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ABSTRACT 

The world is increasingly reliant on energy systems, making them a critical infrastructure for various 
essential services. However, this also makes them vulnerable to attacks, which can result in significant 
disruptions and damage. Microgrid (MG) monitoring systems play a crucial role in ensuring the safety and 
reliability of energy systems. However, traditional fault diagnosis techniques are limited to already 
established faults due to the use of only historical data, making it challenging to keep up with the increasing 
demand for safety and reliability. This paper proposes a digital twin based machine learning (DTML)  
framework for fault diagnosis in MG monitoring systems, with a focus on assessing the resilience of MG 
end-to-end systems to potential disruptions from adversaries. The proposed framework utilizes digital twin 
based random forest (RF) and support vector machine (SVM) and logistic regression (LR) model and shows 
that the RF based model outperforms other models with an accuracy of 95%.   

1 INTRODUCTION 

Energy sector has been designated as a critical infrastructure because of its enabling function for all 
infrastructure sectors. Several recent weather-related events and cyberattacks have placed the energy 
sector's resilience at the forefront of national research priorities. In the event of a natural or human-induced 
disaster, electricity may be lost, resulting in large financial losses that can affect a wide range of sectors 
and service types (Eskandarpour et al. 2017). About 83% of all reported power outages from 2000-2021 
can be attributed to a weather-related event. Beyond weather events, human-induced outages are also a 
concern (Ramirez 2022). The electric grid has been described as an “attractive target” for domestic violent 
extremists in the US. In 2020, intelligence analysts saw major uptick in online chatter focused on attacking 
the power grid (U.S. EIA 2023). The average annualized costs caused by cybercrimes worldwide in 2018 
is 13.77 million U.S. dollars (Accenture 2019). Due to natural and human-induced threats and the 
complexity of power systems, building resilience in energy infrastructure is challenging. There has been a 
number of studies on resilience in both physical and cyber layers of power systems.  

Bie et al. (2017) presents an extensive review of the studies focusing on assessment of the power system 
resilience and emphasizes the vital importance of recognizing the threats and their potential effects in order 
to build power systems that are swift in responding to the events such as natural disasters and cyber-attacks. 
Once the root cause, magnitude and scope of a contingency that is causing disruption in the power system 
are accurately identified, then the problem becomes clearer and can be addressed by approaches such as 
optimal management of electricity storage units (Tavakoli et al. 2018), load curtailment (Mehrjerdi 2020), 
reformation of the network (Gilani et al. 2020), operation scheduling and reconfiguration (Damgacioglu et 
al. 2022) or stochastic tuning of the distributed generation units (Yavuz et al. 2023). 
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The  research on diagnosis of a disruptive event in both cyber and physical layers of power systems 
(e.g., natural disaster, cyber-attack) has gathered significant attention from both academia and industry. 
Badr et al. (2015) points out that prioritizing resiliency only during the design phase is not sufficient to 
achieve end-to-end resiliency of systems and proposes a cloud-based real-time monitoring and runtime 
crisis management framework to improve the resiliency of control mechanisms deployed for maintaining 
efficient system operations. Jin et al. (2017) emphasizes on the pervasive utilization of decentralized control 
mechanisms employed in grid control, thus the exacerbating need for cyber resilient communication 
infrastructures to govern the supervisory control and data acquisition operations. The authors propose a 
software-defined networking-based communication network architecture to sustain functionality against 
cyber-attacks aiming to hinder efficient control of grid operations. Mishra et al. (2020) presents a 
comprehensive review of studies centering around the analysis of cyber threats posed on microgrids and 
the precautionary measures proposed to achieve enhanced resiliency and mitigate the impact of such 
interferences. The authors also highlight the importance of having pre-, during- and after-event recovery 
strategies for continuous supply of electricity. Mohammadpourfard et al. (2021) proposes a long-short-term 
memory recurrent neural network to detect an attack that targets to distort measurements collected from 
measurement units. A novel cyber-attack type that imitates the cascading impact of physical component 
failure by manipulating data from not only a single source but from multiple sources is introduced and the 
proposed fault detection approach is tested over extensive simulations of the system. The authors also 
underline the increasing challenges of fault detection when the power distribution network has the 
flexibility to adjust its configurations and make topological changes dynamically. 

