation function, and g : R+ → R+ to be

continuous and increasing. g is also assumed to be bounded on [0,∥Λ(L)∥∞), where ∥ · ∥∞ denotes the
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L∞ norm. An example of Λ is Λ(x1, . . . ,xN) = ∑
N
i=1 αixi, αi ≥ 0. g, for example, could be of the form

g(Λ(x1, . . . ,xN)) = Λ(x1, . . . ,xN).
Polynomial Approximation of a Continuous f - As mentioned above, it can be quite cumbersome for
a cyber-risk manager to accurately evaluate any general f (and consequently the aggregate space-time
cyber-loss within an ICS network) for a given ICS network. It would be good if any given f could be
approximated through a polynomial function that is much amenable to computational and analysis ease.
In view of recent developments in function approximation theory following (Davidson and Donsig 2009),
a polynomial closed form approximation to a general f can indeed be constructed via the following steps:

1. Choose (a) d ∈N - a pre-specified choice for the degree of the polynomial, and (b) a bound ε > 0.
2. Select a constant u ∈ R+ (based on prior network and cyber-loss impact knowledge) such that the

node-aggregated cyber-loss impact is bounded as per the following relation:

P(Λ(L)> u)≤ ε.

3. From the space of all degree-d polynomials, choose the best uniform approximation pd(x) :=
∑

d
ℓ=0 aℓxℓ (a0,a1, . . . ,ad ∈ R) (Davidson and Donsig 2009) of g on the compact interval [0,u]. The

subsequent function approximation error is denoted by ed(g), and given as

ed(g) =: max
x∈[0,u]

|g(x)− pd(x)|= ∥g− pd∥∞,[0,u] ,

where the L∞ norm is used to extract the maximum possible error.

How Much is the Approximation Error for a Cyber-Risk Manager? - We now quantify the ‘cost’
(error) of the approximation borne by the cyber-risk manager as an outcome of approximating f . The
optimal degree-d polynomial approximation of f (L◦X) obtained from Steps 1-3 above is given by

f̄d(L◦X) :=
{

pd(Λ(L◦X)), if Λ(L)≤ u
0, if Λ(L)> u

We then have the following result following developments in (Davidson and Donsig 2009; Fahrenwaldt
et al. 2018) in relation to the approximation error induced by the polynomial f̄d .
Theorem 1 The function approximation error for f = f (x1, . . . ,xN) (obtained via the polynomial approx-
imation method in (Davidson and Donsig 2009; Fahrenwaldt et al. 2018)) incurred by the cyber-risk
manager is defined through the following inequation

∥∥ f (Z)− f̄d(Z)
∥∥

L1
≤ ed(g)+m · ε , where Z = L◦X,

and m is a real number that satisfies

| f (l ◦X)|= |g(Λ(L◦X))| ≤ |g(Λ(L))| ≤ m,

for all possible realizations of L, where the L1 prevents amplifying outlier effects during approximation.
Proof Sketch - The theorem is easily validated through algebraic simplification on the following inequality:

∥ [ f (Z)− pd(Λ(Z))] ·⊮[0,u](Λ(L))+ f (Z) ·⊮(u,∞)(Λ(L))∥L1 ≤ E
[
|g(Λ(Z))− pd(Λ(Z))| ·⊮[0,u](Λ(L))

]
.

Implications for Cyber-Risk Management - The theorem implies that there always exists a closed form
expression for approximate tangible space-time aggregate cyber-loss impact post an APT cyber-attack
event on an ICS network guaranteed through polynomial approximation mathematics. The L1 norm of the
function approximation error induced by f̄d is (a) tightly bounded from above by ed(g)+m · ε , and (b) is
very low for small enough ε . From the viewpoint of cyber-risk management, the theorem results are useful
as they simply denote that it is within the scope of the ICS cyber-risk manager to influence the quality of its
approximate for aggregate space-time cyber-loss by controlling its (enterprise budget driven) risk appetite
(via ε). Once the cyber-risk manager gets hold of a parametric (approximate) expression for space-time
aggregate cyber-loss, it could apriori estimate (compute) the mean value of such an expression over a
statistical distribution of the parameters. This loss amount reflects the impact of business discontinuity.
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4 ANALYZING TAIL APT RISK IN AN ICS NETWORK

Thus far, we derived analytical and tractable closed-form solutions to the first moment, i.e., expectation,
of the node-aggregate cyber-loss distribution in an ICS network. While this metric is useful to a cyber-risk
manager, in practice they are interested in both expected cyber-loss estimates, as well as in the knowledge
of the tail, i.e., loss spread, of a cyber-loss distribution. An industry standard cyber-risk metric to measure
this tail is the Conditional-Value-at-Risk (CVaR) metric. In our paper, we synonymously term this metric
as the APT risk, and provide accuracy guarantees of empirically estimating the APT risk, when compared
to the theoretical ground-truth. To do so, we propose a rigorous framework based on the theory of large
deviations (TLD) that (a) first uses concentration inequalities (Boucheron et al. 2013) to analyse the
deviations of empirical estimates of the APT risk from the empirical mean of the cyber-loss impact, and
(b) subsequently provides upper and lower bounds of the deviations of the empirical estimates of the APT
risk from theoretical ground truth. Concentration inequalities in the TLD deal with deviations of functions
of independent random variables from their expectation.

4.1 Background for Analyzing Empirical CVaR

Here, we provide a background on empirically analysing the sample-driven CVaR metric of any risk
distribution simply because this is what a cyber-risk manager will only have access to. The CVaR at level
α ∈ (0,1] of a random variable X is

CVaRα(X)≜ inf
v

{
v+

1
α
E
[
(X − v)+

]}
.