Another vein of research has focused on analyzing the threats posed by natural disasters and the 
preventative and corrective measures that can mitigate the impact of such events on the power network 
resiliency. Wang et al. (2015) reviews the studies focusing on modeling the effect of natural disasters on 
electric power systems and exploring ways to prepare and recover the grid. The authors point out the fact 
that although statistical models can be effective in damage assessment, they heavily rely on the availability 
of the data. Since the preventative measures should be determined before the event happens, i.e., when we 
have little or no information on the operating conditions that the system will experience, the use of statistical 
models in determining proactive and corrective actions is limited. To this end, the use simulation techniques 
(e.g., Monte Carlo simulations, agent-based simulations) in conjunction with statistical inferences drawn 
from the initial observations of both the grid and the event are utilized to estimate the effect and scope of 
the natural disasters (e.g., wildfires, earthquakes, floods) (Wang et al. 2015; Waseem et al. 2020). Huang 
et al. (2022) proposes the use of simulation software specifically designed for power networks (i.e., 
OpenDSS) to express the physical properties of the system and embeds the simulation model in a 
reinforcement learning environment that is designed to find out set of decisions (i.e., policies) related to 
optimal formation of the power system. The application of digital-twinning in monitoring power system 
conditions is presented by Moutis et al. (2020) on tracking the voltage and current at sub-cycle detail. The 
authors report significant accuracy of the designed digital twin when compared to field data obtained for 
medium voltage-low voltage distribution transformers. Darville et al. (2022) utilizes machine learning 
techniques as well as the simulation models to overcome the data sparsity in problem of fault detection. 
The generated data is then used in the training process of  binary classification models aiming to distinguish 
faulty measurements collected from the real-world microgrid. Besides the tasks such as monitoring and 
tracking the system condition, digital twin of the electricity distribution systems has been extensively 
benefited for various purposes including but not limited to electric utility resource planning (Senz et al. 
2012), assessment of communicational (Yavuz et al. 2022) or computational infrastructure (Yavuz et al. 
2020) and load dispatching (Thanos et al. 2013). 

Digital twinning has also found itself an application area in fault detection problems in various 
domains. Xie et al. (2023) employs the digital representation of the heating, ventilation, and air conditioning 
(HVAC) system for fault detection and diagnosis processes. The authors propose a lightweight artificial 
intelligence technique to identify the most informative sensory measurements within a building and prevent 
the model from overfitting by eliminating the uninformative measurements. The insights gained via 
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proposed approach are then utilized in dynamic asset management problem. Nguyen et al. (2022) employs 
a physics-informed digital twin of thermal-hydraulic components of a nuclear reactor and include virtual 
sensors for improved diagnosis and fault detection capabilities. Jain et al. (2019) proposes the use of digital 
twin in estimating the photovoltaic energy conversion unit outputs. The estimation is then compared with 
the real-world measurements and the analysis of the residuals (i.e., the difference between estimation and 
the measurement) are carried out to detect faults. Saad et al. (2020) addresses the problem of mitigating 
ethe impact of coordinated cyber-attacks on networked microgrids within Internet of Things (IoT)-based 
digital twin framework. The authors tested their framework against coordinated false data injection and 
denial of service cyber-attacks.  

In this study, we address the challenges brought by the increasing flexibility and automation of 
electricity distribution systems such as  i) dynamically and drastically changing network topologies as a 
result of embedded reformation capabilities, and ii) adaptive system reconfiguration via 
centralized/decentralized smart control mechanisms within a digital twin-based learning framework that 
can facilitate learning for data-driven algorithms. The proposed framework addresses the challenges of data 
sparsity and performance deterioration of the models by incorporating digital twin of the model into the 
learning (i.e., model development) process to provide it with i) the data for the out of sample network 
structures formed as a response to a natural disaster or a cyber-attack, ii) continuous learning environment 
with the flexibility to encompass the decisions made by dynamic control mechanisms (e.g., load shedding, 
unit commitment). 

The remainder of this paper is organized as follows. First, we outline the digital twin based machine 
learning (DTML) framework and detail the microgrid that is subject to experimentation. Subsequently, in 
Section 3, we present the comparative analysis of the ML models benefiting from the DTML framework. 
Finally, in Section 4, we conclude with the summary of findings obtained from the study.  

2 METHODOLOGY 

In this paper, a microgrid is modeled based on a modified IEEE 30-node distribution system connected with 
renewable energy and other non-renewable energy sources. The model is simulated in OpenDSS. These 
simulations include normal and faulty operations during grid-connected mode of operation of the microgrid. 

2.1 Digital Twin based Machine Learning (DTML) Framework 

The utilization of digital twins as a basis for machine learning is a cyclical system throughout the 
engineering tasks for energy systems (Min et al. 2019). This research utilizes two crucial interfaces for 
enhancing the resilience in microgrids: one for "data-driven modeling or model improvements" to transfer 
knowledge extracted from the tangible energy system, and the other for an "AI environment" that 
characterizes the digital twin as a milieu for third-party providers of learning algorithms. By amalgamating 
these interfaces, two significant features can be furnished:  

I. Independent problem-solving using the digital twin. 

II. Model extraction/improvements by means of data-oriented learning approaches. 

 Once a digital twin has been developed for a particular use case, model-based approaches like machine 
learning can be utilized to address specific tasks such as programming control logic. Once the physical 
energy system is in place, data-driven learning methods can improve the model foundation for both current 
and future systems. The engineering process for an energy system follows a step-by-step problem-solving 
approach where each engineering phase involves collecting requirements and shaping them into a specified 
task (Ritto et al. 2021; Hossain et al. 2022). Digital twins have become an increasingly popular tool in the 
field of microgrids, providing a virtual replica of the physical system that serves as an input parameter for 
problem-solving and optimization. This enables subsequent engineering phases in the life cycle of the 
microgrid. By providing a detailed and accessible model, digital twins facilitate communication across 
multiple domains and offer several benefits. One such advantage is the ability to conduct many problem-
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solving and optimization steps in earlier stages, such as programming control systems before the physical 
energy system is assembled. However, despite the use of digital twins, programming still requires an 
engineer for refinements and adjustments. Overall, the use of digital twins provides a powerful and cost-
effective means for designing, testing, and operating microgrids. (Bazmohammadi et al. 2021). In this 
scenario, the digital twin serves as a test framework. Figure 1 depicts the digital twin model used in this 
study. 

Figure 1: Digital twin of a MG. 

The digital twin as a foundation for machine learning provides independent problem-solving in the 
engineering context. While executing an independent problem solver with ML, the input values necessitate 
adjustment to a machine-readable function. All other information required for resolving or refining the 
problem is present in the digital twin itself (Danilczyk et al. 2021). This study exemplifies the utilization of 
a problem description and a digital twin independently to program control logic, while incorporating 
advanced simulation models to effectively tackle complex problem-solving. In this regard, we propose the 
adoption of a digital twin-based machine learning model (DTML) as a suitable approach for data-oriented 
learning. The DTML model utilizes historical and real-time data from the digital twin simulation to train a 
machine learning model specifically designed for detecting anomalies or faults within the microgrid system. 
By doing so, the DTML model acts as a preventive measure against cascading effects within the microgrid. 

Maintaining a continuous information flow between the digital twin and the training model becomes 
crucial in preventing model degradation and minimizing false predictions. This bidirectional information 
exchange ensures that the machine learning model remains updated and accurately reflects the behavior of 
the microgrid system. Figure 2 provides a visual representation of the DTML framework, illustrating the 
dynamic nature of this approach. 