It is well known from (Rockafellar et al. 2000) that, when X has a continuous distribution, that CVaRα(X) =
E [X | X ⩾ VaRα(X)] , where

VaRα(X)≜ sup
x
{x | P(X ⩾ x)⩾ α}

is the α-quantile (or VaR) of X . While this relation does not necessarily hold if X has a discontinuous
distribution, we can nonetheless roughly interpret CVaRα(X) as the expected loss over the α% worst cases.
We now make the following assumption necessary for deriving tight bounds of finite sample CVaR on
aggregate network cyber-loss impact.

Assumption 1. The random variable X satisfies supp(X) ⊆ [0,U ], and its samples X1, . . . ,Xn are
independent.

Suppose one were to map the outcome of a stochastic process modeling the aggregate cyber-loss over
time and space in an ICS network, the values obtained on multiple sample paths of the stochastic process
would be independent. This would closely map empirical estimates of such aggregate loss estimates from
the real network at different points in time - thereby justifying the ‘independence’ aspect of the assumption.
An upper bound criterion (as stated in the assumption) is common to the application of many concentration
inequalities, and without loss of generality we use supp (X)⊆ [0,U ], to reflect the fact that the minimum
loss impact value is zero.

For the case of CVaRα , we denote the simple empirical CVaR estimator by ĈVaRα , and express it as:

ĈVaRα (X1, . . . ,Xn)≜ inf
v

{
v+

1
nα

n

∑
i=1

(Xi − v)+
}
, (2)

where (y)+ = max(y,0). This empirical estimator is an intuitive and typically popular one (Rockafellar,
Uryasev, et al. 2000) based on the method of moments. Such estimators are efficiently computed for large
n and most convex loss functions - the CVaR function, CVaRα , being one having a piece-wise linear loss
function (Ben-Tal and Teboulle 2007). In the analysis to follow, we denote X = XT to the random variable
instantiating the node-aggregate cyber-loss upto a pre-specified time period T in an ICS network.
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4.2 The Lower Bound of (Empirical APT Risk - True APT Risk)

We have the following result stating the tight lower bound of tail space-time aggregate APT cyber-risk.
Theorem 2 Consider a cyber-risk manager having access to X = (X1, . . . ,Xn) - a vector of n samples from
the true node and time aggregate cyber-loss impact distribution in an ICS network. Then

P
(

ĈVaRα (X)⩾ CVaRα (X)+ ε

)
⩽ e−2 ε2α2

U2 ·n
,

where CVaRα (X) equals APTRiskα (X), and ĈVaRα (X) equals ̂APTRiskα (X).
Proof Sketch - We use the celebrated McDiarmid’s concentration inequality (McDiarmid 1989) that says
we need on the order of nH ≜ (∑n

i=1 c2
i /ε2) log(1/δ ) samples to estimate the sample mean within a

precision of ε with probability at least 1−δ . This combined with the fact that E
[
ĈVaRα (X1, . . . ,Xn))

]
⩽

CVaRα (X1, . . . ,Xn) proves the theorem.
Implications to Cyber-Risk Management - The result provides a closed form expression of the tight
lower bound of the deviation in empirical APT risk (measured as empirical CVaR) with the theoretical
true value of the APT risk, as a function of sample count. In practice, a higher sample count reduces
the deviation, and hence a cyber-risk manager (e.g., enterprise cyber-risk officer, cyber-insurer) should get
access to sufficient number of samples to reduce tail cyber-risk estimation uncertainty.

4.3 The Upper Bound of (Empirical APT Risk - True APT Risk)

We have the following result stating the tight upper bound of tail space-time aggregate APT cyber-risk.
Theorem 3 Consider a cyber-risk manager having access to X = (X1, . . . ,Xn) be a vector of n samples
from the true node and time aggregate cyber-loss impact distribution in an ICS network. Then for any
ε ⩽ 0,

P
(

ĈVaRα (X)⩽ CVaRα(X)− ε

)
⩽ 3e(−

1
5 )α( ε

U )2·n,

where CVaRα (X) equals APTRiskα (X), and ĈVaRα (X) equals ̂APTRiskα (X).
Proof Sketch - We use the celebrated Hoeffding’s inequality (Hoeffding 1994) that says we need on the
order of nH ≜ (U/ε)2 log(1/δ ) samples to estimate the sample mean within a precision of ε with probability
at least 1−δ . This combined with the fact that ĈVaRα (X1, . . . ,Xn) ⩾ 1

nα
∑
⌊nα⌋
i=1 X(i) holds, where X(i) are

the decreasing order statistics of Xi, proves the theorem.
Implications to Cyber-Risk Management - The result provides a closed form expression of the upper
bound of the deviation in empirical APT risk (measured as empirical CVaR) with the theoretical true value
of the APT risk, as a function of sample count. In practice, a higher sample count reduces the deviation,
and hence a cyber-risk manager should ideally get access to sufficient number of samples to reduce tail
cyber-risk estimation uncertainty.

5 SUMMARY

In this paper, we proposed the first theoretical framework for ICS enterprise managers to accurately estimate
apriori and tightly bound APT risk in general IoT driven ICS networks for a parametric family of stealthy
spread-based APT cyber-attacks. The importance of this task lies in planning a budget for enterprise cyber-
resilience management activities before the occurrence of cyber-attacks. We first modeled the time-varying
attack-defense-impact trio pertaining to our threat model as a continuous Markov process. Subsequently, we
provided a closed form expression for the node and time aggregate cyber-loss impact in an ICS network due
to a spread-based APT cyber-attack. Finally, we proposed a rigorous analysis motivated by concentration
inequalities from probability theory, to derive tight non-asymptotic bounds of the difference between the
empirical estimation of the APT risk measure and the true (ground truth) value of the APT risk.
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