The integration of digital twins and data-driven methods, as exemplified by the DTML framework, 
showcases the powerful potential of digital twins in microgrid control and optimization. By harnessing the 
vast amounts of data available within the digital twin, coupled with machine learning techniques, we can 
effectively address and solve complex problems encountered within microgrids. This approach holds great 
promise for improving the efficiency, reliability, and performance of microgrid systems. 
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Figure 2: DTML framework. 

2.2 Digital Twin Modelling 

The microgrid model implemented using OpenDSS is based on the modified IEEE 30-node system, which 
operates at 132 kV and 60 Hz, and emulates the common characteristics of a distribution system (see Figure 
3). The model integrates renewable energy sources such as solar PV, and wind generator. Additionally, a 
diesel generator system is also included. The model also simulates different faults on the distribution line 
that connects buses (1-2,10-17,14-15,15-18 and 21-22) of the microgrid. However simultaneous faults are 
not considered in this paper. 

 
Figure 3: Simulated IEEE 30-node system. 
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2.3 Machine Learning Model Building 

The data collected comprises training and test datasets which were split into 80% and 20% respectively. 
Each case of the training dataset consists of a baseline scenario and fault scenario. The baseline scenario 
serves as a benchmark to characterize the behavior of the system under normal operation. For this scenario, 
we collect data under expected normal circumstances, with no faults while working continuously. Whereas 
the fault scenario consists of the microgrid operating under different types of faults (see Figure 4).  

 

  
Figure 4: Boxplots of variables operating under normal operations (left) and under fault (right). 

 Since the data primarily used for our machine learning model was from the digital twin, there were no 
missing points in the data. However, a summary of the dataset was performed, and the distribution of the 
normal and fault data was checked to ensure the classes were not imbalanced. Here, if an imbalance in the 
class distributions is observed, additional steps such as over-sampling of the minority class observations or 
under-sampling of the majority class observations may be required (Japkowicz, 2000). Figure 5 shows a 
pictorial depiction of the current, voltage and powers of the lines.   

  
Figure 5: Current and voltage flowing through the line during a 24-hour period. 
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 ML models for binary classification such as random forest (RF), support vector machine (SVM) and 
logistics regression (LR) is developed for the DTML framework. The developed ML models are tested with 
both training and test datasets. LR is a binary classification model (i.e., it only contains data classified as 1 
or 0, which in our case refers to an MG operating under normal or fault that is positive or negative operation) 
that estimates the probability of the dependent variable taking on a particular outcome, given the values of 
the independent variables (Pampel 2020). The LR model is based on Equation (1) below. 

 

𝑝𝑝 =
1

1 + 𝑒𝑒−𝑧𝑧
 (1) 

 
Where 𝑝𝑝 is the predicted probability of the dependent variable taking on a particular outcome and 𝑧𝑧 is 

the linear combination of the independent variables and their coefficients. 
SVM is a supervised machine learning algorithm that aims to find an optimal hyperplane to separate 

data points of different classes. The decision function of SVM can be represented as: 
 

𝑓𝑓(𝑥𝑥)  =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤^𝑇𝑇 𝑥𝑥 +  𝑏𝑏) 
 
where x represents the input vector, w denotes the weight vector perpendicular to the hyperplane, b is 

the bias term, and sign (·) is the sign function that assigns the positive class (+1) or the negative class (-1) 
based on the predicted value. The SVM algorithm solves an optimization problem to determine the optimal 
values of w and b by minimizing the objective function, which includes the hinge loss function to penalize 
misclassified samples. 
 RF is an ensemble learning method that combines large number of decision trees. In RF, each decision 
tree is trained on a randomly selected subset of the data and a randomly selected subset of the independent 
variables, which helps to reduce overfitting and improve the accuracy of the model. The decision trees in a 
RF are constructed using a process called "bagging", which involves repeatedly resampling the data with 
replacement and building decision trees on the resampled data. Once the decision trees are constructed, the 
RF algorithm combines their outputs by taking a majority vote for classification tasks or averaging their 
predictions for regression tasks. This ensemble approach helps to reduce the variance of the model and 
improve its overall performance (Breiman 2001; Dhanaraj et al. 2021). RF model is based on Equation 2 
below. Where 𝑦𝑦�𝑘𝑘  is the predicted class label for decision tree 𝑘𝑘  and 𝐽𝐽 is the number of class labels. 
 

𝑦𝑦�  =  𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑥𝑥 � �[𝑦𝑦�𝑘𝑘 = 𝑗𝑗]�       𝑓𝑓𝑓𝑓𝑎𝑎 𝑗𝑗 =  1, 2, … , 𝐽𝐽  𝑎𝑎𝑠𝑠𝑎𝑎 𝑘𝑘 = 1 𝑡𝑡𝑓𝑓 𝐾𝐾 (2) 
 

2.3.1 Performance Assessment 

This research evaluates the performance of the proposed ML models using common criteria employed in 
fault identification and classification problems for microgrids, such as accuracy, precision, recall, and F1 
score, as this is a binary classification problem (Iwendi et al. 2020). The accuracy (ACC) is calculated using 
the Equation (3): 
 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (3) 

 
where 𝐴𝐴𝐴𝐴𝐴𝐴 is the classification accuracy, true positive (TP) is the number of instances that are correctly 

classified as positive, true negative (TN) is the number of instances that are correctly classified as negative, 
false positive (FP) is the number of instances that are incorrectly classified as positive, and false negative 
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(FN) is the number of instances that are incorrectly classified as negative. The accuracy alone may not 
provide a comprehensive assessment of a classifier model’s performance. The precision (PRE) is another 
parameter used to evaluate model performance. The PRE is calculated using the following equation: 

 

𝑇𝑇𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (4) 

 
A good model has a higher precision, with a maximum value of one. Another metric, known as recall 

(REC) or sensitivity, is used for classifier model evaluation and calculated as follows: 
 

𝑃𝑃𝑃𝑃𝐴𝐴 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (5) 

 
A good classifier model has a maximum recall value of one. It can be observed that PRE is dependent 

on FP and REC is dependent on FN values from equation (4) and (5). As a result, the weighted average of 
precision and recall is used as another performance evaluation metric, known as the F1 score, which is 
defined as in Equation (6): 

 

𝐹𝐹1 𝑠𝑠𝑠𝑠𝑓𝑓𝑎𝑎𝑒𝑒 = 2 ∗
(𝑇𝑇𝑃𝑃𝑃𝑃 ∗ 𝑃𝑃𝑃𝑃𝐴𝐴)
(𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐴𝐴)

 (6) 

3 RESULTS AND DISCUSSION 

In the DTML framework proposed in this study, we evaluated the performance of each machine learning 
(ML) model in detecting faults during MG operations. All ML models were developed using Python 3.9 
and executed on a computer equipped with an Intel Xeon® 2.90 GHz processor and 64 GB RAM, in order 
to ensure replicability of results. Prior to implementation, we assessed and addressed the assumptions 
necessary for each ML model. In the case of the LR model, we investigated the potential issue of 
multicollinearity. To test for collinearity between variables, we employed a correlation matrix, where 
coefficients approaching 1 indicate co-dependence between variables, as depicted in Figure 6. 

 
Figure 6: Correlation matrix of model features. 
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In Figure 4, the presence of multicollinearity among variables in the MG Faults dataset is evident. 
However, these correlations are inherent and not a result of creating new variables from existing ones. 
Therefore, the approach to address multicollinearity should be informed by domain knowledge of the 
system and data collection methods. In this study, data was collected from a DT system of an MG that 
produces three-phase power, where power is a function of voltage and current at each phase. Notably, the 
voltage and current at one phase are independent, while there is a dependence between the voltage at one 
phase and the current at the other two phases. This dependence is expected as three symmetrical single-
phase components operate simultaneously to achieve a balanced three-phase loading within an MG 
(Darville et al. 2022). Therefore, such correlations should not be manipulated or eliminated to enhance the 
reliability of regression coefficients, as they are inherent to MG systems. Other variables such as (P2, P3, 
Q2 and Q3) which possessed high correlation were removed to avoid multicollinearity. 

3.1 Training Performance of the ML Model 

This section presents an analysis of the training and testing performance of the ML models used in this 
study. Figure 7a displays the confusion matrix, where the rows indicate the predicted class, and the columns 
represent the true class. The trained models were tested using the same training datasets. To further assess 
the overall performance of the proposed ML model, an offline trained ML model was evaluated using 
various test datasets. Specifically, four different faults were introduced during the peak usage period of 
hours 8-16, resulting in testing datasets that were not used during model training. These simulated faults 
generated 3080 windows of data samples comprising instantaneous voltage and current waveforms. Among 
these windows, 785 represent no fault cases, while 2295 correspond to fault cases. The confusion matrix 
obtained from this testing is depicted in Figure 7b.  

 As shown in Table 1 below, the RF model exhibited significantly higher accuracy compared to the LR 
and SVM model. Moreover, the classification accuracy indicates that the developed RF model is capable 
of detecting and classifying most of the microgrid faults, with only a few instances of misclassification. 

Table 1: Training performance of RF based model for training set. 

 Precision Recall F1-score Accuracy 
LR 0.87 0.75 0.81 0.80 
RF 1 0.91 0.95 0.95 
SVM 0.95 0.85 0.92 0.92 

Figure 7: Confusion matrix of RF based model for training set (a) and test set (b). 
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 Table 2 below shows that the RF model outperforms the LR and SVM model in terms of all 
performance metrics considered in this study. This shows that the DT based RF model performs better in 
detecting faults in constantly changing microgrid topographies. 

Table 2: Training performance of RF based model for test set. 

 Precision Recall F1-score Accuracy 
LR 0.81 0.80 0.80 0.80 
RF 1 0.87 0.93 0.93 

SVM 0.95 0.87 0.90 0.90 
 

Upon analyzing the performance metrics of both the training and testing data sets, we discovered that 
the RF model had achieved high accuracy values of 0.95 and 0.93, respectively, while the SVM model had 
slightly lower values of 0.92 and 0.90, respectively and LR model had obtained the lowest values with 0.80 
and 0.80, respectively. However, relying solely on accuracy to assess the effectiveness of a model can be 
misleading, as it does not provide a complete picture of the model's performance. Therefore, we also 
evaluated other metrics such as precision, recall, and F1-score, and found that all models demonstrated high 
values in these measures for both the training and testing data sets. This is an important indication that the 
developed ML models did not overfit or overtrain, and can generalize well to new, unseen data.  

4 CONCLUSION 

This paper contributes to the literature on machine learning, digital twin, and control optimization, by 
proposing a theoretical framework for digital twin-based control. This novel framework helps to reduce the 
dependency of control management decision-making on expert experience and domain knowledge and 
avoid excessive influences of single machine learning results. This paper introduces the usage of real time 
data and provides methodological insights on building digital twin using machine learning, training digital 
twin-based models using historical and real time data. As the concept of a digital twin has gained traction, 
an increasing emphasis has been placed on the interaction between the physical system and digital twins. 
Therefore, the results of this study provide guidelines for the efficient and effective integration of digital 
twins and physical systems. The framework and approach proposed in this paper, including model 
development, data processing, and model training, contribute to the methodological research on the 
applications of machine learning and digital twin to solving control decisions in virtual representations of 
real-life scenarios. The effectiveness of these approaches is proved by applying them to an IEEE 30-node 
system. The modeling processes of digital twins proposed in this paper based on machine learning also 
shows that the digital twin-based RF outperformed other models.  
 In conclusion, this paper has presented a comprehensive digital twin-based adaptive fault diagnosis 
framework for enhancing fault diagnosis performance in microgrids with autonomous reconfiguration 
capabilities. Analyzing data during off-peak hours and predicting faults during this time can provide 
valuable insights into the effectiveness and robustness of the framework in different operating conditions. 
Additionally, assessing and evaluating scenarios with concurrent faults can enhance the framework's 
capabilities in handling complex fault scenarios. These research directions have the potential to enhance 
the scope and applicability of the framework, contributing to improved fault diagnosis in microgrids. 
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